Phosphorus recovery from wastewater by struvite crystallization: Property of aggregates
Aquatic environment

A review of environmental characteristics and effects of low-molecular weight organic acids in the surface ecosystem
Min Xiao, Fengchang Wu .. 935

Review on water leakage control in distribution networks and the associated environmental benefits
Qiang Xu, Ruiping Liu, Quwen Chen, Ruolan Li 955

Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water
Xiaolei Bao, Zhimin Qiang, Jih-Hsing Chang, Weiwei Ben, Juhui Qu 962

Removal of phosphate from wastewater using alkaline residue
Yubo Yan, Xiuyun Sun, Fangbian Ma, Jiansheng Li, Jinyou Shen, Weiqing Han, Xiaodong Liu, Lianjun Wang .. 970

Immunotoxic effects of an industrial waste incineration site on groundwater in rainbow trout (Oncorhynchus mykiss)
Nadjet Benchalgo, François Gagné, Michel Fournier 981

Atmospheric environment

Characteristics of secondary inorganic aerosol and sulfate species in size-fractionated aerosol particles in Shanghai
Shilei Long, Jianrong Zeng, Yan Li, Liangman Bao, Jingjing Cao, Ke Liu, Liang Xu, Jun Lin, Wei Liu, Guanghua Wang, Jian Yao, Yunxia Liu, Guanhua Chen, Jianwen Shi 1040

In-vehicle VOCs composition of unconditioned, newly produced cars
Krzysztof Brodzik, Joanna Faber, Damian Łomankiewicz, Anna Gołda-Kopek ... 1052

Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier
Baowen Wang, Chuchang Gao, Weishu Wang, Haibo Zhao, Chuguang Zheng ... 1062

Terrestrial environment

Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants
Hewei Ni, Wenjun Zhou, Lijun Zhu ... 1071

Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments
Xin Zhang, Yongguang Zhu, Yuebin Zhang, Yunxia Liu, Shaochun Liu, Jiewen Guo, Ruan Li, Songlin Wu, Baodong Chen ... 1080

A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation
Yiming Guo, Yongguo Liu, Guangming Zeng, Xinjiang Hu, Xin Li, Dawei Huang, Yunqin Liu, Yicheng Yin ... 1090

Environmental biology

Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor
Hao Yu, Chuan Chen, Jincui Ma, Xijun Xu, Ronggui Fan, Aijie Wang ... 1099

Degradation of dichloromethane by an isolated strain Pandoraea pnomenusa and its performance in a biotrickling filter
Jianming Yu, Wenji Cai, Zhuowei Cheng, Jianmeng Chen ... 1108

Humic acid-enhanced electron transfer of in vivo cytochrome c as revealed by electrochemical and spectroscopic approaches
Jiahuan Tang, Yi Liu, Yong Yuan, Shunghui Zhou ... 1118

Evaluation of Bacillus sp. MZS10 for decolorizing Azure B dye and its decolorization mechanism
Huixing Li, Ruijing Zhang, Lei Tang, Jianhua Zhang, Zhonggui Mao ... 1125

Biodegradation of pyrene by Phanerochaete chrysosporium and enzyme activities in soils: Effect of SOM, sterilization and aging
Cuiping Wang, Hongwen Sun, Habin Liu, Baolin Wang ... 1135
Environmental health and toxicology

Primary neuronal-astrocytic co-culture platform for neurotoxicity assessment of di-(2-ethylhexyl) phthalate
Yang Wu, Ke Li, Haoxiao Zuo, Ye Yuan, Yi Sun, Xu Yang

Environmental catalysis and materials

Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation
Jinjun Tu, Zhendong Yang, Chun Hu, Jiuhui Qu

Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene
by nanoscale bimetallic Ni-Fe
Jianjun Wei, Yajing Qian, Wenjuan Liu, Lutao Wang, Yijie Ge, Jianghao Zhang, Jiang Yu, Xingmao Ma

Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst
Feng Duan, Yuezhu Yang, Yuping Li, Hongbin Cao, Yi Wang, Yi Zhang

Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method
Nhat Huy Nguyen, Hsunling Bai

Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase
Landry Biyoghe Bi Ndong, Murielle Primaelle Ibondou, Zhouwei Miao, Xiaogang Gu, Shuqiang Lu, Zhaoqiu Qiu, Qian Sui, Serge Maurice Mbadinga

Biogenic C-doped titania templated by cyanobacteria for visible-light photocatalytic degradation of Rhodamine B
Jiao He, Guoli Zi, Zhiying Yan, Yongli Li, Jiao Xie, Deliang Duan, Yongjian Chen, Jiaqiang Wang

Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent
Genlin Zhang, Lijuan Yi, Hui Deng, Ping Sun

Serial parameter: CN 11-2629/X*1989*m*277*en*P*29*2014-5
Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent

Genlin Zhang*, Lijuan Yi, Hui Deng, Ping Sun

School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China

ARTICLE INFO
Article history:
Received 24 June 2013
revised 22 September 2013
accepted 26 September 2013

Keywords:
adsorption
dye
grafting polymerization
carboxymethyl cellulose
acrylic acid

DOI: 10.1016/S1001-0742(13)60513-6

ABSTRACT
Removal of noxious dyes is gaining public and technological attention. Herein grafting polymerization was employed to produce a novel adsorbent using acrylic acid and carboxymethyl cellulose for dye removal. Scanning electron microscopy and Fourier-transform infrared spectroscopy verified the adsorbent formed under optimized reaction conditions. The removal ratio of adsorbent to Methyl Orange, Disperse Blue 2BLN and malachite green chloride reached to 84.2%, 79.6% and 99.9%, respectively. The greater agreement between the calculated and experimental results suggested that pseudo second-order kinetic model better represents the kinetic adsorption data. Equilibrium adsorptions of dyes were better explained by the Temkin isotherm. The results implied that this new cellulose-based absorbent had the universality for removal of dyes through the chemical adsorption mechanism.

Introduction

Dyes are widely used in many industries such as textile, cosmetics, paper printing, leather and plastic industry (Badruddoza et al., 2010; Goel et al., 2011). Dyes are a relatively large group of organic chemicals classified based on their molecular structure as azobenzene, anthraquinone, or triphenylmethane dyes. Methyl Orange (MO; C.I. 35780), Disperse Blue 2BLN (DB; C.I.63285), and malachite green chloride (MG; C.I. 42000) are frequently used dyes representing the above classes. These dyes are difficult to degrade because of their complex aromatic structures and can cause allergy, dermatitis, irritation and even to cancer in humans (Bhattacharyya and Sharma, 2004; Xu et al., 2006). Residual and unspent dyes are usually discharged into the environment, thereby causing pollution problems (Deng et al., 2009). With the increasing concern on environment protection, removal of such dyes is gaining public and technological attention (Yan et al., 2011).

For dye removal from wastewater, methods such as sorption (Duran et al., 1999), flocculation (Gautam et al., 2011), oxidation (Mantzavinos and Psillakis, 2004), and electrolysis (Ruan et al., 2010) are common methods. Given that sorption can transform dyes from the effluent to a solid phase, this method is generally regarded as an effective technique for dealing with wastewater dye. Among conventional adsorbents, activated carbon has been widely investigated and used for dye adsorption from various effluents (Deng et al., 2009). Nevertheless, its application is limited because of its high cost and recalcitrant (O’Connell et al., 2008). In recent years, interest in finding an effective alternative to activated carbon such as starch (Wang et al., 2010), cellulose (Wojnárovits et al., 2010), chitosan (Wang et al., 2011) and lignin (Silva et al., 2011) is growing.

Cellulose is one of the most abundant natural substances in nature. However, the compact and inactive molecular
structure of cellulose requires it to be modified to improve its hydrophilicity as an adsorbent for dye removal. To date, the cellulose-based materials are prepared by carboxymethylation (Yan et al., 2011), grafting (Wang and Wang, 2008) and cross-linking (Liu et al., 2009a). Among the cellulose-based materials, carboxymethyl cellulose (CMC) is a representative water-soluble cellulose derivative. By itself or grafted with other water-soluble compounds, CMC is used as an adsorbent for dye sorption from various wastewaters systems (Yan et al., 2011; Bao et al., 2011). Several reports have also indicated that a particular kind of cellulose-based material can remove dyes with different molecular structures.

In this study, CMC prepared by our previous research (Zhang et al., 2011) was used as the basic adsorption material to prepare a novel adsorbent. This absorbent was produced by grafting acrylic acid (AA) along the chains of CMC to improve the mechanical properties, swelling capacity and dyes adsorption capacity of CMC. MO, DB and MG were chosen to investigate the adsorption behavior and universality of CMC-AA to the dyes. The preparation method of CMC-AA adsorbent has the advantage of lower temperature, short time and cheap raw material, and the CMC-AA adsorbent has high adsorption to multiple dyes, therefore, it can effectively reduce the production and application cost. The present research will provide the technical basis for preparation and application of CMC-based adsorbent.

1 Materials and methods

1.1 Materials

CMC used (with the degree of substitution of 0.77) was prepared according to our previous research (Zhang et al., 2011). AA, ammonium persulfate (APS) and N,N-methyl-enebisacrylamide (MBA) were supplied by Tianjin Reagent Corp (Tianjin, China). Other agents used were all of analytical grade and all solutions were prepared with distilled water.

1.2 Preparation of CMC-AA adsorbent

A series of samples were prepared according to the modified procedure (Liu et al., 2009b). A 2-g of CMC was dissolved with 50 mL distilled water in a 300 mL three-neck flask, equipped with a mechanical stirrer, a condenser and a nitrogen line. After purged with nitrogen for 15 min, 0.02 g of APS was added to flask for initiating radicals. Then 4–20 g of AA containing 0.006 g of MBA, neutralized to the certain pH with the solution of sodium hydroxide, was added. The grafting reaction was then performed in the water bath at 50–90°C for 2–6 hr. The gaining product was dried to a constant weight at 140°C and milled to particle size about in 0.40 mm. Grafting efficiency (GE), showing the formation of CMC-AA adsorbent but for homopolymer and in direct proportion to absorbency (Kuwabara and Kubota, 1996), was determined according to the reported method (Samaha et al., 2005). The gaining CMC-AA product was extracted for 4 hr to remove homopolymer by acetone via Soxhlet extractor. After the CMC-AA copolymer dried at 80°C, the GE was calculated as the following equation:

\[GE = \frac{W_2}{W_1} \times 100\% \]

where, \(W_1 \) and \(W_2 \) are the weight of total product and the weight of CMC-AA only grafted on CMC (after acetone extraction), respectively.

1.3 Characterization of CMC-AA adsorbent

The FT-IR spectra of samples were taken in KBr pellets using an AVATAR360 FT-IR spectrophotometer (Nicolet, USA). The surface morphology of the adsorbent was examined using scanning electron microscopy (JSM-6490, JEOL, Japan). A sputter coater was used to pre-coat conductive gold onto the fracture surfaces before observing the microstructure at 30 kV. The surface analyses and porosity were determined from the adsorption-desorption isotherm of nitrogen at −196°C (Micromeritics ASAP2020). For area and pore calculations, the reported methods were used (Deng et al., 2009).

1.4 Adsorption studies of CMC-AA to MO, DB and MG

Adsorption studies were carried out in triplicate using the batch adsorption method. All of experiments were performed in the 100 mL of dyes solutions (MO and MG 30 mg/L, DB 200 mg/L) with 20 mg of CMC-AA adsorbent for 60 min at 25−50°C. The pH of the dye solutions were ranged from 2.0 to 10.0. After the equilibrium, the suspensions were centrifuged at 10,000 rpm for 5 min. The final concentration of dyes which remained in the batch adsorption method. All of experiments were performed in the 100 mL of dyes solutions (MO and MG 30 mg/L, DB 200 mg/L) with 20 mg of CMC-AA adsorbent for 60 min at 25−50°C. The pH of the dye solutions were ranged from 2.0 to 10.0. After the equilibrium, the suspensions were centrifuged at 10,000 rpm for 5 min. The final concentration of dyes which remained in the solution was determined by visible spectrophotometer. Absorbance measurements were made at the maximum wavelength of 464, 567 and 617 nm for MO, DB and MG respectively. The dyes removal (R) by the CMC-AA adsorbent was calculated by Eq. (2).

\[R = \frac{C_0 - C_t}{C_0} \times 100\% \]

where, \(C_0 \) and \(C_t \) are the initial and residual concentration of dyes in the suspension.

1.5 Kinetic and equilibrium models

Adsorption kinetic studies can provide valuable information on the mechanism of the adsorption process. So the three kinetic models were used to evaluate the adsorption kinetic of dyes.

Pseudo first-order:

\[q_t = q_e(1 - \exp(-k_1t)) \]
where, \(q_e \) (mg/g) and \(q_i \) (mg/g) are the amounts of adsorption dye at equilibrium and at time \(t \) (hr), \(k_1 \) (hr\(^{-1}\)) is the pseudo first-order rate constant.

Pseudo second-order:

\[
q_t = \frac{k_2q_e^2t}{1 + k_2q_e^2t}
\]

(4)

where, \(k_2 \) (g/(mg-hr)) is the pseudo second-order rate constant.

Intra particle diffusion:

\[
q_t = k_i(t^{1/2}) + C
\]

(5)

where, \(k_i \) (mg/(g-sec)) is intraparticle diffusion rate constant and \(C \) is constant. \(C \) values give information about the thickness of boundary layer and is increasing with increase of initial concentration.

The thermodynamic assumptions of adsorption isotherms and their estimated parameters provide the insight for both the properties of the surface and the mechanism of adsorption. So the three isotherm models were used to evaluate the equilibrium of adsorption.

Langmuir isotherm model:

\[
q_e = \frac{Q_{\max}KLC_e}{1 + KLC_e}
\]

(6)

where, \(q_e \) (mg/g) is the amount of dyes adsorbed at the equilibrium; \(Q_{\max} \) (mg/g) is the maximum adsorption capacity of the adsorbent; \(K_L \) (L/mg) is the Langmuir equilibrium constant; \(C_e \) (mg/L) is the dye concentration at the equilibrium.

Freundlich isotherm model:

\[
q_e = K_Fc_e^{1/n}
\]

(7)

where, \(K_F \) (mg/(g⋅(L/mg)]) is the Freundlich equilibrium constant; \(n \) is dimensionless exponent of the Freundlich equation.

Temkin isotherm:

\[
q_e = \frac{RT}{b} \ln(AC_e)
\]

(8)

It can be linearized as Eq. (9):

\[
q_e = B \ln A + B \ln C_e
\]

(9)

where, \(B = RT/b \), \(b \) (J/mol) is the Temkin constant related to heat of sorption, \(R \) (8.314 J/(mol-K)) is the gas constant and \(T \) (K) is the absolute temperature; \(A \) (L/g) is the Temkin isotherm constant.

2 Results and discussion

2.1 Preparation of CMC-AA adsorbent and factors on grafting efficiency of CMC-AA adsorbent

2.1.1 Weight ratio of AA to CMC

CMC-AA adsorbent is formed by free-radical chain polymerization. In free-radical polymerization, the weight ratio of AA and CMC (\(X_{AA} \)) markedly affects both the molecular weight of the polymer and GE (Said et al., 2004). During the reaction between AA and CMC, chain transfer and increase were directly correlated with the CMC quality. The viscosity of reaction system and steric hindrance effect also increased with gradually increased CMC weight. The effect of the \(X_{AA} \) on GE of CMC-AA adsorbent is shown in Fig. 1a. The GE of the product reaches a maximum of 82.3% at 10:3 of \(X_{AA} \) and then considerably decreases with increased CMC amount. The increase in GE with decreased weight ratio can be attributed to decreasing dissoluble homo-polymer of AA. Liu et al. (2009a) also considered that the overweight ratio of AA can be attributed to increased dissoluble homo-polymer of poly acrylate. With the further decreased \(X_{AA} \), the fraction of CMC increased, and the grafting of CMC and AA contributed to the increase in GE. A similar phenomenon was reported when CMC was used to synthesize CMC-based drug carrier (Ali et al., 2008).

2.1.2 Temperature

Figure 1b demonstrates the effect of the reaction temperature on GE of CMC-AA adsorbent. Increased temperature from 50°C to 70°C improves GE and the polymerization rate. The GE reached the maximum of 83.1% at 70°C and then decreased beyond this temperature. The diffusion rate of AA onto CMC increases at high temperature, resulting in a higher GE. In addition, the grafting reaction is chemically initiated by APS by producing radicals on the polymer chain. A more intense polymerization reaction occurs with increased temperature after chain initiation. However, APS is a thermo-sensitive initiator that does not need a very high temperature. Extreme temperatures also lead to many monomer groups grafting onto the main chain and forming a close network structure, thereby conferring difficulty to the application of APS (Ma et al., 2011).

2.1.3 pH values

Acrylic acid must be neutralized in the reaction process because its high activation at low pH produces a graft by itself. Once grafting AA it occurs, the grafting of CMC and AA is then inhibited. Figure 1c shows that the optimal pH for the grafting of CMC and AA is 7.0. After being neutralized with sodium hydroxide, the increasing hydrophilic groups advance the development of the network. The high pH inhibits the grafting reaction because of the repulsion of the negative charges of -COO\(^-\) groups. Highly
alkaline conditions are also reportedly disadvantageous to absorbent synthesis because more K⁺ or Na⁺ ions in the polymeric network at high pH values react with the -COO⁻ groups, resulting in the decrease of adsorption property of absorbent (Liu et al., 2009a; Ma et al., 2011).

2.1.4 Reaction time

Figure 1d indicates that GE increases with increased reaction time and reaches a maximum of 85.6% at 4 hr. The poly reaction processes of CMC and AA involve chain initiation, increase, termination and transfer. If the reaction time is too short, grafting is not completed. With prolonged reaction time, more three-dimensional network structures are formed, yielding to the gradually increased GE. At 4 hr, the free radical reaction is terminated following a constant GE. Similar results were obtained in grafting vinyl acetate onto starch (Samaha et al., 2005; Waly et al., 1998) and grafting AA onto guar gum (Taunk and Behari, 2000).

2.2 Characterization of CMC-AA adsorbent

The scanning electron microscopy images of CMC-AA adsorbent in Fig. 2b show a smooth surface with continuous phase but possessing pores. Pure CMC (Fig. 2a) is characterized with a rough surface. The pores in CMC-AA adsorbent can be one of the regions of water permeation and interaction sites with external stimuli in the graft.
polymers (Pourjavadi et al., 2010).

The Fourier-transform infrared spectroscopy (FT-IR) data of CMC-AA adsorbent (Fig. 3 line b) shows a new band at 1571 cm\(^{-1}\) (the stretching vibration of \(-\text{C}=\text{O}\)) following band reduction at 1607.9 cm\(^{-1}\) in CMC (Fig. 3 line a), which is due to grafting of \(\text{C}=\text{O}\) from AA (Said et al., 2004). The peaks at 1461 cm\(^{-1}\) and 1133 cm\(^{-1}\) in the spectrum of CMC-AA adsorbent (Fig. 3 line b) are related to the stretching vibration and symmetrical stretching of \(-\text{COO}\) groups (Pourjavadi et al., 2010). An absorption band at 622 cm\(^{-1}\) (Fig. 3 line b) formed because hydrogen bonding changed the position of the FTIR absorption bands from O-H stretching. All of analyses indicate the grafting reaction occurs between CMC and AA.

The porous characteristics of CMC-AA adsorbent are confirmed by nitrogen sorption tests. Table 1 shows that the Brunauer-Emmett-Teller (BET) surface areas of CMC-AA adsorbent are much higher than those of other adsorbent reported elsewhere (Silva et al., 2011). The obtained pore size distributions indicate a number of micropores with the diameters approximately in the range 4–8 nm (data not shown). Considering that the specific surface area and pore volume are the most important textural parameters to evaluate the adsorption capacity of an adsorbent (Haque et al., 2010), CMC-AA is considered as an alternative adsorbent for dye removal.

2.3 Adsorption of MO, DB and MG

2.3.1 Effect of initial dyes concentration on removal ratio

The adsorption capacities of dyes by CMC-AA adsorbent increased with increased dye concentration. However, the removal \((R)\) of dyes by CMC-AA adsorbent decreases when the concentration of the dye was increased to an inflection point (Fig. 4). When the concentration of MO, DB and MG was 30, 200 and 30 mg/L, respectively, the \(R\) of dyes is better than that at other experimental concentrations. Thus, these concentrations are adopted in subsequent experiments.

2.3.2 Effect of temperature and pH on the adsorption of MO, DB and MG

Dyes adsorption behavior on the adsorbents was investigated at different temperatures (Fig. 5a). With temperature increased from 25°C to 50°C, the \(R\) of CMC-AA adsorbent...
to increased MO, DB and MG also increased. However, the R for MO, DB and MG becomes relatively constant beyond 35, 45 and 40°C, respectively. The increase in temperature may have promoted the permeation of dye molecule towards the absorbent because of swelling effect, but this increase can also lead to increased mobility of the dye ions (Wang et al., 2011).

The effects of the solution pH on the R of dyes were studied by varying pH at 35, 45 and 40°C for the removal of MO, DB and MG, respectively. The results are shown in Fig. 5b. The optimal pH for the removal of DB is 7.0, growing the maximum removal of 79.6%. However, no peak removal is obtained for MO and MG efficient removal within the tested pH range. These values are replaced with the relatively constant R of 84.2% and 99.9% at pH < 4.0 and > 9.0, respectively. pH_{PZC} for CMC-AA adsorbent used is about 7.4. When the pH of MO dye solution is < 4.0, pH < pH_{PZC}, the CMC-AA adsorbent is positively charged. MO occurs in the anionic (pH < 3.1) or uncharged form (pH 3.1–4.4), the attraction forces between adsorbent surface and MO facilitates the MO adsorption. The high MO adsorption from wastewaters at low pH was proved to be due to neutralization of charge (Mittal et al., 2007). MG exists in an uncharged form, whereas CMC-AA adsorbent is negatively charged at solution pH > 11.0. Thus, the other absorption mechanisms of CMC-AA adsorbent to MG need further research. A high pH was also found for MG removal using activated slag as absorbent (Gupta et al., 1997). When it given the chemical structure and neutral pH property of DB, the similar charged state of CMC-AA adsorbent and DB at different pH values cause repulsion between the charged adsorbent and DB, resulting in a low R of DB beyond the neutral pH range. A previous study has also verified that the neutral value is requisite for DB removal using CMC-AA adsorbent (Li et al., 2007).

pH affects the ionized state of an absorbent, the characteristics of dyes, and their interaction. Thus, preferable adsorption can be achieved by adjusting the pH of dyes solution. The three kinds of dyes in this study have difference molecular structure, but they can be efficiently removed at the respective pH condition by CMC-AA adsorbent. This result indicates that the universality of CMC-AA adsorbent in removing MO, DB and MG dyes.

All in all, the R of MO, DB and MG also reached to 84.2%, 79.6% and 99.9% respectively under their optimized adsorption conditions, which are similar and even higher than previously reported (Haque et al., 2010; Fu et al., 2011; Khattri and Singh, 2009). It was found that the smaller the log K_{ow} of dye is, the higher the R is. Generally, if the compound has a low log K_{ow} value (less than 10) it can be considered relatively hydrophilic. So the lower log K_{ow} of MO, DB and MG (2.62, 3.50 and 0.62 respectively) may be an important factor for their high R by CMC-AA adsorbent, a hydrophilic adsorbent with many -COO and -OH groups. In addition, based on the market price (USD 550–950) of activated carbon used removal of dyes, the cost that used CMC-AA adsorbent to adsorb dyes in a batch process was preliminarily calculated to be saved 10%–20%. Because the dyes are difficulty to be biodegraded, and the CMC-AA adsorbent is relative cheap and easy to be degraded, the spent adsorbent in a batch process will be treated by traditional chemical methods such as burning. Consequently, CMC-AA would be a good adsorbent for the removal of water-soluble dyes.

2.4 Kinetic studies

Both pseudo first-order and pseudo second-order kinetic models were used to fit the experimental data and to investigate the mechanism of adsorption and potential rate controlling steps such as mass transfer and chemical reaction. Figure 6 shows that the adsorption occurs through three stages for the different dyes. The first stage is rapid adsorption attributed to the rapid diffusion and adsorption of the dye to CMC-AA adsorbent surface (Silva et al., 2011). The second stage is a delayed process due to the intraparticle diffusion and is close to adsorption...
equilibrium. The third stage is equilibrium establishment. The highest \(q_e \) value is found for DB adsorption onto CMC-AA adsorbent, followed by MG and DO.

Table 2 shows that the \(R^2 \) values range from 0.7306 to 0.8882 for the intraparticle diffusion model. If adsorption process follows the intraparticle diffusion process, a plot of \(q_t \) against \(t^{1/2} \) should be a straight line (Bekci et al., 2009). Generally, adsorption process does not follow intraparticle diffusion process, the adsorption is less affected by intraparticle diffusion. Thus, the result shows that the DB, MG and MO adsorption by CMC-AA adsorbent is less affected by intraparticle diffusion. By contrast, the pseudo-second-order model presents the best fit, presenting high \(R^2 \) values (\(R^2 > 0.99 \)) for three kinds of dyes, and the calculated \(q_e \) agreed with the experimental data. According to this model, the adsorption rate depends on the amount of dye adsorbed on the surface of CMC-AA absorbent and the amount adsorbed at equilibrium. The overall rate of the dye adsorption process should be controlled by chemical adsorption. Similar phenomena have been observed for DB adsorption (Özacar and Sengil, 2004).

So far many adsorbents have been evaluated as candidates for the removal of MO from water and their adsorption capacities have varied widely depending on the adsorbent. Even though the adsorption capacity of CMC-AA is less than that of iron terephthalate and activated carbon (Haque et al., 2011), its capacity is relatively greater than that of the most other adsorbents (Haque et al., 2010; Liu et al., 2009b). The maximum adsorption capacity of CMC-AA adsorbents for MG (147.9 mg/g) is the highest among celllose-based and starch-based absorbent materials such as rattan sawdust (Hameed and El-Khaiary, 2008) and cross linked amphoteric starch (Xu et al., 2006). Likewise, adsorption capacity of CMC-AA adsorbents for DB was the highest among previously reported values (Fu et al., 2011).

2.5 Equilibrium models

Adsorption isotherms describe how adsorbates interact with adsorbents and are critical in optimizing the use of adsorbents. In this study, the Langmuir isotherm, Freundlich isotherm and Temkin isotherm were used for describing the results. Table 3 shows that the Langmuir isotherm and Freundlich isotherms poorly suit to the adsorption of DB and MG in comparison to Temkin isotherm. The validity of the Temkin model suggests that the DB and MG dyes uptakes have a uniform distribution of binding energies. Thus, the heat of adsorption of all the molecules in the

<table>
<thead>
<tr>
<th>Sample</th>
<th>CMC-AA</th>
<th>Langmuir isotherm</th>
<th>Freundlich isotherm</th>
<th>Temkin isotherm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO</td>
<td>1111.11</td>
<td>0.007</td>
<td>7.82</td>
<td>2.94</td>
</tr>
<tr>
<td>DB</td>
<td>1096.05</td>
<td>0.001</td>
<td>20.70</td>
<td>21.98</td>
</tr>
<tr>
<td>MG</td>
<td>555.56</td>
<td>0.021</td>
<td>10.37</td>
<td>2.36</td>
</tr>
</tbody>
</table>

The values were obtained by varying the initial concentration of MO, DB and MG under the adsorption conditions of pH 5.0, 7.0, 9.0, temperature of 35, 45 and 40°C respectively, contact time 2 hr, and CM-AA 0.4 g/L.
layer decreased linearly with coverage due to adsorbent-adsorbate interactions (Deng et al., 2009). The high R^2 of Freundlich and Temkin isotherm are observed in MO adsorption, suggesting that several interactions exist between CMC-AA adsorbent and MO.

3 Conclusions

A new cellulose-based absorbent CMC-AA was prepared by grafting polymerization of AA onto CMC. The highest GE value of 85.6% is obtained under the optimum synthesis conditions. The prepared CMC-AA absorbent is proved to be a potential adsorbent for removal of MO, DB and MG from aqueous solutions, although the adsorption depends on different temperatures and pH values. Pseudo second-order kinetic model better fits the kinetics of current adsorption, showing the chemical adsorption of CMC-AA adsorbent to MO, DB and MG. Temkin isotherm better fits the experimental equilibrium data of dye adsorption on the prepared CMC-AA absorbent.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21104047) and the Outstanding Young Innovative Fund of Xinjiang Bingtuan, China (No. 2010JC25).

REFERENCES

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
Hongxiao Tang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Associate Editors-in-Chief
Jiuhui Qu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Shu Tao
Peking University, China
Nigel Bell
Imperial College London, United Kingdom
Po-Keung Wong
The Chinese University of Hong Kong, Hong Kong, China

Editorial Board
Aquatic environment
Baoyu Gao
Shandong University, China
Maosheng Fan
University of Wyoming, USA
Chhipin Huang
National Chiao Tung University, Taiwan, China
Ng Wun Jern
Nanyang Environment & Water Research Institute, Singapore
Clark C. K. Liu
University of Hawaii at Manoa, USA
Hokyong Shon
University of Technology, Sydney, Australia
Zijian Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Zhiwu Wang
The Ohio State University, USA
Yuxiang Wang
Queen’s University, Canada
Min Yang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Terrestrial environment
Christopher Anderson
Massey University, New Zealand
Zaocung Cai
Nanjing Normal University, China
Xinbin Feng
Institute of Geochemistry, Chinese Academy of Sciences, China
Hongqing Hu
Huazhong Agricultural University, China
Kim-Chew Lam
The Chinese University of Hong Kong, Hong Kong, China
Erwin Klumpp
Research Centre Juelsich, Agroscope Institute, Germany
Peijun Li
Institute of Applied Ecology, Chinese Academy of Sciences, China

Michael Schloter
German Research Center for Environmental Health, Germany
Xuejun Wang
Peking University, China
Lizhong Zhu
Zhejiang University, China
Jiannin Chen
Fudan University, China
Abdelwahid Mellouki
Centre National de la Recherche Scientifique, France
Yuying Mu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Min Shao
Peking University, China
James Jay Schauer
University of Wisconsin-Madison, USA
Yuesi Wang
Institute of Atmospheric Physics, Chinese Academy of Sciences, China
Xin Yang
University of Cambridge, UK
Yong Cai
Florida International University, USA
Henner Hollett
RWTH Aachen University, Germany
Jae-Soong Lee
Sungkyunkwan University, South Korea
Christopher Rensing
University of Copenhagen, Denmark
Bojan Sedmak
National Institute of Biology, Ljubljana
Lirong Song
Institute of Hydrobiology, Chinese Academy of Sciences, China
Gehong Wei
Northwest A & F University, China
Daqiang Yin
Tongji University, China
Zhongtang Yu
The Ohio State University, USA

Environmental toxicology and health
Jingwen Chen
Dalian University of Technology, China
Jianying Hu
Peking University, China
Guibin Jiang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Sijin Liu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Tsunoshi Nakanishi
Gifu Pharmaceutical University, Japan
Willie Peijnenburg
University of Leiden, The Netherlands
Bingsheng Zhou
Institute of Hydrobiology, Chinese Academy of Sciences, China

Environmental catalysis and materials
Hong He
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Junhua Li
Tsinghua University, China
Wenfeng Shangguan
Shanghai Jiao Tong University, China
Yasutake Teraoka
Kyushu University, Japan

Environmental analysis and method
Zongwei Cai
Hong Kong Baptist University, Hong Kong, China
Jiping Chen
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
Minghui Zheng
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Municipal solid waste and green chemistry
Pinjing He
Tongji University, China

Environmental ecology
Ruoshong Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.