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Are chaos and catastrophe theories relevant to

environmental sciences?

John Kaihong KAM
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Abstract—Data acquired in the area of Environmental Sciences are by their very nature ofien discontinuous

and abrupt. As such, the mathematical theories of catastrophe and chaos may be of use in analyzing such

scientific data and in formulating mathematical models.
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INTRODUCTION

Environmental Sciences are by their nature multifaceted. To accurately assess the extent of
environmental problems, it is often imperative to quantitatively describe the parameters. Yet, the
world as we know it frequently defies being reduced to a set of easily manipulable numbers.

CATASTROPHE THEORY

During the early part of last decade, catastrophe theory has emerged as a theory that can
be applied to systems where there are sudden, abmpt changes, i. e. changes that are not smooth
and continuous. It has been postulated that the emergence of catastrophe theory could be due to

Fig. 1 A cusp catastrophe

inherent limitations in classical approaches of using
diffcrential equations to describe natural phenomena
which are not unusual to be discontinuous and discon-
nected, especially in biclogical systems. Relatively few
phenomena are so orderly and well-behaved that they
can be represented entirely by differentiable functions,
as exact solutions to differential equations. The
world, especially from the standpoint of an envi-
ronmental scientist who needs to tackle complex
problems under non-reproducible conditions, is full of
unpredictable divergences and sudden transformations
which call for non-differentiable functions (Fig. 1).
To meet this challenge, catastrophe theory may be
the answer. Table 1 depicts in mathematical form the
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seven clementary catastrophes which describe all possible discontinuities controlied by no more
than four variables . These catastrophe models were first formulated by the French mathematician
Renc Thom in 1972, which can be useful for discontinuous processes . Using Dr . lan Siewart’s
simple analogy , these mathematical descriptions correspond to a mechanical system with a high
degree of friction (Stewart ,1975).

Table 1 A Hst of the seven elementury catustraphes

Catastrophe Energy function
Fold 3 +ax
Cusp 1/4x*+ 1/2a+ bx
Swallowtail 1/ 5854 1 3+ 1/ 2bx2+ ¢x
Butterfly 1/ 6x5+ 1/ 4@+ 1/3bx7+ 1/2cX + dx
Pamabolic umbilic Byt ¥+ ax+ byt oxd+dy?
Hyperbolic umbilxc X+ yrax+ bptexy
Elliptic umbilic x*=3xy+ax+ byl o+ )

Catastrophe theory is a special branch of the theory of singularities, which has preoccupied

mathematics for at least 300 years. One of the frequent applications of catastrophe theory is in

_ fluid dynamics, where catastrophe theory is used to describe breaking waves as a hyperbolic
umbilic catastrophe or the two dimensional inviscid fluid flow as a function of the ” energy func-
tion of a catastrophe” (Poston, 1978; Zeecman, 1976, Arnold, 1984; Saunders, 1980).

It is certain that environmentalists are always concerned with the weather, which s by and
large, the result of a giant, frequently turbulent, fluid system, and are concerned with gaseous
and liquid discharges. It is likely that these phenomena may be modelled by one of the seven
modds in Table 1. On the other hand, the stability of elastic structures in engineering, such as
bridges, girders and pillars, has also been analyzed by enthusiasts of catastrophe theory, e. 8.
Dr. G. W. Hunt discovered that a hyperbolic umbilic governs the strength of a stiffened panel
(Saunders, 1980} . Acoustic engineers who work on noise and vibration abatement projects may
therefore find the hyperbolic umbilic model usefil.

CHAOS THEORY

Just like catastrophe theory, the newly emergent chaos theory { Crutchfield, 1986; 1987,
1988; Blumel, 1990) also challenges the traditional view of modelling naturc using simple
deterministic systems. According to chaos theory, long term predictions of some sysiems are
intrinsically impossible, because a system cannot be understood by breaking it down and
studying it on a piecewise basis. Jusi as the trajectory of a flying balloon with air rushing out is
not predictable, small uncertainties can lead to random behaviour even though the movements
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obey physical laws.

The father of chaos theory is the French mathematician Henri Poincaire who realized that
unpredictability can creep into complex sysems through amplification of small fluctuations, i. ¢. ”
interaction of components on one scale can lead to complex global behaviour on a larger saale
that in general cannot be deduced from knowledge of the individual components (Crutchfield,
1987, Poincoire, 1952; Hao, 1987).

To some scientists, chaos is everywhere. As an example, let us take a simple function,
y=x?(x— 1} for x<1; y=x—1 for x> 1. When onc substitutes a value for x, say, x =1.2,
one arrives at y=0.2. Then using this value of y=0.2, one can then recursively uses il as a x
valye, i. e. x=0.2, and substitute it again into the function, one arrives at y = —0.032. To conti-
nue repeating - this process, one can design a computer program to carry out such recursive calcula-
tions indefinitely. At first sight, a random array of y values will be obtained. Yet, on close exami-
nation, one can detect bifurcation patterns or fractilzs. Using mathematical jargon, chaos pro-
duces fixed point-, limit cycle- or chaotic- atiractors, which can be considered as geometric or
topological forms that describe long-term behaviour in state space (Fig. 2).
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Fig. 2 A graphical representation of the - State Space”

The abstract idea of ” state space” can best be visualized by the simple harmonic motion
of a simple pendulum. For a simple pendulum, there are 2 degrees of freedom, viz., the
pendulum’s position and velocity. The pathway through which the pendulum swings is called
the ~ state space”. In a frictionless setting, the pendulumn will follow a closed curve; whereas in
real life situation where there is air friction and frictiop__ at the point of suspension, the pendu-
lum’s pathway will spiral inward to a point .Hence , in practical applications , and attractor can
be regarded as what the behaviour of a system is attracted to , or settles down to . What appears
to be random , nondirectional behaviour can have elegant , geometric structures hidden inside
such behaviour, i .e .the existence of an attractorbasin portrait .
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CONCLUSION

In areas where exact reproduction of identical conditions are impossible, the above
mathematical considerations can be particularly useful in investigation nonlinear dynamic systems
with spatially distributed degrees of freedom. Environmentalists who are concemed with non-
laminar, abrupt flows, and mathematical modelling of random behaviour of dynamical systems
may therefore find catastrophe and chaos theories handy to use.
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