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Abstract : Fractal approach is used tc derive a power law relation between effective diffusion coefficient of solute in porous media and
the gecmetry parameter characterizing the media. The results are consistent with the empiricel equations ana.ogous to Archie’s law
and are expected to be applied to prediction of effective diffusion coefficient.
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Introduction

Diffusion may be the dominant mass transfer mechanism (compared to advection) in porous media of low
permeability which are widely used as natural or artificial barriers for pollution control at waste disposal sites. Ditfusion
transport of contaminants through clay, silt. mudrock or shale formations as well as mineral liners and synthetic
polymers has to be considered in site selection, risk assessment and engineering design of weste landfilis (Johnson,
1988). Furthermore, the leaching of contaminants from solidified waste depends on molecular diffusion of the
contaminams { Powell, 1992).

Modeling solute diffusion process in porous media requires information on diffusion coefficient which relates a flux
to a driving force. Measurement of diffusion coefficient is time-consuming and highly variable, especially in porous
media of low permeability. so prediction of this parameter is a viable alternative.

The classical epproach to model diffusion in a porous medium is based on the hypothesis that the medium is
invariant by translation, i.e. the medium looks the same at different locations and the randomness associated with it
may be handled by & finite sample size or by staristical techniques. Modern fractal model, on the other hand, assumes
that the medium is invarient by dilation, i. e. the medium looks identical under different magnifications. Natural
porous media have been observed having hierarchical structure known as fractal scaling and characterized with a power
law distribution between lower and upper limits of scale (Giménez, 1997}, Giménez ez al. (1997) have reviewed the
derivations of classical semi-empirical power laws such as Archie’s law and Campbeli’s law by assuming fractal scaling
of various physical properties of a porous medium and the application of the laws 1o predicting soil- water retention and
hydraulic conductivity. The ohjective of this paper is 1o derive & power law equation for prediciing effective diffusion
coefficient under steady state by using fractal approach.

1 Definition of effective diffusion coefficient
Solute diffusion in porous media is impeded by the tortuosity of the pores, the available cross sectional area
(porosity) and possibly by the pore size distribution. Under steady state, the mass flux depends on the concentration
gradient and is described by Fick’s first law:
daC
F=-D, E (1)
Under water-saturated conditions C refers to the solute
concentration in the pore water (ML_S). D,, the effective

diffusion coefficient (L*T '} is defined as: /\/\
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D,, is the diffusion coefficient in aqueous phase (L. /\N\\ o)
€ is the effective porosity of porous media which accounts for
the reduced cross-secticnal area available for diffusion when
diffusion occurs only in the pore space. Since the natural < >
porous medium always contains small pores which are not Fig.1 Sinuous capillary bundle model of porous media
accessible for the solute and pores which do not contribute to
the overall solute transport such as dead ends or blind pores, ¢

is smaller than the overall porasity {#) of the porous medium (Lever, 1985}, 7y is tortucsity factor which accounts
for the pore structure and is defined as the square of the ratio of the average pore length I, (effective diffusion path) to
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the length of the porous medium ! along the major flow or diffusion axis (Epstein, 1989):
2
= (%) = r?, (3)
T is the tortuosity, Since in general {,>>/, v>1. In fact, r,is e parameter of the one-dimensional capillaric model of
the porous medium tather than a property of the medium (Grethwehl, 1997}, The capillaric model (Fig, 1} assumes

the porous medium as a bundle of sinuous but parallel capillaries or pores.

2 Scaling of effective diffusion coefficient

In most cases, only the overall porosity (#) of porous media can be obtained while both the effective purosity &
and the tortuosity factor 7, are hardly to be determined. Analogous to Archie’s law which is a widely-used empirical
correlation describing the electrical conductivity in porous rocks, there has been an empirical power law formulation
relating the effective diffusion coefficient D, to the overall porosity $ of porous media:

D, = D, 8™, {4)

where m is an empitical exponent.

If the effective porasity e is close to the overall porosity 8, i.e., e2=¢, then:

D, = D™, (5)
the tortuosity factor 7, can be connected with the effective poresity & by combining Equations (2) and (3):
I (6)

Since Equaticns (5) and (6) are empirical and without sclid physical
and mathematical foundation, they have minimum impact on the
understanding of diffusion phenomena in perous media, which limits their

o OO possibilities of extrapolating results to porous media ourside the data set
[») that was used to fit the equations.
> ]

i, 0 Just like Archie’ law, the power law form of Equations (3) and (6)

o is indicative of fractal geometry. In the sinuous capillary bundle medel, the

“sinuous” nature of the bundle reflects the roughness of pore-solid interface

P =1, - of the medium. Intensive studies (Giménez, 1997 ) have suggested that
~ e pore-solid interface of porons media has fractal properties within some scale

limits. Assuming that the bundle is so “sinuous” that it is a fractal (self-
similar), e. g., Von Koch curve (Fig.2; Mandelbrot, 1982), the power
law form of Equations (5) and (6) can be derived as follows.

Fig.2 Fractal bundle model of purous media

Given a volume element of size [5, a pore-solid interface fractal implies a simple relationship beiween the [ractel
dimension and the overall perosity of the medium {Katz, 1985):

$= (Ao, )

where D, is the fractal dimension of pore-solid interface, and 7y and I, are the lower and the upper limits of fractal
region. For embedding dimension of two, 155D,s2.

The tortucsity of the fractal bundle along which the solute diffuses in the volume element of size {, can be
determined by:
4

b _ by
f_l_(lg) ' (8)
Substitution of Equations (7) and (8) into {2} gives
i
D, = an(l—‘)”,. (9
2
Again e==$ is assumed.
Equation (9) is equivalent to
D
D, = Daqszflﬂl: (10)
2-1D,
t'f= E:’-*D,; (11)
D
m = ﬁ {(12)

Equations (10) and (11) are consistent with the empirical Equations (5) and (6), so a physical explanation of
Equaticns (5} and {6) is given by the derivation of Equations (10) and (11). Equation {12) revesls that the
empirical exponent m {(3>1) is a parameter describing the roughness of the pore-solid interface of the porous medium.
The rougher the interface, the larger the value of D,, thus the larger the value of .

According to Equations (11) and (12), D, =1 is equivalent to m =1 and r =1. As a result, Equation (10)
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retrieves to

D, = D¢, (13)
which corresponds to the straight Table 1 Values of surface fractal, D,, and calculated values of m for various porous
capillary bundle model of porous media
media.

In general, Dm7 can  be Porous media D, » Reference
obtained from relevant literature, Clay 1.15—1.24 1.35—1.63 Anderson et al. (Arderson, 1996)
s .
and €= § can be measured easily. . 1.16—1.1% 1.38—1.47 Anderson et af. (Arderson, 1996)
D, can be measured or determined
by several specific techniques, such Clay loam 1.17—1.18 1.41—1.44 Anderson ¢ af. (Arderson, 1996)
as  scanning  electron MIcrosCOPE  (lay |oam 1.22—1.25 1.56—1.67 Giménez ez a/. (Giménez, 1997)
images ( Krohn, 1986 ), thin
section photographs  ( Anderson, Silty clay loam 1.23 1.60 Anderson ez af . (Arderson, 1996)
1996 ), mercury porosimetry Silty loam 1.10 1.31 1.22 ~1.9%0 Young et al. {Young, 1991)

( Neimark, 1992 ), particle size
distributions ( Kravchenko, 1998)
or water vapor adsorption { Sokolowska, 1999). Values of I3, for various porous media were reviewed by Gimeénez et
al. (1997), and the corresponding vaiues of m can be calculated according to Equation (12). Some typical values of
D, and m are summarized in Table 1.

Table 1 shows that the values of m for all of the listed soils range from 1.22 to 1,90 with the average 1.51. The
values above agree with m = 3/2, derived by Bruggemean (Grathwohl, 1997) under the assumption of isetropic
packing of spherical particals; m = 4/3, reported by Millington and Quirk {Millington, 1960); m = 1.5, reported
by Shimarmura {Shimamura, 1992). Meanwhile, the values are comparable with Bear's (Bear, 1972) research on
effective diffusion coefficient of unconsolidated sediments. Thus, Equations {10}, (11) and {12) may be used to
predict the effective diffusion coefficient of porous media.

3 Conclusion

A large amount of experimental evidence suggests that the morphology of porous media structure is fractal within
somne scale limits, therefore {ractal geometry cen be used to study the transport phenomena, €. g. , diffusion in porous
media. Under the assumption that the pore volume distribution and the pore-solid interface are fractals within a
limited region, a power law equation is derived to show the relation between effective diffusion coefficient of solute in
porous media and the geometry parameter characterizing the media. It is clarified that the empirical exponent m is a
function of the pore-salid interact fractal dimension 13,. The derived equation is consistent with the empirical equation
and gives the empirical equation a physical and methcmatical cxplanation. Data collected from relevant literatures
agree well with the equation. If the experimental data are available {under present research) with which to test the
derived equation, the equation may be applied 10 the prediction of effective diffusion coefficient of solute in porous
media.
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