Efficient degradation of drug ibuprofen through catalytic activation of peroxymonosulfate by Fe₃C embedded on carbon

Guangli Zhang, Yaobin Ding, Wenshan Nie, Heqing Tang*

College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China

Article history:
Received 9 March 2018
Revised 14 September 2018
Accepted 8 October 2018
Available online 13 October 2018

Keywords:
Catalytic degradation
Ibuprofen
Iron carbide
N-doped carbon
Peroxymonosulfate

Abstract
Ibuprofen (IBU), a nonsteroidal anti-inflammatory drug, is becoming an important member of pharmaceuticals and personal care products (PPCPs) as emerging pollutants. To degrade IBU, magnetic Fe₃C nanoparticles embedded on N-doped carbon (Fe₃C/NC) were prepared as a catalyst by a sol–gel combustion method. As characterized, the Fe₃C/NC nanoparticles were composed of a NC nano-sheet and capsulated Fe₃C particles on the sheet. The Fe₃C/NC nanoparticles were confirmed an efficient catalyst for peroxymonosulfate (PMS) activation to generate sulfate radicals (SO₄²⁻), single oxygen (¹O₂) and hydroxyl radicals (•OH) toward the degradation of IBU. The added IBU (10 mg/L) was almost completely removed in 30 min by using 0.1 g/L Fe₃C/NC and 2 g/L PMS. The catalyst was confirmed to have good ability and excellent reusability through leaching measurements and cycle experiments. A catalytic mechanism was proposed for the catalytic activation of PMS on Fe₃C/NC, which involves both Fe₃C reactive sites and N-doped carbon matrix as reactive sites in Fe₃C/NC. Moreover, the degradation pathway of IBU in the Fe₃C/NC-PMS system was proposed according to the detections of degradation intermediates.

Introduction
Ibuprofen (IBU), as a medication in the nonsteroidal anti-inflammatory drug class, is widely used in the treatment of toothache, headache, back pain, muscle soreness, rheumatoid arthritis and cold fever (Hersh et al., 2000; Madhavan et al., 2010; Musa and Eriksson, 2007; Wilson, 1999). Its bioaccumulation poses a risk to human health and to the safety and balance of ecosystems, and it is shown that long-term intake of trace levels of IBU can cause biological deformities and microbial resistance (Vieno et al., 2005). Therefore, new methods for efficient removing IBU are urgently needed. Advanced oxidation processes (AOPs) are techniques that activate green oxidants by introducing external energy or a catalyst and utilize the free radicals produced during the activation process to degrade and mineralize organic contaminants (Glaze et al., 1987). Sulfate radical (SO₄²⁻, oxidation-reduction potential (E°) = 2.5–3.1 V) based oxidation processes are becoming a new class of AOPs, and the generation of SO₄²⁻ may be achieved by activation of peroxymonosulfate (PMS).
The most efficient catalyst for the activation of PMS has been demonstrated to be Co-based catalysts (Anipsitakis and Dionysiou, 2003, 2004). However, cobalt leaching is a barrier to its practical application. Heterogeneous Fe-based catalysts are an alternative to Co-based catalysts due to their environment-friendly natures (Ding et al., 2016, 2013; Rastogi et al., 2009). The reported heterogeneous Fe-based catalysts have some obvious shortcomings. For example, their chemical stability is not so good during the PMS activation; their catalytic activity requires to be promoted by further introducing external energies (Avetta et al., 2014; Cai et al., 2015; Zhang et al., 2012); and they may meet catalyst poisoning problem (Zhang et al., 2013). Therefore, it is urgently needed to develop more efficient and stable heterogeneous Fe-based catalysts.

Recently, we are developing Fe-containing and/or carbon-based materials as a bifunctional material having both strong adsorptive ability and excellent catalytic ability (Ding et al., 2017; Qin et al., 2016). During the fabrication of Fe-containing carbon-based materials, we found the existence of iron carbide and observed the positive effect of iron carbide on the related catalytic processes. Although the catalytic activity of Fe-based oxides have been extensively studied (An et al., 2013; Ding et al., 2013; Ren et al., 2017; Wang et al., 2010; Xuan et al., 2009; Yu et al., 2016), the catalysis of iron carbide is rarely reported. This stimulated us to develop an iron carbide catalyst here. Iron carbide often exists as a special phase in iron and iron alloys, where iron carbide phase is highly stable (Dodelet et al., 2014; Hu et al., 2015, 2014). Hu et al. (2014) fabricated Fe$_3$C-containing composite as an electro-catalysts by using a high-pressure pyrolysis method. Niu et al. (2016) investigated the electrocatalysis of oxygen reduction reaction on a Fe$_3$C-containing composite. Kraupner et al. (2010) used mesoporous Fe$_3$C sponges as magnetic supports and as heterogeneous catalysts for ammonia decomposition, which yielded the conversion of ammonia more than 95% at 700°C. However, to the best of our knowledge, the use of Fe$_3$C-containing composite has not been reported for AOPs, especially for the catalytic activation of PMS to degrade organic pollutants.

1. Materials and methods

1.1. Chemicals

Fe$_3$Cl·6H$_2$O (purity 99.9%), hexadecyltrimethylammonium bromide (CTAB), ethanol (99.7%), melamine (99.8%) and zero-valence iron (ZVI) powders were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). PMS (2KHSO$_5$·KHSO$_4$·K$_2$SO$_4$, 4.7% active oxygen) was purchased from Shanghai D&R Finechem Co., Ltd. (Shanghai, China). IBU was purchased from Sigma–Aldrich. All chemicals were used as received without further purification. Deionized water was used in the present work.

1.2. Preparation of Fe$_3$C/NC

Fe$_3$C/NC was prepared according to a previous report (Wang et al., 2015b). Typically, 2.52 g melamine and 2.7 g Fe$_3$Cl·6H$_2$O were added into 80 mL of ethanol–water (1:1, V/V) mixture. Under stirring, CTAB (2.92 g) was then added until the mixture was stirred evenly. The obtained clear solution was transferred to a water bath and heated at 80°C for 4 hr, which was accompanied by continuous agitation. Then, the solution–containing beaker was moved into an oven and heated to dry the solution at 100°C for 12 hr, resulting in the generation of a khaki solid. The whole process was carried out in an air atmosphere without nitrogen protection. The dried powder was transferred to a quartz tube furnace to anneal at 680°C for 3 hr under a nitrogen flow of 160 mL/min and the final product was denoted as Fe$_3$C/NC.

1.3. Characterization

Powder X-ray diffraction (XRD) patterns of the catalyst were recorded on Bruker Advanced D8 X-ray diffractometer with Cu Kα radiation (D8 ADVANCE, Bruker, Germany), operated at 40 mA and 40 kV. The morphology was investigated by scanning electron microscopy (SEM, SU8010, Hitachi, Japan) with an accelerating voltage of 50 kV and transmission electron microscopy (TEM, Tecnai G220 S-TWIN, FEI, USA) with an accelerating voltage of 200 kV. The valence change of elements in the catalysts before and after reaction was characterized by a MULTILAB 2000 X-ray photoelectron spectrometer (XPS) from Thermo Fisher with a monochromatic Al Kα X-ray source (MULTILAB2000, Thermo Scientific, USA). All binding energies were corrected to the C 1 s peak (284.6 eV). Brunauer–Emmett–Teller (BET) measurement was carried out on an Autosorb-iQ analyzer (Autosorb-iQ, Quantachrome Instruments, USA). Thermogravimetric analysis (TGA) was carried out with a Netzsch TG209 F3 thermal analyzer (TG209 F3, Netzsch, Germany).

1.4. Catalytic experiments

The catalytic oxidative decomposition of IBU was carried out at 30°C. Fe$_3$C/NC (0.1 g/L) was well dispersed in 50 mL of 10 mg/L IBU solution with a pre-adjustment of pH by using NaOH and HCl. After a pre-adsorption of 30 min for achieving adsorption/desorption equilibrium, PMS with
The degradation intermediates of IBU in the Fe3C/NC-PMS was set at 1.0 mL/min and the injection volume was 20 μL. The specific surface area of 127 m2/g with well-distributed pore size was further illustrated that the Fe3C NP was surrounded by a thin crystalline shell with a thickness of about 2 nm. As discussed later, a calculation from the XRD data indicated that the crystalline shell with a thickness of about 2 nm might be graphitized structures due to increase in average size of the sp² domains upon the generation of on the carbon matrix.

2. Results and discussion

2.1. Characterization of Fe3C/NC

As observed from the SEM image in Fig. 1a, Fe3C/NC exhibited a sheet-like structure with irregular wrinkles and the sheet-like structures were packed to produce fairly large pores. The TEM observation in Fig. 1b indicated that black Fe3C nanoparticles (NPs) with sizes of about 42 nm were embedded in a folded sheet-like carbon. The high resolution transmission electron microscopy (HRTEM) image of Fe3C/NC (Fig. 1c) further illustrated that the Fe3C NP was surrounded by a thin crystalline shell with a thickness of about 2 nm. As discussed later, a calculation from the XRD data indicated that the particle size of Fe3C NPs was about 37 nm. Therefore, the thin crystalline shell with a thickness of about 2 nm might be carbon materials.

Fig. 1d gives the N2 adsorption/desorption isothermal and pore size distribution diagram (inset in Fig. 1d). Fe3C/NC exhibited IV isotherm with H3 hysteresis loop and possessed a specific surface area of 127 m²/g with well-distributed pore size of 38.2 nm, indicating that the Fe3C/NC nanocomposites were mesoporous. Meanwhile, the BET specific surface area of NC, Fe2O3 and Fe2O3 as control was measured as 1972, 63 and 9 m²/g, respectively (Appendix A Table S1).

Fe3C/NC was 0.82. The low ratio of integrated intensity D-band to G-band (D/G) indicated the formation of ordered graphitized structures due to increase in average size of the sp² domains upon the generation of on the carbon matrix.

2.2. IBU degradation by using Fe3C/NC as a catalyst

The catalytic degradation of IBU was conducted by using Fe3C/NC as a catalyst in the presence of PMS. As shown in Fig. 2, in the control experiment, the addition of PMS (2 g/L) in the absence of any catalyst brought about IBU removal of only 3.0% after 30 min, revealing that IBU degradation could not be induced directly by PMS. Similarly, the addition of Fe3C/NC in the absence of PMS removed little IBU by considering a light adsorption of IBU on Fe3C/NC. However, when Fe3C/NC and PMS were simultaneously added, the added IBU was almost completely degraded.
after 30 min. This clearly demonstrated Fe₃C/NC was an efficient catalyst of the PMS activation for the degradation of IBU. As a comparison, the use of NC and ZVI powders induced 40% and 39.8% removal of IBU in 30 min, respectively, while Fe₃O₄ and Fe₂O₃ NPs showed no obvious catalytic activity for the activation of PMS and degradation of IBU.

In the tested systems, the IBU degradation followed a pseudo-first-order kinetic model (Eq. (3)):

$$\ln\left(\frac{C_t}{C_0}\right) = -kt$$

(3)

where, \(t \) (min) is the reaction time, \(k \) (min⁻¹) is the apparent rate constant, and \(C_0 \) and \(C_t \) are IBU concentrations at time \(t = 0 \) and \(t \), respectively.

Fig. 1 – (a) Scanning electron microscopy (SEM) image, (b) transmission electron microscopy (TEM) image, (c) high resolution TEM (HRTEM) image, (d) N₂ adsorption–desorption curve (the inset showing the pore size distributions), (e) X-ray diffraction (XRD) pattern, (f) Raman spectrum, and (g) thermogravimetric analysis (TGA) curve of magnetic Fe₃C nanoparticles embedded on N-doped carbon (Fe₃C/NC).
By data fitting, it was obtained that the k-value for Fe3C/NC was 0.34 min\(^{-1}\), being 3.1 times that for NC (0.11 min\(^{-1}\)). Considering the much higher BET specific surface area of NC (1972 m\(^2\)/g) than Fe3C/NC (127 m\(^2\)/g), we normalized the obtained rate constant by dividing the obtained k value with specific surface area of the catalyst (load 0.1 g/L). The normalized apparent rate constant was referred to as k_{SSA}. As calculated, the k_{SSA} value for Fe3C/NC (0.54 m\(^{-2}\)∙min\(^{-1}\)) was 28.42 times that for NC (0.019 m\(^{-2}\)∙min\(^{-1}\)), indicating that Fe3C/NC had much higher catalytic activity than NC and that Fe3C in Fe3C/NC was the main reactive sites for the catalytic degradation of IBU.

The IBU degradation was investigated under various conditions as shown in Fig. 3. As catalyst load was increased from 0 to 0.1 g/L, the k value was increased significantly from 0.0059 to 0.34 min\(^{-1}\) (Fig. 3a). By further increasing the load to 0.2 g/L, the k-value was slightly decreased to 0.30 min\(^{-1}\). This can be accounted for by that greater catalyst load yielded more catalytic active sites, inducing the generation of more reactive radicals and then faster and more efficient degradation of IBU. However, the addition of excess catalyst generated excess reactive radicals, and caused self-quenching of the reactive radicals rather than pollutant degradation.

Fig. 2 – Ibuprofen (IBU) degradation in different systems at 30°C. Reaction conditions: initial IBU concentration 10 mg/L, catalyst load 0.1 g/L, and initial peroxymonosulfate (PMS) concentration 2.0 g/L. C\(_0\) and C: IBU concentrations at time t = 0 and t, respectively; t: the reaction time; ZVI: zero-valent iron.

Fig. 3 – Effects of (a) catalyst load, (b) PMS concentration, and (c) pH on the degradation rate constant of IBU (k). (d) Zeta potentials of Fe3C/NC.
The effect of PMS concentration on IBU degradation was investigated in Fig. 3b. A general trend was observed that the k-value was increased with increasing PMS concentration. When the PMS concentration was increased from 0 to 1, 2 and 4 g/L, the k value was significantly increased from 0.022 to 0.17, 0.34 and 0.35 min\(^{-1}\) correspondingly. This was mainly because the increased PMS concentration allowed more reactive radicals being produced by the catalysis of Fe\(_3\)C/NC. It should be noted that once \(\text{SO}_4^{2-}\) is generated by Fe\(_3\)C/NC-induced catalytic activation of PMS, \(\text{SO}_4^{2-}\) may react with HSO\(_5^-\) to produce \(\text{SO}_5^-\) according to Eq. (4):

\[
\text{HSO}_5^- + \text{SO}_4^{2-} \rightarrow \text{SO}_5^- + \text{HSO}_4^- \tag{4}
\]

This consumes the generated \(\text{SO}_4^{2-}\), but the secondly generated \(\text{SO}_5^-\) is usually considered as being not responsible for the degradation of organic pollutants when adding excessive amounts of PMS (Anipsitakis and Dionysiou, 2003). In the present work, 2 g/L was selected as optimal PMS concentration.

Fig. 3c shows the effect of pH on the catalytic activity of Fe\(_3\)C/NC. As the initial solution pH was increased from 3 to 11, the degradation rate constant of IBU was first increased and then decreased after passing a maximum at pH = 8. The activation under acidic conditions produced too many \(\text{SO}_4^{2-}\) radicals, which enhanced radical-radical scavenger reactions, being unfavorable the degradation of IBU. Under alkaline conditions, OH\(^-\) reacted with \(\text{SO}_4^{2-}\) to produce \(\text{SO}_5^-\) according to Eq. (5):

\[
\text{SO}_4^{2-} + \text{OH}^- \rightarrow \text{SO}_5^- + \cdot\text{OH} \tag{5}
\]

Because the longevity of \(\text{SO}_5^-\) (half-life time 4 sec) is longer than that of \(\cdot\text{OH}\) (half-life time less than 1 \(\mu\)sec (Banerjee and Konar, 1984), this reaction was unbeneiccial to the contact with pollutants and then the degradation of organic pollutants. The measured zeta potentials of Fe\(_3\)C/NC (Fig. 5d) indicated that the surface of the catalyst was negatively charged at pH > 8.5. PMS mainly existed in the form of \(\text{SO}_4^{2-}\) and HSO\(_5^-\) at pH = 8.5–11. Because of the electrostatic repulsion between PMS and the negatively charged surface of the catalyst, it was difficult for PMS to adsorb on the catalyst surface, which is detrimental to activate PMS to produce active radicals for IBU degradation. The observed effects of pH on the IBU degradation are similar to that obtained in the studies of heterogeneous Co-based catalysts for the PMS activation to degrade organic pollutants (Chen et al., 2008; Shi et al., 2012). Under neutral conditions, Co-based catalysts exhibit good heterogeneous catalytic properties.

2.3. Stability and reusability of Fe\(_3\)C/NC

In order to investigate the reusability of Fe\(_3\)C/NC, at the end of each run of the degradation experiment, the catalyst was recollected with a magnet, washed several times with deionized water, and then dispersed in 50 mL of 10 mg/L IBU solution, and then a next run of the degradation experiment. These steps were repeated several cycles. It was found that the recycled Fe\(_3\)C/NC kept good catalytic activity, achieving a IBU degradation removal of 91% or more (at 30 min) for the successive six cycles (Fig. 4). This confirmed the good stability of Fe\(_3\)C/NC during the catalytic degradation of IBU. After the six runs of the degradation experiment, the Fe\(_3\)C/NC was recollected by vacuum filtration and dried. The crystal structure of the recollected catalyst was characterized by XRD (Fig. 1e). It was found that the XRD patterns of the used catalyst were almost the same as that of the fresh catalyst.

To evaluate the stability of Fe\(_3\)C/NC, Fe leaching was monitored during the IBU degradation with the addition of 0.1 g/L Fe\(_3\)C/NC (total Fe content was 0.038 g/L). The atomic absorption spectroscopy analysis indicated that the Fe leaching was 0.119 mg/L after the reaction lasted for 120 min, accounting for 0.3% of the total Fe content. Therefore, Fe\(_3\)C/NC has good chemical stability during the reaction.

2.4. Mechanism for the catalytic activation of PMS by Fe\(_3\)C/NC

The mechanism of the activation of PMS on metal- and carbon-based catalysts have been studied, and it is generally believed that catalysts are used as electron donors, resulting in \(\cdot\text{OH}, \text{SO}_4^{2-}\) and \(\text{SO}_5^-\) being produced according to Eqs. (6)–(9) during the activation of PMS by heterogeneous catalysts (Duan et al., 2015a, 2015b):

\[
\text{HSO}_5^- + e^- \rightarrow \cdot\text{OH} + \text{SO}_4^{2-} \tag{6}
\]

\[
\text{HSO}_5^- + e^- \rightarrow \cdot\text{OH} + \text{SO}_4^{2-} \tag{7}
\]

\[
\text{HSO}_5^- + e^- \rightarrow \cdot\text{OH} + \text{SO}_5^- \tag{8}
\]

\[
\text{SO}_4^{2-} + \cdot\text{OH} \rightarrow \cdot\text{OH} + \text{SO}_5^- \tag{9}
\]

In the present work, the generated dominant radical species were identified by radical quenching experiments.
The degradation efficiency in NC – the addition of EtOH and TBA had little influence on the degradation of IBU in Fe3C/NC. The result indicated that 1O2 was the main reactive species involved in the degradation of IBU in NC–PMS system. Therefore, it was concluded that •OH and SO4•− were mainly produced through the activation of PMS by Fe3C reactive sites, while the generation of 1O2 in Fe3C/NC–PMS system was mainly attributed to the activation of PMS by NC in Fe3C/NC.

XPS analysis was carried out to clarify the change of the valence and content of the surface elements of Fe3C/NC and estimate the possible catalytic mechanism. As shown in Fig. 6a, the surface composition of Fe3C/NC before and after the reaction was almost the same. The Fe 2p envelop was consistent with that reported previously (Cappus et al., 1995; Lu et al., 2007). For the high-resolution Fe 2p spectrum of the fresh catalyst (Fig. 6b), it was deconvoluted into three peaks at 711.3, 725.0 and 719.0 eV, being assigned to the Fe 2p3/2, Fe 2p1/2 and shake-up satellite of Fe3+, respectively. After the degradation operation, the observed Fe 2p3/2 and Fe 2p1/2 peaks could be further deconvoluted into two peaks attributing to Fe2+ and Fe3+, respectively. The high-resolution XPS Fe 2p spectrum of the used catalyst indicated that the content of Fe2+ increased to 32%, which was accompanied by the weakening of the Fe3+ signal. This demonstrated that part of Fe3+ was transformed to Fe2+, and there was a Fe2+/Fe3+ cycling on the catalyst surface during the degradation experiment.

The peaks for the fresh catalyst appear at 284.5, 285.7 and 288.1 eV, which are attributed to C=C/C, C−OH, and C=O groups. The content of C=C/C−C at 284.5 eV took up 77% for the fresh catalysts, indicating that the most of C was present in the form of cross-linked cellular lattices (Fig. 6c). The C−OH bonding configurations become enhanced after the degradation experiment, which indicates the catalyst surface was hydroxylated during the reaction. Moreover, C=O groups was generated due to the oxidation of C=C/C−C.

![Fig. 5](https://example.com/fig5.png)

Fig. 5 – Effects of radical quenchers on the degradation of IBU (10 mg/L) in the presence of 2.0 g/L PMS and the catalyst of (a) 0.1 g/L Fe3C/NC and (b) 0.059 g/L NC. EtOH: ethanol; FFA: furfuryl alcohol; TBA: tert-butanol.)
The catalytic ability of carbon materials may be enhanced by N-doping (Wang et al., 2015a). Guo et al. (2016) clarified active sites of N-doped carbon materials for oxygen reduction reaction using model catalysts and found the ORR active site is created by pyridinic N. In the present work, pyridinic N (398.2 eV), pyrrolic N (399.5 eV), and graphitic N (401.0 eV) were identified from the XPS spectrum of the fresh catalyst in the N 1 s core level (Fig. 6d). After being used, the content of pyridinic N was decreased from 34% to 16%, revealing that the doped N in Fe3C/NC played a key role in PMS activation. The binding energies slightly shifted to higher binding energy values after the degradation experiment, which inferred that there was an electron transfer between PMS and nitrogen groups through a possible coordination. Similar positive shift of binding energy value of N 1s orbit was reported by Yao et al. (2017). Considering that pyridinic N creates Lewis base sites that reduce the energy barrier of the reactants adsorbed on adjacent carbon atoms and accelerates the first electron transfer, we believe that NC in our work can enhance the number of active sites and the generation of 1O2.

According to the above results and discussion, a mechanism for the enhanced activation of PMS by Fe3C/NC was proposed in Fig. 7, which may be expressed by Eqs. (10)–(13).

\[
\begin{align*}
\text{HSO}_5^- + \text{Fe}^{3+} & \rightarrow \text{SO}_5^{2-} + \text{Fe}^{2+} + \text{H}_2\text{O} \\
\text{HSO}_5^- + \text{Fe}^{2+} & \rightarrow \text{SO}_4^{2-} + \text{Fe}^{3+} + \text{OH}^- \\
\text{SO}_4^{2-} + \text{H}_2\text{O} & \rightarrow \text{OH}^- + \text{H}^+ + \text{SO}_4^{2-} \\
\text{HSO}_5^- + \text{SO}_5^{2-} & \rightarrow \text{HSO}_4^- + \text{SO}_4^{2-} + \text{1O}_2
\end{align*}
\]

Firstly, IBU in solution is adsorbed on the Fe3C/NC surface by $\pi - \pi$ interaction between the support NC and carbon shell with IBU molecular. As shown in Fig. 2, about...
6.5% IBU can be removed in 30 min by the adsorption effect of Fe$_3$C/NC. The Fe$_3$C domains function as active sites for electron transport to activate PMS according to Eqs. (10)–(12). Once PMS is added, SO$_5$•– is generated from PMS being activated by the unveiled activation sites including Fe$^{3+}$. Then the generated Fe$^{2+}$ sites catalyzed the decomposition of PMS to SO$_4$•–. A portion of SO$_4$•– reacts with H$_2$O to form •OH. The generated SO$_4$•– and •OH reacted with IBU, leading to the degradation of IBU. Secondly, the presence of the support NC and carbon shell enhanced electron transfer process due to their excellent electronic conductivity, which is like the role of noble metals in PMS activation (Ahn et al., 2016). As a result, PMS activation can be fastened. Meanwhile, the N-doped carbon area also acts as active sites to transfer electron and generate 1O$_2$ (Eq. (13)) from PMS activation. Therefore, Fe$_3$C/NC can be used as a stable and efficient environmental catalyst in the degradation of pollutants through the synergistic effect between Fe$_3$C and NC.

2.5. Reaction pathways of IBU degradation

To analyze the degradation intermediates of IBU in the Fe$_3$C/NC–PMS system, the reaction solution sampled in degradation time of 10 min was analyzed by liquid chromatography–mass spectrometry (LC–MS) (Appendix A Fig. S1) and gas chromatography–mass spectrometry (GC–MS) (Appendix A Fig. S2). Through LC–MS analysis, compounds 1–6 were identified, while compounds 1 and 7–11 were detected by GC–MS analysis. The molecular ion masses and MS2 (the secondary mass spectrometry) fragmentation patterns for the main intermediates were given in Appendix A Fig. S1. Compound 1 was identified as IBU with m/z (mass charge ratio) 207 and two fragments at m/z 181 and 161. As a primary intermediate, compound 2 with m/z 221 and one fragment at m/z

![Fig. 7 – Possible reaction mechanism of IBU degradation in the system of Fe$_3$C/NC–PMS.](image)

![Fig. 8 – Proposed reaction pathways of IBU degradation in the Fe$_3$C/NC–PMS system. 1O$_2$: single oxygen.](image)
175 was identified as 2-(4-isobutyrylphenyl)propanoic acid. The same intermediate was also reported previously for the photocatalytic degradation of IBU (Choina et al., 2013). Then, the degradation processes of IBU in the Fe3C/NC-PMS and Fe3C/NC-PMS–EtOH systems were investigated by HPLC (Appendix A Fig. S3). When the alcohol capturing agent was not added, the peaks at 2.1, 4.5, 5.4 and 8.0 min in the HPLC diagram were compounds 2, 3, 1 and 5, respectively. After the addition of EtOH, there were four peaks at 1.5, 5.4, 8.0 and 8.7 min corresponding to compounds 4, 1, 5 and 6. A possible mechanism was the attack of isobutyl substituents on the side chain of IBU by generated hydroxyl radicals or sulfate radicals in the study. On the other hand, the attack of propionic acid on the side chain of IBU by generated radicals and nonradicals produced another primary intermediate compound 5 with m/z 163 and five fragments at m/z 144, 120, 105, 91 and 57. Decarboxylation reaction was suggested as a main degradation pathway for IBU in the systems of oxone-MnO2/silica and photo-Fenton (Mendez-Arriaga et al., 2010; Yang et al., 2017). Compound 3 was formed through the addition of a hydroxyl group on the carbon side chain of the compound 2, and then was further transformed to compound 4 through decarboxylation and dehydrogenation. Meanwhile, compound 5 underwent hydroxylation and dehydrogenation to form compound 6, which was further oxidized to compounds 7 or 8. As ring cleavage of intermediates, three compounds 9–11 were identified by GC-MS (Appendix A Fig. S2). Based on the above mentioned results, the oxidative degradation pathway of IBU mainly by hydroxyl radicals or sulfate radicals in the system of Fe3C/NC-PMS was proposed in Fig. 8.

3. Conclusions

Magnetic Fe3C/NC composites were successfully synthesized through a pyrolysis method. It was found that Fe3C/NC had a superior catalytic activity for the activation of PMS toward the degradation of IBU. The good catalytic performances were attributed to the functions of Fe(III) and N-doped carbon matrix in Fe3C/NC. The quenching experiments confirmed the generation of SO•–, •OH and 1O\textsubscript{2} as the major reactive species for the degradation of IBU. •OH and SO•– were mainly produced through the activation of PMS by Fe3C reactive sites, while the generation of 1O\textsubscript{2} in Fe3C/NC-PMS system was mainly attributed to the activation of PMS by NC in Fe3C/NC. Based on the LC-MS and GC-MS analysis of the degradation intermediates, the pathways for IBU degradation were proposed. The mineralization process of IBU involved the steps of oxidation, carboxylation/decarboxylation, dehydration, dehydrogenization and ring cleavage. The high-efficiency and good stability of the catalyst support that the catalyst has significant potentials for the application in the field of pollution control.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21777194 and 21507168).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jes.2018.10.002.

REFERENCES

Ding, Y.B., Ruan, Y.F., Zhu, L.H., Tang, H.Q., 2017. Efficient oxidative degradation of chlorophenols by using magnetic surface carboxylated Cu\textsubscript{3}Fe\textsubscript{2}O\textsubscript{4} nanocomposites in a wide pH range. J. Environ. Chem. Eng. 5, 2681–2690.

