1 Growth and alkaline phosphatase activity of *Chattonella marina* and *Heterosigma akashiwo* in response to phosphorus limitation
Zhao-Hui Wang and Yu Liang

8 Distribution characteristics and indicator significance of Dechloranes in multi-matrices at Ny-Ålesund in the Arctic
Guangshui Na, Wei Wei, Shiyao Zhou, Hui Gao, Xindong Ma, Lina Qiu, Linke Ge, Chenguang Bao and Zwei Yao

14 Pretreatment of cyanided tailings by catalytic ozonation with Mn$^{2+}$/O$_3$
Yulong Li, Dengxin Li, Jiebing Li, Jin Wang, Asif Hussain, Hao Ji and Yijie Zhai

22 Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance
Lingyun Jin, Guangming Zhang and Xiang Zheng

29 Removal of tetracycline from aqueous solution by a Fe$_3$O$_4$ incorporated PAN electrospun nanofiber mat
Qing Liu, Yuming Zheng, Lubin Zhong and Xiaoxia Cheng

37 Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability
Changgeng Liu, Panyue Zhang, Chenghua Zeng, Guangming Zeng, Guoyin Xu and Yi Huang

43 Mg$^{2+}$ improves biomass production from soybean wastewater using purple non-sulfur bacteria
Pan Wu, Guangming Zhang and Jianzheng Li

47 Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil
Liang Li, Honggang Zhang and Gang Pan

54 Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer *Brachionus plicatilis*
Jingjing Sha, You Wang, Jianxia Lv, Hong Wang, Hongmei Chen, Leilei Qi and Xuexi Tang

64 Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid
Xiaojuan Su, Jun Zhu, Qingling Fu, Jichao Zuo, Yonghong Liu and Hongqing Hu

74 Predicted no-effect concentrations for mercury species and ecological risk assessment for mercury pollution in aquatic environment
Meng Du, Dongbin Wei, Zhuowei Tan, Aiwu Lin and Yuguo Du

81 Investigation of physico-chemical properties and microbial community during poultry manure co-composting process
Omar Farah Nadia, Loo Yu Xiang, Lee Yei Lie, Dzulkornain Chairil Anuar, Mohammed P. Mohd Afandi and Samsu Azhari Baharuddin

95 Cu(II), Fe(III) and Mn(II) combinations as environmental stress factors have distinguishing effects on *Enterococcus hirae*
Zaruhi Vardanyan and Armen Trchounian

101 Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil
Bibiana Betancur-Corredor, Nancy J. Pino, Santiago Cardona and Gustavo A. Peñuela

110 Hg0 removal from flue gas over different zeolites modified by FeCl$_3$
Hao Qi, Wenqing Xu, Jian Wang, Li Tong and Tingyu Zhu

118 Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution
Di Lei, Qianwen Zheng, Yili Wang and Hongjie Wang
CONTENTS

128 Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China
Ming Wang, Wentai Chen, Min Shao, Shuhua Lu, Limin Zeng and Min Hu

137 Low-carbon transition of iron and steel industry in China: Carbon intensity, economic growth and policy intervention
Bing Yu, Xiao Li, Yuanbo Qiao and Lei Shi

148 Synergistic effect of N- and F-codoping on the structure and photocatalytic performance of TiO₂
Jiemei Yu, Zongming Liu, Haitao Zhang, Taizhong Huang, Jitian Han, Yihe Zhang and Daohuang Chong

157 Pollution levels and characteristics of phthalate esters in indoor air of offices
Min Song, Chenchen Chi, Min Guo, Xueqing Wang, Lingxiao Cheng and Xueyou Shen

163 Characteristics and anthropogenic sources of carbonyl sulfide in Beijing
Ye Cheng, Chenglong Zhang, Yuanyuan Zhang, Hongxing Zhang, Xu Sun and Yujing Mu

171 Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths
Sergiy O. Soloviev, Andriy Y. Kapran and Yaroslava P. Kurylets

178 Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia
Kosuke Toshiki, Pham Quy Giang, Kevin Roy B. Serrona, Takahiro Sekikawa, Jeoung-soo Yu, Baasandash Choijil and Shoichi Kunikane

187 Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process
Yufang Guo, Xiaobin Liao, Mingli Fu, Haibao Huang and Daiqi Ye

195 Changes in nitrogen budget and potential risk to the environment over 20 years (1990-2010) in the agroecosystems of the Haihe Basin, China
Mengmeng Zheng, Hua Zheng, Yingxia Wu, Yi Xiao, Yihua Du, Weihua Xu, Fei Lu, Xiaoke Wang and Zhiyun Ouyang
Mg$^{2+}$ improves biomass production from soybean wastewater using purple non-sulfur bacteria

Pan Wu¹, Guangming Zhang¹,²,* , Jianzheng Li¹

1. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China. E-mail: wupan20071120@163.com
2. School of Environment & Resource, Renmin University of China, Beijing 100872, China

ARTICLE INFO

Article history:
Received 29 March 2014
Revised 16 May 2014
Accepted 22 May 2014
Available online 15 November 2014

Keywords:
Purple non-sulfur bacteria
Mg$^{2+}$
Biomass resource
Soybean wastewater
Photosynthesis

ABSTRACT

Soybean wastewater was used to generate biomass resource by use of purple non-sulfur bacteria (PNSB). This study investigated the enhancement of PNSB cell accumulation in wastewater by Mg$^{2+}$ under the light-anaerobic condition. Results showed that with the optimal Mg$^{2+}$ dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L, and biomass yield also was improved by 60%. Chemical Oxygen Demand (COD) removal reached above 86% and hydraulic retention time was shortened from 96 to 72 hr. The mechanism analysis indicated that Mg$^{2+}$ could promote the content of bacteriochlorophyll in photosynthesis because Mg$^{2+}$ is the bacteriochlorophyll active center, and thus improved adenosine triphosphate (ATP) production. An increase of ATP production enhanced the conversion of organic matter in wastewater into PNSB cell materials (biomass yield) and COD removal, leading to more biomass production. With 10 mg/L Mg$^{2+}$, bacteriochlorophyll content and ATP production were improved by 60% and 33% respectively.

© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Keywords:
Purple non-sulfur bacteria
Mg$^{2+}$
Biomass resource
Soybean wastewater
Photosynthesis

Introduction

Purple non-sulfur bacteria (PNSB) are rich in high-value biochemical substances (Kobayashi and Kurata, 1978; Sabourin-Provost and Hallenbeck, 2009; Kobayashi and Tchan, 1973). The biomass is regarded as a raw material for producing high-value substances. At the same time, PNSB can treat a variety of organic wastewaters (Myung et al., 2004; Nagadomi et al., 2000). Therefore, organic wastewaters can be used to generate biomass resources by PNSB. Soybean wastewater is nontoxic, and rich in nutrients for microorganism growth (Yu et al., 1998). Thus, it can be used as a substrate to produce biomass resources by PNSB.

However, when organic wastewaters have been used as substrates, biomass production was much lower than with culturing mediums (Kobayashi and Tchan, 1973). A key to promoting PNSB production from wastewaters is to improve the conversion efficiency from the organics in wastewaters into production of bacterial cells. According to an analysis of PNSB metabolic activity, adding Mg$^{2+}$ into wastewater might enhance the accumulation of PNSB biomass. This is because the main physiological functions of Mg$^{2+}$ are as enzyme/pigment active sites or activation of enzyme/pigment activity, and regulation of energy metabolism and cellular material synthesis (Hakobyan et al., 2012). Therefore, Mg$^{2+}$ directly affects PNSB growth and metabolism.

The purposes of this study are to enhance the PNSB biomass production from soybean wastewater through adding Mg$^{2+}$ and optimizing the dosage, and to investigate potential mechanisms. The light-anaerobic condition was used since PNSB usually grow best under this condition (Kobayashi and Tchan, 1973).
1. Materials and methods

1.1. Materials

PNSB strain (Rhodobacter sphaeroides Z08) was used (He et al., 2010). It was cultured in improved RCVBN medium for 48 hr at 26–30°C (Wu et al., 2012). Afterwards, PNSB at logarithmic growth phase was inoculated.

Soybean wastewater from Harbin Soybean Products Machining Factory, Harbin, China was used. The characteristics of soybean wastewater were as follows: Mg2+ 0 mg/L, COD 10,000 mg/L, and protein 2300 mg/L.

1.2. Methods

Glass flasks were used as bioreactors and were sterilized before use. The inoculation concentration of PNSB was 160 mg/L. After inoculation, the wastewater pH was 6.9, near neutral. The light anaerobic condition was set as follows: the reactor was illuminated by two incandescent lamps from the left and right sides. The light intensity at the surface of the reactor was controlled at 3000 lx. After saturating with nitrogen (the purity of nitrogen was 98.0%), the bioreactor was sealed with a sealing membrane to maintain the anaerobic condition.

1.3. Analysis methods

Samples containing wastewater and PNSB were collected at 0, 24, 48, 72, and 96 hr and were centrifuged at 9000 r/min for 10 min. The supernatant (wastewater) was used to test COD. The sediments (PNSB) were used to measure biomass production. The collected PNSB was used to measure the bacteriochlorophyll content and adenosine triphosphate (ATP) production. Biomass production and COD were tested by American Public Health Association standard methods. Biomass yield was calculated based on biomass production and COD removal as follows: biomass yield = dry weight of biomass increase / COD-removal.

Bacteriochlorophyll content (Edelenbos et al., 2001) and ATP production (Veclin-Bogues et al., 1997) were measured using HPLC (Agilent 1200, Agilent Technology Inc., Santa Clara, California, USA).

1.4. Statistical analysis

Statistical analysis was performed by means of the SPSS Statistical Software Package. In each experiment, parallel samples were conducted in triplicate. Significant difference was identified using the t-test.

2. Results and discussion

2.1. Effects of Mg2+ concentration on COD removal and biomass production

Effects of different Mg2+ (MgSO4) concentrations on cell accumulation and COD removal were examined. The results are presented in Fig. 1. Under all conditions investigated, wastewater COD removals increased gradually with time. Addition of Mg2+ enhanced the wastewater COD removal with a significant difference (p < 0.05) compared to the control group. The optimal Mg2+ dosage was 10 mg/L, and COD removal reached 86% (Fig. 1a).

Meanwhile, it can be seen from Fig. 1a that with optimal Mg2+ dosage of 10 mg/L, COD removal after 72 hr was higher than that of the control group after 96 hr. To achieve the same COD removal, addition of 10 mg/L Mg2+ could shorten the hydraulic retention time of soybean wastewater from 96 to 72 hr, resulting in an improvement in the efficiency and a decrease in cost and energy consumption.

Addition of Mg2+ not only promoted COD removal, but also improved cell accumulation. At all Mg2+ dosages, biomass production was improved with significance (p < 0.05) compared to the control group. The highest biomass production of 3630 mg/L appeared at the 10 mg/L Mg2+ dosage, which was improved by 70% compared to the control group (Fig. 1b).

Fig. 1 – Effects of different Mg2+ concentrations on COD removal (a) and biomass production (b) in purple non-sulfur bacteria (PNSB) soybean wastewater treatment under light anaerobic condition, 3000 lx, Mg2+ concentrations followed by * are significantly different at p < 0.05, compared to the control group.
Biomass yield was calculated according to Fig. 1. For the control group, 5, 10, and 15 mg/L Mg^{2+} group, biomass yield was 0.25, 0.36, 0.4 and 0.34 respectively. With optimal Mg^{2+} dosage of 10 mg/L, biomass yield was improved by 60% compared to the control group. The increase of biomass yield was very important since it meant that more PNSB biomass could be obtained with the same amount of wastewater COD.

2.2. Potential mechanisms of Mg^{2+} improvement of biomass production and COD removal

The above results clearly show the enhancing effects of Mg^{2+} on biomass production and COD removal (Fig. 1). According to the literature, the most important function of intracellular Mg^{2+} is to participate in energy metabolism (Hakobyan et al., 2012). Thus, the enhancement may be related to Mg^{2+} regulation of PNSB energy metabolism. Since the light-anaerobic condition was adopted, the energy production pathway of PNSB in this work was photosynthesis. Based on the above results and literature analyses, we proposed the potential mechanisms of Mg^{2+} enhancement shown in Fig. 2.

Mg^{2+} improved ATP production through up-regulating the content of bacteriochlorophyll in photosynthesis (Fig. 2 steps one and two). The improvement of ATP production not only directly enhanced biomass production, but also increased COD removal (steps three and four). Moreover, the increase of COD removal meant that more organics were degraded, which provided more raw materials for the synthesis of PNSB cellular substances. This further enhanced PNSB biomass production. As a result, COD removal and biomass production were simultaneously improved by addition of Mg^{2+}.

2.3. Mg^{2+} improved bacteriochlorophyll content and ATP production

In order to prove the hypothesis proposed in Fig. 2, bacteriochlorophyll content and ATP production were measured under all investigated conditions. The results are summarized in Fig. 3.

Addition of Mg^{2+} enhanced the bacteriochlorophyll content with significance ($p < 0.05$) compared to that of the control group. With optimal Mg^{2+} dosage of 10 mg/L, bacteriochlorophyll content was improved by 60% compared to that of the control group (Fig. 3a). This is because Mg^{2+} is the active center of bacteriochlorophyll and plays an important role in capturing light, converting light into electron energy and...
initiating electron transfer (Sandmann and Malkin, 1983; Horton et al., 2002).

With the increase in bacteriochlorophyll content, ATP production was also improved with significance \((p < 0.05)\) compared to that of the control group. The best Mg\(^{2+}\) dosage for ATP production was 10 mg/L, and the ATP production increased by 33% compared to that of the control group (Fig. 3b). The reason was that bacteriochlorophyll played important roles in photosynthesis (Sandmann and Malkin, 1983). Thus, the magnitude of bacteriochlorophyll content determines the energy/ATP production in the photosynthesis pathway, which then determines the activity of PNSB.

ATP plays a very important role in the growth and reproduction of microbes (Horton et al., 2002). The synthesis of intracellular material (proteins, nucleic acids, lipids, and polysaccharides) involves the consumption of a large number of ATP molecules. Thus, the amount of intracellular ATP directly affects the biomass yield and production. At the same time, an increase of ATP production enhanced COD removal. This was because energy (ATP) was needed for the degradation of organic pollutants (protein) and for trans-membrane transport of small molecule substances. The increase of biomass yield is very important since it means that PNSB can synthesize more biomass with the same amount of COD.

3. Conclusions

Addition of Mg\(^{2+}\) was successful in enhancing the PNSB biomass production and COD removal in wastewater treatment. Results showed that with the optimal Mg\(^{2+}\) dosage of 10 mg/L, biomass production was improved by 70% to 3630 mg/L; biomass yield was improved by 60%; COD removal reached over 86% and hydraulic retention time was shortened by 25%. The reason was that Mg\(^{2+}\) improved ATP production through promoting the content of bacteriochlorophyll in photosynthesis. Increased ATP production then enhanced the biomass production and COD removal.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51278489).

REFERENCES

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief

X. Chris Le
University of Alberta, Canada

Associate Editors-in-Chief

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiuhui Qu</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Sha Tao</td>
<td>Peking University, China</td>
</tr>
<tr>
<td>Nigel Bell</td>
<td>Imperial College London, UK</td>
</tr>
<tr>
<td>Po-Keung Wong</td>
<td>The Chinese University of Hong Kong, Hong Kong, China</td>
</tr>
</tbody>
</table>

Editorial Board

<table>
<thead>
<tr>
<th>Aquatic environment</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Baoyu Gao</td>
<td>Shandong University, China</td>
</tr>
<tr>
<td>Maohong Fan</td>
<td>University of Wyoming, USA</td>
</tr>
<tr>
<td>Chihpin Huang</td>
<td>National Chiao Tung University</td>
</tr>
<tr>
<td>Ng Wu Jern</td>
<td>Taiwan, China</td>
</tr>
<tr>
<td>Nanyang Environment & Water Research Institute, Singapore</td>
<td></td>
</tr>
<tr>
<td>Clark C. K. Liu</td>
<td>University of Hawaii at Manoa, USA</td>
</tr>
<tr>
<td>Hokyong Shon</td>
<td>University of Technology, Sydney, Australia</td>
</tr>
<tr>
<td>Zijian Wang</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Zhiwu Wang</td>
<td>The Ohio State University, USA</td>
</tr>
<tr>
<td>Yuxiang Wang</td>
<td>Queen’s University, Canada</td>
</tr>
<tr>
<td>Min Yang</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Zhiheng Yang</td>
<td>Beijing Normal University, China</td>
</tr>
<tr>
<td>Han-Qing Yu</td>
<td>University of Science & Technology of China, China</td>
</tr>
<tr>
<td>Terrestrial environment</td>
<td></td>
</tr>
<tr>
<td>Christopher Anderson</td>
<td>Massey University, New Zealand</td>
</tr>
<tr>
<td>Zaozong Cai</td>
<td>Nanjing Normal University, China</td>
</tr>
<tr>
<td>Xinhua Feng</td>
<td>Institute of Geochemistry, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Hongqing Hu</td>
<td>Huzhong Agricultural University, China</td>
</tr>
<tr>
<td>Kuo Liu</td>
<td>The Chinese University of Hong Kong, Hong Kong, China</td>
</tr>
<tr>
<td>Chenhua Wang</td>
<td>Research Centre Juelich, Agrosphere Institute, Germany</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental toxicology and health</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Jingwen Chen</td>
<td>Dalian University of Technology, China</td>
</tr>
<tr>
<td>Tianqiu Hu</td>
<td>The Ohio State University, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental catalysis and materials</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong He</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental analysis and method</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Zongwei Cai</td>
<td>Hong Kong Baptist University, Hong Kong, China</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Municipal solid waste and green chemistry</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pingjie He</td>
<td>Tongji University, China</td>
</tr>
</tbody>
</table>

Editorial Office Staff

<table>
<thead>
<tr>
<th>Managing Editor</th>
<th>Qingcai Feng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editors</td>
<td>Zixuan Wang, Suqin Liu, Kuo Liu, Zhengang Mao</td>
</tr>
<tr>
<td>English Editor</td>
<td>Catherine Rice (USA)</td>
</tr>
</tbody>
</table>
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.