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a b s t r a c t

Water supply is the primary element of an urban system. Due to rapid urbanization and water scarcity,
maintaining a stable and safe water supply has become a challenge to many cities, whereas a large
amount of water is lost from the pipes of distribution systems. Water leakage is not only a waste of
water resources, but also incurs great socio-economic costs. This article presents a comprehensive
review on the potential water leakage control approaches and specifically discusses the benefits of
each to environmental conservation. It is concluded that water leakage could be further reduced by
improving leakage detection capability through a combination of predictive modeling and monitoring
instruments, optimizing pipe maintenance strategy, and developing an instant pressure regulation
system. The environment could benefit from these actions because of water savings and the reduction
of energy consumption as well as greenhouse gas emissions.

Introduction

Human civilization is closely related to water develop-
ment, as observed by the one-dimensional system whereby
major cities have mostly originated along rivers. The
settlement and interaction of human beings are influenced
by the spatial and functional characteristics of river basins,
and the direction of flow of rivers affects the movement of
civilization (Delli Priscoli, 2000). The inherent driver of
this phenomenon is that people need water in every aspect
of life, e.g. drinking, agriculture, industry, transportation,
recreation, etc.

In the early stage of the water-human relationship,
people passively adapted their behaviors to the water dis-
tribution. The situation was reversed, however, in the later
stages, especially when cities emerged. In urban planning,
one of the most important infrastructures is the design of
water systems, including the water supply system and the
∗Corresponding author. E-mail: qchen@rcees.ac.cn

sewerage system. The former distributes potable water to
the city habitants and the latter collects the wastewater and
conveys it out. They serve as the arteries and veins of the
city. The sustainable development of a city must involve
the sustainable use of water.

However, it is nowadays more and more challenging to
satisfy the water demand of the city inhabitants following
rapid urbanization, since the per capita water use of urban
inhabitants is much higher than that of rural inhabitants.
Access to reliable potable water is an increasing pressure
for many water supply industries, especially in developing
countries. Taking China, which is the world’s largest de-
veloping country, as an example, the urban population has
grown much faster than the total domestic water supply, as
indicated by the growth rate during 2004 to 2012 (Fig. 1).
The urban population increased by 35.2% (from 303.4
to 410.3 million) while the total amount of urban water
supply increased only by 10.2% (from 23.3 to 25.7 billion
m3) during the period. There is no surprise that this gap
will hamper urban development; therefore, it is essential to
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Fig. 1 Growth rates of urban domestic water supply vs. water
consumption population of China from 2004 to 2012. Data from the
National Bureau of Statistyics of China (http://www.stats.gov.cn/english).

bridge the growing gap between the demand and supply of
water.

However, a large amount of water is lost during the
delivery to customers in the meantime due to pipe failures.
Each year more than 32 billion m3 of potable water are lost
from water distribution networks all over the world, which
accounts for 35% of total water supplied (Farley et al.,
2008). Therefore, control of water leakage is an effective
measure to enhance water supply capability. The emer-
gence of the concepts water sensitive urban development
and water sensitive city demonstrates the willingness of
utility managers to improve water use efficiency (Coombes
et al., 2000; Ferguson et al., 2013; Morison and Brown,
2011; Wong and Brown, 2009).

In addition to the waste of potable water, there are
several indirect effects of water leakage. Water supply is
an energy-intensive industry, which consumes 2%–3% of
the worldwide energy (James et al., 2002), thus the leakage
of water is also the waste of a large amount of energy.
The development of small breaks in pipes, if not detected,
may lead to pipes bursting, incurring great socio-economic
losses. At the same time, there is a risk of contaminating
the water because pollutants may intrude into the pipe
network through the breaks when negative pressure occurs.

Management of water leakage is seen to obviously
benefit both the water utilities and the customers. The
water utilities will get the cheapest additional water source
without much investment, reduce the risk of pipe bursts,
and ensure water quality for the end-users. The savings
of water resources and the associated energy from water
leakage control will support the sustainable development
of cities. Therefore, many investigations and practices have
been conducted to minimize water leakage from water
distribution systems, including active leakage detection,
optimal maintenance of deteriorated pipes, and water pres-
sure regulation.

This article presents a comprehensive review on state-
of-the-art water leakage control approaches, in particular

the research hotspots and the associated environmental
benefits.

1 Improvement of leakage detection by com-
bining models and instruments

Leakage detection is the fundamental to control water
leakage because only if the leak is located it is possible to
fix it. As such, leakage detection has become routine work
for the water supply industries. Efficiency of leakage de-
tection can be significantly improved if an optimal leakage
detection scheme is used, which demands a combination of
detection instruments and pipe failure prediction models.

1.1 Leakage detection techniques

The available leakage detection approaches are usually
classified into three categories: noise monitoring, flow
and pressure monitoring, and the others. The first two
categories are widely applied in water utilities.

Noise monitoring: leakage can generate noise when
water flows out through a hole or fracture of a pipe
and when water flows past substances outside the pipe.
Noise can propagate along the pipe and the ground, thus
capturing the noise will help in finding a leak. There are
many kinds of acoustic equipment to capture this noise
signal. The earliest form of such acoustic equipment is a
stethoscope-like apparatus that connects a metal rod and
earphones. Placing the metal rod in contact with a pipe,
the noise can be transmitted to the listener’s ears through
the earphones (Babbitt, 1920). According to the sound
heard, experienced workers can give a judgment as to
whether a leak exists in the pipe and the leak location
can approximately be given by repeating the process at
different places. Although labor-intensive, this method has
been used for many years and is still the main way to detect
leaks for some water utilities. New acoustic techniques
have also been applied to improve the efficiency. Devices
have been developed to capture and/or record the signal
of leakage noise, based on which the leakage information
can be calculated. In essence, the theory is the same as
that of the detection by human listening. But the machine-
based techniques take advantage of the enhancement of
hearing capacity and the improvement of leakage-locating
accuracy and precision. Although broadly used, this kind
of method suffers from the disadvantage of insensitivity
to large leaks that do not generate vibrations at high
frequencies (Colombo et al., 2009).

Flow and pressure monitoring: leakage is an additional,
but unexpected, flow out of the pipe network, which means
leakage can cause changes in the hydraulic characteristics,
i.e. flow increase and pressure decrease, which are notice-
able if the leak is large enough. Continuously monitoring
the flow and pressure of a sectorized pipe network, e.g.
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DMA (district metered area) can help to detect leakage.
For example, if the minimal night flow (MNF, the flow
when the normal water use is at its minimum) increases
suddenly and keeps at this level for several consecutive
days, it possibly indicates a new leak (Alkasseh et al.,
2013). Besides the MNF, a leak can also be identified by
analyzing the changes of flow pattern (Buchberger and
Nadimpalli, 2004; Van Thienen, 2013) and the changes
of water pressure, e.g. a sudden drop of water pressure
may imply a big leak or a burst pipe. The method of
transient pressure waves is also explored to identify leaks
in pipe networks (Guo et al., 2012; Kapelan et al., 2003;
Misiunas et al., 2005; Vı́tkovský et al., 2007; Wang et
al., 2002). The existence of leaks can impose a wave
reflection on an incoming transient signal and thus alter
the system’s pressure response, notably the singularities in
the wave shape and the attenuation in the wave amplitude
(Colombo et al., 2009). By measuring the characteristics
of the transient pressure wave, the leak can be detected.
Corresponding to these approaches, hydraulic models have
been developed as an alternative to direct monitoring. The
location and rate of leakage can be estimated by the models
to obtain an acceptable fit to the monitoring data (Wu,
2009; Wu and Sage, 2006).

The other approaches: there are also some forms of visu-
al evidence such as water seeping or gushing to the surface,
anomalous vegetation growth, etc. These observations are
usually reported by the public and play an important role
in leak detection, especially in the developing countries.
Usually the visual evidence arises only when the leak
exists for a long time, so such passive leakage detections
become less and less, following the improvement of the
leakage management capability of water utilities.

1.2 Optimization of leakage detection scheme based on
pipe leakage assessment

Although a variety of instruments are available to monitor
and detect leaks, they are mostly expensive or labor-
intensive. It is logical that water utilities want to find
more leaks with limited labor force and investment. The
straightforward solution is to assess the risk of pipe failure
and prioritize the sections to be monitored. Therefore,
pipe break assessment models are developed to analyze
pipe failure risks. These models can be grouped into two
categories: physically based models and statistical models.
Physically based models aim to reveal the physical mech-
anism behind the pipe break behavior. The explanatory
variables usually contain physical and chemical parameters
describing how the pipe’s structural resistance capacity
decreases with chemical processes such as corrosion (Ra-
jani et al., 2000), and how the pipe corrosion relates to
the surrounding environment (Liu et al., 2010; Rajani and
Kleiner, 2013).

Different from the physically based models, statistical
models employ macro indicators to predict pipe breaks

without much consideration of the physical mechanism.
These indicators include both the properties of the pipe
such as material (Kleiner and Rajani, 2002), age (Kettler
and Goulter, 1985), diameter (Walski and Pelliccia, 1982),
length (Le Gat and Eisenbeis, 2000) and number of service
connections (Berardi et al., 2008) and the environmental
variables such as soil type (Watson, 2005) and even
earthquake interference (Fragiadakis et al., 2013; Ho et al.,
2010).

Quantitative relationships between pipe leakage and
selected explanatory variables have been established in the
abovementioned studies. Although the models’ structures
and parameters are usually case-dependent because of
the inherent complexity of pipe leakage, the difference
in pipe networks and data availability, these models are
successfully applied to assess the failure probability of
pilot pipes (Xu et al., 2011), from which an optimal
leakage detection plan or pipe rehabilitation strategy can
be made (Xu et al., 2013).

2 Pipe repair, rehabilitation and replacement

Once pipe are deemed to be structurally or functionally
deteriorated, decisions should be made to repair the breaks,
rehabilitate the pipe or replace it. Pipe repair has the
least impact on the pipe since it usually operates on a
rather small fraction of pipe compared to the entire length.
Pipe replacement replaces the old pipe with a new one
and thus can completely restore the pipe’s condition. Pipe
rehabilitation can improve the pipe’s condition to a level
between the current status and new pipe. It should be noted
that, in some circumstances, the term pipe rehabilitation
is used as a generalized concept referring to a wide range
of measures taken on the pipe, including pipe repair, pipe
lining, pipe replacement, etc. In some other instances, it
specifically refers to a variety of maintenance operations
including, for example, spray-on lining, sliplining, etc.,
while excluding the measures of pipe repair and pipe
replacement. This special meaning of pipe rehabilitation
is adopted in this study.

It is obvious that pipe repair requires the least cost while
pipe replacement requires the most. Therefore, careful
consideration must be taken when making a decision
whether to just repair the breaks or to rehabilitate or re-
place the pipe. Many researchers have studied the optimal
pipe replacement strategies with the goal of achieving the
largest benefit-to-cost ratio. These studies can be basically
classified into two categories: models to calculate the
optimal time to replace a pipe, and models to prioritize the
pipes for replacement.

A notable model of the first category was presented
by Shamir and Howard (1979), who established a pipe
break prediction model and defined a cost function by
adding up the total pipe repair cost and the pipe re-
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placement cost. The optimal pipe replacement time could
be quickly obtained by minimizing the cost function.
Besides structural deterioration, functional deterioration
was taken into consideration by Kleineret et al. (1998) to
calculate the pipe’s lifetime and thereafter to schedule the
pipe replacement strategies. In some other studies, multi-
objective models were established to account for both the
maintenance cost and the effect of deteriorated pipes on the
water pressure (Dridi et al., 2009; Halhal et al., 1997). Park
and Loganathan (2002) introduced the concept of threshold
break rate and when a pipe’s actual break rate reached this
value, it was economical to replace it. It should be noted
that an essential step to optimize the pipe replacement
strategy is to predict the pipe break probability (Xu et al.,
2013).

The other category of optimal pipe replacement models
focuses on sorting the pipes according to the assessment of
priorities for replacement. The emergence of these models
come about because usually water utilities have a pipe
replacement plan, for example, replacing 1% of all the
pipes per year. Rather than knowing exactly the most
economical time to replace a pipe, they are more interested
in knowing which pipes out of the whole network should
be replaced first. Therefore, models were developed to
assess the pipes’ priorities for replacement, where differ-
ent performance indicators were included and different
methods were developed (De Oliveira et al., 2010; Ho et
al., 2010; Luong and Fujiwara, 2002; Luong and Nagarur,
2005). The results of these studies help make efficient use
of the funds invested in pipe replacement.

Although quite a few studies have been done to balance
the benefits and costs of break repair and pipe replacement,
little effort was taken to assess the benefits of pipe reha-
bilitation. The main difficulty may exist in the prediction
of pipe break rate after rehabilitation. For pipe repair, the
break rate can be assumed to be consistent before and
after the repair; for pipe replacement, the break rate is
the same as new pipes after the replacement. Therefore,
in most studies only pipe repair and pipe replacement are
considered to develop optimal pipe maintenance models.

3 Water pressure regulation

Water pressure management is an effective and efficient
way to reduce the leakage of water distribution systems
and actually is the only way to reduce the background
leakage that cannot be detected using current techniques.
Compared to a long-term pipe break detection and pipe
maintenance strategy, water pressure management can
reduce the water leakage in a much shorter period. Leakage
is positively related to pressure, which means that reducing
the water pressure can immediately incur water leakage
reduction. Figure 2 gives the response of MNF (often
used to represent leakage) of a DMA to three pressure
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regulation regimes (the data is from a field experiment
by the authors), which demonstrates the effectiveness of
pressure management.

The leakage-pressure relationship is usually described
by the following equation (Lambert, 2001; Thornton and
Lambert, 2005; Thronton, 2003):

L = k × Pn

where, L is the leakage rate, P is the average pressure of the
network, and k and n are parameters to be calibrated. The
exponent n ranges from 0.5 to 2.5 or even higher depending
on the type of leak (Lambert, 2001; Thornton and Lambert,
2005). Obviously, leakage will be very sensitive to water
pressure when n > 1.

Besides the reduced leakage from existing breaks, the
water utilities can also benefit from pressure management
by lowering pipe burst risks and extending the pipe’s
lifetime (Farley and Trow, 2003; Lambert and Thornton,
2011; Thornton and Lambert, 2006). Water pressure is
usually controlled based on the partitioning management
of the pipe network, such as the PMA (pressure manage-
ment area) and DMA. PRVs (pressure reducing valves) are
installed at the inlet of the PMAs or DMAs and the water
pressure inside the zonal network can be regulated by
operating the PRVs. To maximize the benefits of pressure
management, the installation and operation strategies of
PRVs, i.e. quantity, locations and opening adjustment, are
optimized (Araujo et al., 2006).

Although the benefits of pressure management have
been recognized for over 40 years in some countries,
notably the UK and Japan (Thronton, 2003), and are more
and more realized by water utilities (Girard and Stewart,
2007; Marunga et al., 2006; Soriano et al., 2012), it is
still not applied in most developing countries. The two
major reasons are: the lack of decision support tools that
can accurately assess the benefits associated with pressure
management and justify the investment; the fact that water
distribution networks are usually not well configured for
effective pressure management (Mutikanga et al., 2013).
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4 Discussion

4.1 Benefits of water leakage control

Water availability significantly influences the development
of a city, and at the same time, urbanization has great
impact on the available water resources, resulting in re-
duced amount, changed spatio-temporal distribution and
deteriorated water quality (Du et al., 2010; Lee et al., 2009;
Marinoni et al., 2013).

Water leakage control in distribution systems is a valu-
able activity to preserve the water resources, especially
in the situation of water scarcity and climate change.
The direct benefit of water leakage control is that more
people will be fed without the need for new water resource
exploration. According to the work by Farley et al. (2008),
the lost water from distribution systems over the world can
meet the demand of 200 million people.

The benefits of water leakage control go far beyond
the saved water itself. Associated benefits include the
reduction of energy consumption and greenhouse gas
emissions. The energy consumption for treating 1 m3 of
water is 2–42 MJ and varies depending on the source of
water. Surface water and groundwater need 2–3 MJ of
energy to treat 1 m3 of water (Friedrich, 2002; Mo et
al., 2011; Racoviceanu et al., 2007). Recycled water or
imported water needs 3–18 MJ/m3 of energy (Lyons et al.,
2009; Stokes and Horvath, 2009), while the number for
desalinated water is 42 MJ/m3 (Stokes and Horvath, 2009).
The reduction of energy consumption is accompanied by
a decrease of greenhouse gas emissions. According to
Stokes and Horvath (2009), 60.7 g of CO2 is emitted for
each 1 MJ of energy consumed in the process of producing
and distributing imported water.

With rapid urbanization, new water plants and supply
systems must be constructed to meet the increasing water
demand, especially in the developing countries. In some
cases when insufficient source water is available, long
distance water transfer projects, such as the South-to-North
Water Diversion Project in China, are required, which
inevitably cause significant impacts. However, if the water
leakage from the existing water distribution systems is
reduced, the need to expand the water supply may be
alleviated.

Besides the direct and associated benefits, water leakage
control can create more jobs in pipe leakage detection, pipe
maintenance, pressure regulation, and the related device
design and manufacturing. From this aspect, water leakage
control can stimulate economic growth and promote social
interests. This point has been justified by a newly released
report from United Nations Environment Programme,
which states that a sustainable urban water infrastructure
can boost economic growth and social stability in addition
to environmental protection (Swilling et al., 2013).

Although the effects of water leakage control on water
savings (Sun and Chen, 2012) and energy reduction for
sustainable urban development (Dzidic and Green, 2012)
have been appreciated, a precise quantification is still lack-
ing. It is important to use life cycle analyses to establish
a method to parameterize these values so as to persuade
the policy makers and the public to invest in water leakage
control.

4.2 Outlook of water leakage control

The current water leakage control actions are relatively
comprehensive. There is still, however, great room for
improvement. With respect to pipe break prediction, many
models in the previous studies were developed to describe
pipe break behaviors. These models are either weak at
explaining the mechanism for pipe breaks (statistical mod-
els) or hard to implement in large-scale pipe networks
(physically based models). Therefore, there is a need to
bridge the two types of models in further studies. Besides,
the existing models are usually case-specific; so that one
model working well in a given pipe network may fail
in another. Development of generic models should be
emphasized in the future. Although some authors have
made the attempt (Savic et al., 2009), it is still worthwhile
to move forward by using more data from different cases.

In pipe leakage detection, low-cost devices with high ac-
curacy should be invented because high cost is a big barrier
for many water utilities for the use of efficient leakage de-
tection devices at a large scale. The same situation applies
for pressure control equipment. For pipe rehabilitation,
the benefits and costs of different kinds of rehabilitation
techniques need to be studied in the future to help the
stakeholders make economically optimal pipe rehabilita-
tion plans. With respect to pressure management, pressure
is mostly regulated by PRVs nowadays. The mechanism of
PRV-based pressure control is that a local energy loss is
generated at the PRVs, which implies that the energy for
pumping the water is not really saved. Therefore, there is
a potential to further reduce the water leakage and energy
consumption in water distribution networks by lowering
the redundant water pressure at the pumping station. By
combining PRVs and pump regulation, a two-level water
pressure management scheme can be designed. The first
level is large-zone pressure management regulating the
pumps, and the second level is pressure reduction at the
inlet of DMAs using PRVs.

Finally, decision support systems are required to support
the water utilities to manage their pipe networks and
improve their work efficiency. Although there are several
such systems available (Li et al., 2011; Matthews et al.,
2011; Stone et al., 2002), they should be updated in
time when innovative water leakage control methods are
available.
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5 Conclusions

Water leakage control in distribution systems is essential to
sustainable urban development. Although many measures
are available for leakage management, there is still great
room for improvement; in particular the development and
application of more reliable pipe break prediction models
in leakage monitoring, the invention of low cost leakage
detection and pressure regulation devices, optimization of
pipe maintenance strategies, and establishment of updated
decision support systems. Sustainable urban development
will be benefited not only by the water savings, but also
by the associated reduction of energy consumption and
greenhouse gas emissions. Precise quantification of these
benefits should be emphasized in the future.
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