## Steady-state kinetics and osillation phenomena for complete oxidation of benzene over Pt/Al<sub>2</sub>O<sub>3</sub> catalyst\*

Yu Qiquan<sup>1</sup>, Jin Yun<sup>1</sup> and Shi Fajun<sup>1</sup> (Received February 24, 1989)

Abstract—The steady-state kinetics for complete oxidation of benzene over Pt/Al<sub>2</sub>O<sub>3</sub> has been investigated by the external recycling reactor. The kinetics equation was described by the L-H model of adsorption of benzene and oxygen with the inhibition of carbon dioxide. The parameters of the kinetics model were estimated by the method of orthogonal design. The heats of adsorption of benzene, oxygen and carbon dioxide were determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene were investigated.

Keywords: steady-state kinetics; complete oxidation; benzene; Pt/Al<sub>2</sub>O<sub>3</sub>.

## INTRODUCTION

Catalytic combustion is one of the effective processes for removing pollutants in air (Prasad, 1984; Pfefferle, 1987). The kinetic research is necessary for use in reactor design and process controling. Although the empirical kinetic equations of L-H model for the complete oxidation of benzene were given by different authors (Dryakhlov, 1981; Stasevich, 1985; Pyatnitskii, 1985; Shaprinskaya, 1986), the inhibition of carbon dioxide in the above mentioned equations had not been considered. Oscillatory behavior was observed for the complete oxidation of benzene (Dryakhlov, 1981; Stasevich, 1982; Stasevich, 1985). In the present article we report the L-H kinetic equation of complete oxidation of benzene with inhibition of carbon dioxide. In order to prove the kinetic model, the heats of adsorption of benzene, oxygen and carbon dioxide are determined by the method of gas-adsorption chromatography. The details of oscillations of complete oxidation of benzene over Pt/Al<sub>2</sub>O<sub>3</sub> catalyst are investigated.

## EXPERIMENTAL

The platinum was only supported on the external surface or the mouths of catalyst pores for the sake of strong interaction of platinum with Al<sub>2</sub>O<sub>3</sub>, if the catalyst was prepared by the ordinary impregnating method. In this paper the catalyst was prepared by the method of competing adsorption. Al<sub>2</sub>O<sub>3</sub> was impregnated with 0.1mol/L latic acid for 8h and dried

<sup>\*</sup>Supported by the National Sciences Fundation of China.

Department of Chemistry, Peking University, Beijing 100871, China.

at 130°C. Then the latter was impregnated with the chloro-platinic acid, dried at 130°C and calcined at 500°C for 2h. At last the catalyst was reduced by hydrogen. The catalyst contained 0.01wt.% Pt on Al<sub>2</sub>O<sub>3</sub>.

A laboratory-scale gradientless reactor based on external recycle of reactants has been used to measure the kinetic data. Since the recycle ratio is greater than 25, therefore perfect mixing can be achieved in the recycle reactor (Berty, 1974). The absence of external transport limitations was checked by the variation of the recycle rates of reactants. Internal diffusion limitations were avoided by using catalyst particles of diameter between 0.45 and 0.60mm.

Gaseous product  $CO_2$  was analyzed by a gas chromatography with the mixtures of ophthalic dibutyl ester and  $\beta$ ,  $\beta'$ -oxy-dipropionitril at 20°C. 6201 carrier had been used for chromatographic column. The  $O_2$ , CO and  $N_2$  were analyzed by another gas chromatography with  $5\mathring{A}$  molecular sieve and activated carbon. The carrier gas was hydrogen. Materials above mentioned were analyzed by the thermal conductivity detector.

Since the complete oxidation of benzene is a highly exothermal reaction, therefore the water vapor, with partial pressure of 66.7 kPa, was fed into the mixtures of reactants for transfer the reaction heat. During the experiments the temperatures of the catalyst remained constant. The kinetic data were shown in Table 1. In which  $P_{\rm B}$ ,  $P_{\rm O}$ ,  $P_{\rm CO}$  are the partial pressures of benzene, oxygen and carbon dioxide respectively.  $r_{\rm (exp.)}$  and  $r_{\rm (calc.)}$  are the reaction rates determined by experiments and calculated by Eq. (2) correspondingly.

Table 1 The kinetic data for complete oxidation of benzene over  $Pt/Al_2O_3\ catalyst$ 

| Temperature, |      |      | P <sub>CO</sub> , | r <sub>(exp.)</sub> , 10 <sup>3</sup> mol/ml. h | r <sub>(calc.)</sub> , 10 <sup>3</sup> mol/ml. h |
|--------------|------|------|-------------------|-------------------------------------------------|--------------------------------------------------|
|              | 12.2 | 2.59 | 1.12              | 3.66                                            | 3.50                                             |
|              | 12.2 | 3.07 | 0.888             | 2.89                                            | 3.01                                             |
|              | 12.2 | 3.67 | 0.722             | 2.35                                            | 2.56                                             |
|              | 11.5 | 4.24 | 0.577             | 1.98                                            | 2.11                                             |
|              | 11.9 | 5.01 | 0.589             | 1.92                                            | 1.87                                             |
|              | 11.7 | 5.67 | 0.636             | 2.07                                            | 1.64                                             |
| 320          | 4.65 | 4.41 | 0.227             | 0.739                                           | 0.829                                            |
|              | 6.28 | 4.40 | 0.271             | 0.883                                           | 1.12                                             |
|              | 7.55 | 4.61 | 0.320             | 1.06                                            | 1.29                                             |
|              | 9.44 | 4.59 | 0.426             | 1.39                                            | 1.61                                             |
|              | 11.4 | 4.81 | 0.494             | 1.61                                            | 1.86                                             |
|              | 12.3 | 4.78 | 0.631             | 2.06                                            | 2.02                                             |
|              | 14.0 | 4.98 | 0.808             | 2.63                                            | 2.20                                             |
|              | 15.1 | 4.98 | 0.760             | 2.48                                            | 2.38                                             |
|              | 17.7 | 5.20 | 0.820             | 2.67                                            | 2.67                                             |
|              | 19.9 | 5.17 | 0.977             | 3.18                                            | 3.01                                             |
|              | 12.5 | 1.88 | 1.51              | 6.06                                            | 7.02                                             |
| 340          | 12.1 | 2.23 | 1.30              | 5.21                                            | 5.91                                             |
| •            | 10.8 | 3.52 | 0.775             | 3.20                                            | 3.56                                             |
|              | 10.2 | 4.20 | 0.804             | 3.22                                            | 3.28                                             |

| Table 1 (continued) |      |              |       |      |       |  |  |
|---------------------|------|--------------|-------|------|-------|--|--|
|                     | 10.7 | 5.68         | 0.592 | 2.37 | 2.27  |  |  |
|                     | 10.6 | 7.69         | 0.498 | 2.00 | 1.69  |  |  |
|                     | 11.3 | 9.92         | 0.495 | 1.99 | 1.41  |  |  |
|                     | 3.25 | 4.40         | 0.250 | 1.01 | 0.881 |  |  |
|                     | 6.10 | 4.38         | 0.410 | 1.64 | 1.65  |  |  |
|                     | 10.8 | 4.20         | 0.761 | 3.12 | 3.03  |  |  |
|                     | 12.5 | 4.78         | 0.677 | 2.71 | 3.11  |  |  |
|                     | 13.0 | 4.98         | 0.791 | 3.17 | 3.11  |  |  |
|                     | 14.7 | 4.94         | 1.00  | 4.02 | 3.53  |  |  |
|                     | 15.2 | 4.95         | 0.971 | 3.89 | 3.65  |  |  |
|                     | 17.1 | 5.13         | 1.21  | 4.86 | 3.96  |  |  |
|                     | 18.9 | 5.09         | 1.48  | 5.94 | 4.30  |  |  |
|                     | 12.7 | 1.97         | 2.00  | 10.4 | 9.88  |  |  |
|                     | 12.9 | 2.30         | 1.69  | 8.80 | 8.88  |  |  |
|                     | 11.5 | 2.66         | 1.45  | 7.52 | 7.04  |  |  |
|                     | 12.2 | 3.12         | 1.25  | 6.54 | 6.52  |  |  |
|                     | 12.0 | 3.69         | 1.09  | 5.70 | 5.54  |  |  |
|                     | 11.5 | 4.26         | 0.898 | 4.68 | 4.67  |  |  |
| 360                 | 11.8 | 5.03         | 0.936 | 4.88 | 4.12  |  |  |
|                     | 11.9 | <b>5.7</b> 1 | 0.816 | 4.24 | 3.70  |  |  |
|                     | 11.2 | 7.72         | 0.644 | 3.36 | 2.63  |  |  |
|                     | 5.20 | 4.38.        | 0.403 | 2.10 | 2.08  |  |  |
|                     | 7.87 | 4.62         | 0.580 | 3.02 | 2.98  |  |  |
|                     | 8.17 | 4.62         | 0.548 | 2.86 | 3.10  |  |  |
|                     |      | <del></del>  |       |      |       |  |  |

| Table 1 (continued)  10.1 4.61 0.740 3.86 3.83 |      |      |       |      |      |  |  |
|------------------------------------------------|------|------|-------|------|------|--|--|
|                                                | 10.1 | 4.61 | 0.740 | 3.86 | 3.83 |  |  |
|                                                | 11.6 | 4.82 | 0.800 | 4.18 | 4.21 |  |  |
|                                                | 12.8 | 4.81 | 0.881 | 4.59 | 4.65 |  |  |
|                                                | 14.7 | 5.03 | 0.998 | 5.20 | 5.12 |  |  |
|                                                | 16.1 | 5.02 | 1.11  | 5.78 | 5.61 |  |  |
|                                                | 19.1 | 5.19 | 1.69  | 8.78 | 6.43 |  |  |
|                                                | 10.5 | 1.81 | 1.96  | 12.9 | 12.3 |  |  |
|                                                | 11.7 | 2.18 | 1.59  | 10.4 | 11.9 |  |  |
|                                                | 11.2 | 2.50 | 1.65  | 10.8 | 10.2 |  |  |
|                                                | 11.8 | 2.99 | 1.42  | 9.28 | 9.29 |  |  |
|                                                | 11.8 | 3.58 | 1.20  | 7.83 | 7.98 |  |  |
|                                                | 11.4 | 4.16 | 1.05  | 6.83 | 6.77 |  |  |
|                                                | 11.0 | 4.96 | 0.899 | 5.87 | 5.59 |  |  |
|                                                | 10.7 | 5.65 | 0.744 | 4.87 | 4.83 |  |  |
|                                                | 12.0 | 7.67 | 0.634 | 4.14 | 4.08 |  |  |
| 380                                            | 11.7 | 9.92 | 0.490 | 3.21 | 3.12 |  |  |
|                                                | 6.05 | 4.48 | 0.424 | 2.77 | 3.39 |  |  |
|                                                | 7.45 | 4.57 | 0.457 | 3.60 | 4.09 |  |  |
|                                                | 9.07 | 4.55 | 0.712 | 4.65 | 4.99 |  |  |
|                                                | 10.4 | 4.74 | 0.879 | 5.74 | 5.50 |  |  |
|                                                | 11.8 | 4.71 | 1.04  | 6.82 | 6.27 |  |  |
|                                                | 12.9 | 4.89 | 1.30  | 8.50 | 6.61 |  |  |
|                                                | 13.9 | 4.90 | 1.25  | 8.14 | 7.11 |  |  |
|                                                | 16.7 | 4.85 | 1.58  | 10.3 | 8.59 |  |  |
|                                                | 18.8 | 5.10 | 1.41  | 9.23 | 9.24 |  |  |

|     | Table | 1 (cont | inued) |      |      |
|-----|-------|---------|--------|------|------|
|     | 10.4  | 1.85    | 1.70   | 16.2 | 16.4 |
|     | 10.2  | 2.11    | 2.00   | 18.9 | 14.6 |
|     | 9.64  | 2.53    | 1.47   | 14.0 | 12.0 |
|     | 9.67  | 3.01    | 1.25   | 11.9 | 10.5 |
|     | 9.48  | 3.61    | 1.03   | 9.78 | 8.88 |
|     | 10.0  | 4.19    | 0.870  | 8.27 | 8.25 |
|     | 9.49  | 4.97    | 0.842  | 8.01 | 6.74 |
| 400 | 9.54  | 5.65    | 0.738  | 7.02 | 6.05 |
|     | 9.42  | 7.67    | 0.624  | 5.34 | 4.52 |
|     | 7.46  | 4.57    | 0.554  | 5.27 | 5.73 |
|     | 7.91  | 4.77    | 0.708  | 6.73 | 5.84 |
|     | 8.06  | 4.56    | 0.652  | 6.20 | 6.19 |
|     | 9.18  | 5.00    | 0.691  | 6.57 | 6.49 |
|     | 10.7  | 4.78    | 0.764  | 7.27 | 7.87 |
|     | 10.7  | 4.99    | 0.787  | 7.48 | 7.57 |
|     | 13.6  | 5.16    | 1.00   | 9.56 | 9.31 |
|     | 15.8  | 5.15    | 1.18   | 10.1 | 10.8 |
|     |       |         |        |      |      |

RESULTS AND DISCUSSION

The kinetic equation of complete oxidation of benzene on Pt/Al<sub>2</sub>O<sub>3</sub> catalyst.

The effects of partial pressures of benzene, oxygen and CO<sub>2</sub> on the rates of reaction were shown in Table 1. The Langmuir-Hinshelmood equation of adsorption of benzene and oxygen with the inhibition of carbon dioxide was chosen to represent the progress of the reaction. The kinetic equation was

$$r = \frac{Kb_{\rm B}b_{\rm O_2}P_{\rm B}P_{\rm O_2}}{(1 + b_{\rm B}P_{\rm B} + b_{\rm O_2}P_{\rm O_2} + b_{\rm CO_2} + b_{\rm CO_2}P_{\rm CO_2})^2} \tag{1}$$

where K is rate constant;  $b_{\rm B}$ ,  $b_{\rm O_2}$ ,  $b_{\rm CO_2}$  are the adsorption coefficients of benzene, oxygen and  ${\rm CO_2}$  respectively. According to the Arrhenius and Clausius-Clapeyron equations, from Eq.

(1) we obtained

$$r = \frac{K_0 \exp(-E/RT) b_{0_B} \exp(Q_B/RT) b_{0_{O_2}} \exp(Q_{O_2}/RT) P_B P_{O_2}}{[1 + b_{0_B} \exp(Q_B/RT) P_B + b_{0_{O_2}} \exp(Q_{O_2}/RT) P_{O_2} + b_{0_{CO_2}} \exp(Q_{CO_2}/RT) P_{CO_2}]^2}$$
(2)

where  $K_0$  is the frequency factor of Arrhenius'Law; E is the activation energy of reaction;  $Q_{\rm B}, Q_{\rm O_2}, Q_{\rm CO_2}$  are the heats of adsorption of benzene, oxygen and carbon dioxide correspondingly;  $b_{\rm O_B}, b_{\rm O_{CO_2}}, b_{\rm O_{O_2}}$  are the pre-exponential factors of Clausius-Clapeyron'equation; R is gas constant; T is absolute temperature. Eq. (2) is consisted of 8 kinetic parameters, which were estimated by the method of orthogonal design (Yu, 1986). The method is based on the combination of the least square method with orthogonal design for parameters of Eq. (2). The parameters chosen were based on the least sum of residual error of the orthogonal design. The values of parameters estimated by the above mentioned method were reported.

$$\begin{split} K &= K_0 \exp(-E/RT) = 3.28 \times 10^5 \exp(-55000/RT) (\text{mol/ml.h}), \\ b_{\text{B}} &= b_{\text{OB}} \exp(Q_{\text{B}}/RT) = 7.71 \times 10^{-3} \exp(34500/RT) (\text{kP}_a^{-1}), \\ b_{\text{Oa}} &= b_{\text{Oo}_2} \exp(Q_{\text{Oa}}/RT) = 1.00 \times 10^{-4} \exp(24700/RT) (\text{kP}_a^{-1}), \\ b_{\text{COa}} &= b_{\text{Oco}_2} \exp(Q_{\text{COa}}/RT) = 1.34 \times 10^{-5} \exp(43800/RT) (\text{kP}_a^{-1}). \end{split}$$

The average of relative error of reaction rates, which were calculated by the Eq. (2) with above estimated parameters, was 9.09% from 85 sets of experiments in Table 1.

Determination of heats of adsorption of benzene, oxygen and carbon dioxide

For proving the kinetic model and the values of adsorption coefficients in Eq. (2), the heats of adsorption of benzene, oxygen and CO<sub>2</sub> have been determined by the method of gas-adsorption chromatography (Hall, 1985). The carrier gas was nitrogen.

According to Hall, Heaton and Rosseinsky (Hall, 1985), the heat of adsorption of i component was determined by the following equation

$$\ln V_g = Q_i/RT + S_i/R$$
(i = benzene, oxygen, or CO<sub>2</sub>)
(3)

Where  $V_g$  is the specific adjusted retention volume of i component;  $Q_i$ ,  $S_i$  are the heat and entropy of adsorption of i component respectively.  $V_g$  was determined by the equation

$$V_{g} = F_{N} \left( t_{i} - t_{He} \right) / W \tag{4}$$

Where  $F_N$  is flow rate of carrier gas,  $N_2$ , which is 20ml/min;  $t_i$ ,  $t_{He}$  are the retention times of i component and He respectively; W is the weight of catalyst, which is 1.08g. The experimental data of the heats of adsorption of benzene, oxygen and  $CO_2$  were shown in Fig. 1, 2, 3, correspondingly. The determined values of heats of benzene, oxygen and  $CO_2$  were 34.3kJ/mol, 25.8kJ/mol, 44.8kJ/mol correspondingly. They coincided with the values estimated by the

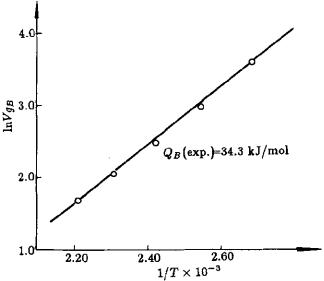



Fig. 1 Temperature dependency for adsorption of benzene according to Clausius-Clapeyron equation

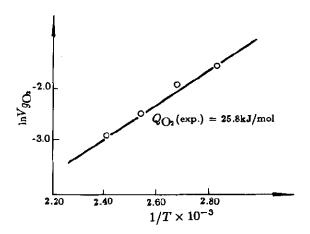



Fig. 2 Temperature dependency for adsorption of oxygen, according to Clausius-Clapeyron equation

method of orthogonal design, which were 34.5 kJ/mol, 24.7kJ/mol and 43.8kJ/mol correspondingly.

Oscillations for complete oxidation of benzene

Oscillatory behavior in heterogeneous catalytic systems attracted considerable attention in recent years and has inspired comprehensive reviews of the subject (Sheintuch, 1977; Slin'ko, 1978; Rozon, 1986). Though the oscillations for complete oxidation of benzene were observed (Dryakhlov, 1981; stasevich, 1982; stasevich, 1985), it had not been investigated in details.

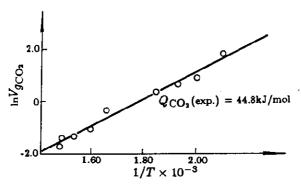



Fig. 3 Temperature dependency for adsorption of carbon dioxide according to Clausius-Clapeyron equation

When the amounts of catalyst and feed fates of reactants were greater than 3 times of the amounts used in the steady-state kinetics, the oscillations of temperatures were observed. Oscillatory behavior for complete oxidation of benzene was studied with the external recycling reactor, by means of it the reaction rates were obtained approximately. The oscillatory data were listed in Table 2 and illustrated in Figure 4.

Table 2 Oscillatory data for complete oxidation of benzene over Pt/Al<sub>2</sub>O<sub>3</sub>.
(Wt. of catalyst 0.197g., temperature 400°C, feed rates of benzene and water vapor were 214 and 6000ml/h respectively)

| es, ml/h | С,                                  | $P_{\mathrm{O}_2}$                                           | $P_{B}$                                                                               | $P_{\rm CO_2}$ ,                                                                                                                                                                          | r̃,                                                                                                                                                                                                                                    | $	ilde{\Delta}t,$                                                                                                                                                                                                                                                                   |
|----------|-------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $N_2$    | %                                   | kPa                                                          | kPa                                                                                   | kPa                                                                                                                                                                                       | 10 <sup>3</sup> mol/ml.h                                                                                                                                                                                                               | °C                                                                                                                                                                                                                                                                                  |
| 1786     | 58.3                                | 4.68                                                         | 0.991                                                                                 | 8.32                                                                                                                                                                                      | 21.1                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                   |
| 1586     | 47.3                                | 7.23                                                         | 1.25                                                                                  | 6.35                                                                                                                                                                                      | 17.9                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                  |
| 1386     | 43.7                                | 10.8                                                         | 1.34                                                                                  | 6.24                                                                                                                                                                                      | 16.6                                                                                                                                                                                                                                   | 16                                                                                                                                                                                                                                                                                  |
| 1186     | 79.3                                | 8.18                                                         | 0.492                                                                                 | 11.3                                                                                                                                                                                      | 32.0                                                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                  |
| 986      | 86.3                                | 9.50                                                         | 0.325                                                                                 | 12.3                                                                                                                                                                                      | 32.7                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                  |
| 636      | 90.7                                | 9.43                                                         | 0.221                                                                                 | 12.9                                                                                                                                                                                      | 34.4                                                                                                                                                                                                                                   | 20                                                                                                                                                                                                                                                                                  |
|          | 1786<br>1586<br>1386<br>1186<br>986 | 1786 58.3<br>1586 47.3<br>1386 43.7<br>1186 79.3<br>986 86.3 | 1786 58.3 4.68<br>1586 47.3 7.23<br>1386 43.7 10.8<br>1186 79.3 8.18<br>986 86.3 9.50 | 1786     58.3     4.68     0.991       1586     47.3     7.23     1.25       1386     43.7     10.8     1.34       1186     79.3     8.18     0.492       986     86.3     9.50     0.325 | 1786     58.3     4.68     0.991     8.32       1586     47.3     7.23     1.25     6.35       1386     43.7     10.8     1.34     6.24       1186     79.3     8.18     0.492     11.3       986     86.3     9.50     0.325     12.3 | 1786     58.3     4.68     0.991     8.32     21.1       1586     47.3     7.23     1.25     6.35     17.9       1386     43.7     10.8     1.34     6.24     16.6       1186     79.3     8.18     0.492     11.3     32.0       986     86.3     9.50     0.325     12.3     32.7 |

In Table 2 C is percent conversion of reaction,  $\tilde{r}$  is reaction rate measured by external

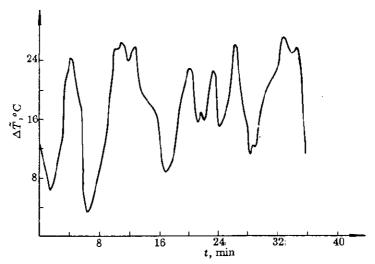



Fig. 4 Temperature oscillations for complete oxidation of benzene over Pt/Al<sub>2</sub>O<sub>3</sub>
(The condition of temperature oscillations was shown in Table 2)

recycling reactor approximately,  $\tilde{\Delta}t$  is approximate amplitudes of temperature oscillations.

Table 2 showed that the amplitudes of temperature oscillations, reaction rates and percent conversion of reaction increased approximately with the rise of feed rates of oxygen. These observations suggested that the reason of temperature oscillations is the inhibition of transfer of reaction heat.

## REFERENCES

Berty, J. B., Chem. Eng. Progr., 1974, 70(5):78

Dryakhlov, A. S., Kiperman, S. L., Kinet. Katal., 1981, 22:188, 193

Hall, P. G., Heaton, P., Rosseincky, D. R., J. Chem. Soc. Faraday Trans. Part I, 1985, 81:2785

Pfefferle, L. D., Pfefferle, W. C., Catal. Rev., 1987, 29:219

Prasad, R., Kennedy, L. A., Rudkenstein, E., Catal. Rev., 1984, 26:1

Pyatnitskii, Yu, I., Stasevich, V. P., Shaprinskaya, T. M., Kinet. Katal. 1985, 26:1365

Rozon, L. F., Schmitz, R. A., Catal. Rev. 1986, 28:89

Shaprinskaya, T. M. Stasevich, V. P., Korneichuk, G. P., Katal., Katal, 1986, 24:60

Sheintuch, M. G., Schmitz, R. A., Catal. Rev. 1977, 15:107

Slin'ko M. G., Slin'ko, M. M., Catal. Rev., 1978, 17:119

Stasevich, V. P., Korneichuk, G. P., Pyatnitskii, Yu, I., et al., Kinet. Katal., 1985, 23:46, 50

Stasevich, V. P., Pyatnitskii, Yu. I., Korneichuk, G. P., et al., Katal. Katal., 1985, 26:1126

Stasevich, V. P., Shaprinskaya, T. M., Korneichuk, G. P., et al., React. Kinet. Catal. Lett., 1982, 21:171

Stasevich, V. P., Shaprinskaya, T. M., Korneichuk, G. P., et al., Kinet. Katal., 1982, 23:1290

Yu Qiquan, Jin Yun, Huang Wei et al., Acta Scientiarum Naturalium Universitatis Pekinensis, 1986, (6):17