Quantitative structure-property relationship of aromatic sulfurcontaining carboxylates

LIU Xin-hui^{1*}, YANG Zhi-feng¹, WANG Lian-sheng²

(1. State Key Laboratory of Environmental Simulation and Pollution Control, Institute of Environmental Sciences, Beijing Normal University, Beijing 100875, China. E-mail: lxh065@yahoo.com; 2. School of the Environment, Nanjing University, Nanjing 210093, China)

Abstract: Based on quantum chemical calculations, TLSER model (theoretical linear solvation energy relationships) and atomic charge approach were applied to model the partition properties (water solubility and octanol/water partition coefficient) of 96 aromatic sulfur-containing carboxylates, including phenylthio, phenylsulfinyl and phenylsulfonyl carboxylates. In comparison with TLSER models, the atomic charge models are more accurate and reliable to predict the partition properties of the kind of compounds. For the atomic charge models, the molecular descriptors are molecular surface area(S), molecular shape(O), weight(M_W), net charges on carboxyl group(Q_{OC}), net charges of nitrogen atoms(Q_N), and the most negative atomic charge (q^-) of the solute molecule. For water solubility(log S_W) and octanol/water partition coefficient(log K_{OW}), the correction coefficients $r_{\rm adj}^2$ (adjusted for degrees of freedom) are 0.936 and 0.938, and the standard deviations are 0.364 and 0.223, respectively.

Keywords: octanol/water partition coefficient; water solubility; atomic charge model; TISER; quantum chemical descriptor

Introduction

It is widely recognized that the physicochemical profile of organic chemicals largely determines their distribution between environmental media. For the environmental behaviors of organic contaminants, water solubility ($S_{\rm w}$) and octanol/water partition coefficient ($K_{\rm ow}$) are tremendously important. Octanol/water partition coefficient has been widely related to biochemical and/or biological activity in quantitative structure-activity relationships (QSARs) (Leo, 1971). Water solubility corresponds to the dispersion tendency and to the recalcitrance toward biotic and abiotic degradation.

In order to avoid expensive and time consuming measurements, theoretical methods to estimate compound properties have become an important tool for screening, evaluating, and generating relevant data. Leo(Leo, 1993) gave an extensive overview and discussion of different approaches to calculate K_{ow} .

The well-known methods such as Leo and Hansch's fragment approach (Hansch, 1979; 1995), CLOGP(Leo, 1990; 1991), and LSER(Kamlet, 1983; 1988) have been somewhat limited because of their empirical origin. It is generally more useful to use descriptors derived mathematically from either two-dimensional or three-dimensional molecular structure. Especially, the approaches based on the three-dimensional molecular structure are more significant since flexible compounds can adopt different conformations in solvents of different polarity. The TLSER method (theoretical linear solvation energy relationships) (Famini, 1989; Wilson, 1991) has been extensively used to predict partition coefficients of a wide range of organic compounds. The predictability and applicability of the model is good. Atomic charge (Bodor, 1989; 1992) has been proposed as the basis for calculating octanol/water partition coefficients. The predictive power of the model has been demonstrated by the accurate estimation of $K_{\rm ow}$ for complex molecules. Some groups (Brinch, 1993; Haeberlein, 1997; Eisfeld, 1999) used theoretical descriptors from the molecular surface area and the electrostatic potential to predict the partition property. The parameters with which these approaches correlate $K_{\rm ow}$ more or less resemble the LSER ones.

Estimation of water solubility (S_w) through octanol/water partition coefficient (K_{ow}) is one method of choice (Yalkowsky, 1993), and most methods used to estimate K_{ow} are suitable for estimation of S_w .

Aromatic sulfur-containing compounds, used extensively as intermediates in the manufacture of pesticides, herbicides and anthelmintics (Han, 1992), are being introduced into the environment. Their environmental behaviors and ecological effects should be investigated. To explore better models to predict their potential behavior, TLSER and atomic charge method are utilized to correlate two properties of the aromatic sulfur-containing chemicals, consisted of phenylthio, phenylsulfinyl and phenylsulfonyl carboxylates. The results should be valuable in evaluating the potential behavior of the kind of chemicals.

1 Materials and methods

1.1 Samples

The test of 96 compounds is listed in Table 1 together with water solubility and octanol/water partition coefficients at 25 °C. Experimental data of 96 compounds were taken from the literatures (Feng, 1996; He, 1995; Hong, 1995; Liu, 2001).

1.2 Calculation of geometric and electronic descriptors

The molecule was drawn using the CS Chem3D 5.0 (CambridgeSoft Corp., 1999) software to generate the starting geometry. Then geometric optimization was performed; geometric and electronic properties were determined by the AM1 method of the MOPA 97 program. Using the optimum geometry, the molecular surface area (S in \mathring{A}^2), volume (V in \mathring{A}^3), and ovality (O) were calculated by Connolly method (Connolly, 1983; 1985). Molecular weight (M_W) was also included. The electronic descriptors such as dipole moment (μ in D), polarizability (α in au), energy of the highest occupied molecular orbital (E_{HOM0} in eV), energy of the lowest unoccupied molecular orbital (E_{LUM0} in eV), atomic net charge (in acu), were achieved. All possible sum of squared charges for each given element, and that of the absolute values of atomic charges on different functional groups were generated. Because of the expected nonlinearity of the model, all squared and square-rooted descriptors were generated. The most negative atomic charge (q^- in acu) and the most positive charge of a hydrogen atom (q H $^+$ in acu) in the solute molecule were obtained.

1.3 Data manipulation

The stepwise linear regression analysis with a confidence limit of 95% was performed by SPSS 8.0 software package (SPSS Inc., 1989—1997). To get the best fit of the K_{0W} values to the experimental data, the linear least-squares method is performed. Model adequacy was measured by the squared correction coefficient (r_{adj}^2) (adjusted for degrees of freedom), the standard deviation (SD), the F-test value (F), and the significance level of F-value (P).

2 Results and discussion

2.1 TLSER method

Based on TLSER model, six descriptors: V_{me} ; π^* ; ε_a , ε_b , $q \, \text{H}^+$, q^- ; which represent cavity, dipolarity/polarizability, and hydrogen bonding terms, are calculated by using AM1 procedure.

 $V_{\rm me}$ is $V_{\rm m}/100$, where $V_{\rm m}$ is the molecular van der Waals volume calculated according to Connolly method. π^* is equal to $\alpha/V_{\rm m}$. The hydrogen-bonding effects are separated into donor and acceptor components. The covalent contribution to Lewis basicity, ε_b , is represented as the difference in energy between $E_{\rm LUMO}$ of water and $E_{\rm HOMO}$ of solute. The electrostatic basicity contribution, denoted as q^- , is simply the most negative atomic charge in the solute molecule. Analogously, the hydrogen-bonding donating ability is divided into two components: ε_a is the energy difference between $E_{\rm HOMO}$ of water and $E_{\rm LUMO}$ of solute, whereas $q\,H^+$ is the most positive charge of a hydrogen atom in the solute molecule.

Table 1 List of experimental and predicted log K_{OW} and log S_{W} values for sulfur-containing compounds

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	PhSCH ₂ CO ₂ Me PhSCH ₂ CO ₂ Et PhSCH ₂ CO ₂ - <i>i</i> - Pr PhSCH ₂ CO ₂ - <i>i</i> - Pr PhSCH ₂ CO ₂ - <i>i</i> - Bu PhSCH ₂ CH ₂ CO ₂ Me PhSCH ₂ CH ₂ CO ₂ Me PhSCH(Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH(CO ₂ - <i>i</i> - Pr) CH ₂ CO ₂ - <i>i</i> - Pr PhSCH ₂ CH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> - Pr 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> - Pr 2-NO ₂ PhSCH ₂ CO ₂ Me 2-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> - Pr	Expt. 1.50 2.12 2.53 2.69 3.02 3.26 2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	Eq. (1) 1.74 2.00 2.27 2.25 2.60 2.52 2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39 2.90	Eq. (3) 1.86 2.26 2.60 2.64 2.97 2.98 2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51 2.21	Expt. - 1.02 - 1.57 - 2.08 - 2.15 - 2.56 - 2.75 - 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56 - 0.70	Pre Eq.(2) -1.01 -1.31 -1.60 -1.60 -2.00 -1.90 -1.60 -1.56 -1.57 -2.01 -2.64 -2.79 -2.35 -2.98 -3.69 -1.57	Eq. (4) -0.84 -1.44 -1.98 -1.98 -2.49 -2.48 -1.85 -1.86 -1.85 -1.20 -2.10 -2.97 -1.78 -2.62 -3.43 -1.46
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31	PhSCH ₂ CO ₂ Et PhSCH ₂ CO ₂ - <i>i</i> -Pr PhSCH ₂ CO ₂ - <i>i</i> -Pr PhSCH ₂ CO ₂ - <i>i</i> -Bu PhSCH ₂ CO ₂ - <i>i</i> -Bu PhSCH ₂ CO ₂ - <i>n</i> -Bu PhSCH ₂ CH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ Me PhSCH ₂ CO ₂ Me PhSCH ₂ CO ₂ Me PhSCH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ - <i>i</i> -Pr 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	1.50 2.12 2.53 2.69 3.02 3.26 2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	1.74 2.00 2.27 2.25 2.60 2.52 2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	1.86 2.26 2.60 2.64 2.97 2.98 2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.64 1.78 2.51	- 1.02 - 1.57 - 2.08 - 2.15 - 2.56 - 2.75 - 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.01 - 1.31 - 1.60 - 1.60 - 2.00 - 1.90 - 1.60 - 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 0.84 - 1.44 - 1.98 - 1.98 - 2.49 - 2.48 - 1.85 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31	PhSCH ₂ CO ₂ Et PhSCH ₂ CO ₂ - <i>i</i> -Pr PhSCH ₂ CO ₂ - <i>i</i> -Pr PhSCH ₂ CO ₂ - <i>i</i> -Bu PhSCH ₂ CO ₂ - <i>i</i> -Bu PhSCH ₂ CO ₂ - <i>n</i> -Bu PhSCH ₂ CH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ Me PhSCH ₂ CO ₂ Me PhSCH ₂ CO ₂ Me PhSCH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ - <i>i</i> -Pr 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	2.12 2.53 2.69 3.02 3.26 2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.00 2.27 2.25 2.60 2.52 2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.26 2.60 2.64 2.97 2.98 2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 1.57 - 2.08 - 2.15 - 2.56 - 2.75 - 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.31 - 1.60 - 1.60 - 2.00 - 1.90 - 1.60 - 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.44 - 1.98 - 1.98 - 2.49 - 2.48 - 1.88 - 1.35 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	PhSCH ₂ CO ₂ -i-Pr PhSCH ₂ CO ₂ -i-Bu PhSCH ₂ CO ₂ -i-Bu PhSCH ₂ CO ₂ -n-Bu PhSCH ₂ CO ₂ -n-Bu PhSCH ₂ CH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ Me PhSCH ₂ CH ₂ CO ₂ Me PhSCH ₂ CH(Me) CO ₂ Me PhSCH ₂ CH(Me) CO ₂ Me PhSCH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH(CO ₂ ti) CH ₂ CO ₂ Et PhSCH(CO ₂ -i-Pr) CH ₂ CO ₂ -i-Pr PhSCH ₂ CH(CO ₂ Me) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Me PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ -i-Pr) CH ₂ CO ₂ -i-Pr 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ -i-Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	2.53 2.69 3.02 3.26 2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.27 2.25 2.60 2.52 2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.60 2.64 2.97 2.98 2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.08 - 2.15 - 2.56 - 2.75 - 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.60 - 1.60 - 2.00 - 1.90 - 1.60 - 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.98 - 1.98 - 2.49 - 2.48 - 1.88 - 1.35 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 31 31 31 31 31 31 31 31	PhSCH ₂ CO ₂ Pr PhSCH ₂ CO ₂ - <i>i</i> - Bu PhSCH ₂ CO ₂ - <i>n</i> - Bu PhSCH ₂ CO ₂ - <i>n</i> - Bu PhSCH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ Me PhSCH ₂ CH ₂ CO ₂ Me PhSCH ₂ CH ₄ CO ₂ Me PhSCH ₂ CO ₂ Me PhSCH ₂ CO ₂ Me PhSCH ₂ CO ₂ Me PhSCH ₃ CO ₂ Et PhSCH ₄ CO ₂ Et PhSCH ₄ CO ₂ Et PhSCH ₄ CO ₂ - <i>i</i> - Pr) CH ₂ CO ₂ - <i>i</i> - Pr PhSCH ₂ CH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ - <i>i</i> - Pr) CH ₂ CO ₂ - <i>i</i> - Pr 4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> - Pr 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> - Pr 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> - Pr 2-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> - Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	2.69 3.02 3.26 2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.25 2.60 2.52 2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.64 2.97 2.98 2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.15 - 2.56 - 2.75 - 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.60 - 2.00 - 1.90 - 1.60 - 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.98 - 2.49 - 2.48 - 1.88 - 1.35 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	PhSCH ₂ CO ₂ - <i>i</i> -Bu PhSCH ₂ CO ₂ - <i>n</i> -Bu PhSCH ₂ CO ₂ CD ₂ Et PhSCH ₂ CH ₂ CO ₂ Me PhSCH(Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Me) CO ₂ Me PhSCH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH(CO ₂ - <i>i</i> -Pr) CH ₂ CO ₂ - <i>i</i> -Pr PhSCH ₂ CH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH ₂ CH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ - <i>i</i> -Pr) CH ₂ CO ₂ - <i>i</i> -Pr 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	3.02 3.26 2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.60 2.52 2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.97 2.98 2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.56 - 2.75 - 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 2.00 - 1.90 - 1.60 - 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 2.49 - 2.48 - 1.88 - 1.35 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	PhSCH ₂ CO ₂ -n-Bu PhSCH ₂ CH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ Me PhSCH(Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Me) CO ₂ Me PhSCH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH(CO ₂ -i-Pt) CH ₂ CO ₂ -i-Pt PhSCH ₂ CH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ -i-Pt) CH ₂ CO ₂ -i-Pt 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ i-Pt 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ Me	3.26 2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.52 2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.98 2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.75 - 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.90 - 1.60 - 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 2.48 - 1.88 - 1.35 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	PhSCH ₂ CH ₂ CO ₂ Et PhSCH ₂ CH ₂ CO ₂ Me PhSCH(Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Me) CO ₂ Me PhSCH(CO ₂ Me) CH ₂ CO ₂ Me PhSCH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH(CO ₂ - i - Pr) CH ₂ CO ₂ - i - Pr PhSCH ₂ CH(CO ₂ Me) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ Et) CH ₂ CO ₂ Et PhSCH ₂ CH(CO ₂ - i - Pr) CH ₂ CO ₂ - i - Pr 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ - i - Pr 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - i - Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	2.72 2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.47 2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.57 2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.12 - 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.60 - 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.88 - 1.35 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{lll} PhSCH_2CH_2CO_2Me \\ PhSCH_2CH_2CO_2Me \\ PhSCH_2CH_1Me_2CO_2Me \\ PhSCH_2CH_2Me_2CO_2Me \\ PhSCH_2CO_2Me_2CO_2Me \\ PhSCH_2CO_2Et_2CO_2Et_2 \\ PhSCH_2CO_2Et_2CO_2Et_3 \\ PhSCH_2CH_2CO_2Et_2CO_2Et_3 \\ PhSCH_2CH_2CO_2Et_3CH_2CO_2Et_4 \\ PhSCH_2CH_2CO_2Et_3CH_2CO_2Et_4 \\ PhSCH_2CH_2CO_2Et_3CH_2CO_2Et_4 \\ PhSCH_2CH_2CO_2-i-Pr_3CH_2CO_2-i-Pr_4 \\ -NO_2PhSCH_2CO_2Me_4 \\ -NO_2PhSCH_2CO_2-i-Pr_4 \\ -Cl_4-NO_2PhSCH_2CO_2Me_4 \\ -Cl_4-NO_2PhSCH_2CO_2Me_4 \\ -NO_2PhSCH_2CO_2Me_4 \\ -NO_2PhSCH_2CO_2$	2.04 2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.21 2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.18 2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 1.52 - 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.30 - 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.35 - 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{lll} PhSCH(Me)CH_2CO_2Me \\ PhSCH_2CH(Me)&CO_2Me \\ PhSCH_2CH(Me)&CO_2Me \\ PhSCH(CO_2Me)CH_2CO_2Me \\ PhSCH(CO_2Et)CH_2CO_2Et \\ PhSCH(CO_2-i-Pr)CH_2CO_2-i-Pr \\ PhSCH_2CH(CO_2Me)CH_2CO_2Me \\ PhSCH_2CH(CO_2Et)CH_2CO_2Et \\ PhSCH_2CH(CO_2-i-Pr)CH_2CO_2-i-Pr \\ 4-NO_2PhSCH_2CO_2Me \\ 4-NO_2PhSCH_2CO_2Me \\ 2-Cl-4-NO_2PhSCH_2CO_2Me \\ 2-Cl-4-NO_2PhSCH_2CO_2-i-Pr \\ 2-NO_2PhSCH_2CO_2Me \\ 2-Cl-4-NO_2PhSCH_2CO_2Me \\ 2-Cl-4-NO_2PhSCH_2C$	2.61 2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.46 2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.50 2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.00 - 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.56 - 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.86 - 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{lll} PhSCH_2CH(Me)CO_2Me \\ \\ PhSCH(CO_2Me)CH_2CO_2Me \\ \\ PhSCH(CO_2Et)CH_2CO_2Et \\ \\ PhSCH(CO_2-i-Pr)CH_2CO_2-i-Pr \\ \\ PhSCH_2CH(CO_2Me)CH_2CO_2Me \\ \\ PhSCH_2CH(CO_2Et)CH_2CO_2Et \\ \\ PhSCH_2CH(CO_2-i-Pr)CH_2CO_2-i-Pr \\ \\ 4-NO_2PhSCH_2CO_2Me \\ \\ 4-NO_2PhSCH_2CO_2-i-Pr \\ \\ 2-Cl-4-NO_2PhSCH_2CO_2Me \\ \\ 2-Cl-4-NO_2PhSCH_2CO_2-i-Pr \\ \\ 2-NO_2PhSCH_2CO_2-i-Pr \\ \\ 2-NO_2PhSCH_2CO_2Me \\ \end{array}$	2.63 1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.45 2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.48 1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.12 - 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 1.57 - 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.85 - 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{l} {\rm PhSCH}({\rm CO}_2{\rm Me}){\rm CH}_2{\rm CO}_2{\rm Me} \\ \\ {\rm PhSCH}({\rm CO}_2{\rm Et}){\rm CH}_2{\rm CO}_2{\rm Et} \\ \\ {\rm PhSCH}({\rm CO}_2\!-\!i\!-\!{\rm Pr}){\rm CH}_2{\rm CO}_2\!-\!i\!-\!{\rm Pr} \\ \\ \\ {\rm PhSCH}_2{\rm CH}({\rm CO}_2{\rm Me}){\rm CH}_2{\rm CO}_2{\rm Me} \\ \\ \\ {\rm PhSCH}_2{\rm CH}({\rm CO}_2{\rm Et}){\rm CH}_2{\rm CO}_2{\rm Et} \\ \\ \\ {\rm PhSCH}_2{\rm CH}({\rm CO}_2\!-\!i\!-\!{\rm Pr}){\rm CH}_2{\rm CO}_2{\rm et} \\ \\ \\ {\rm PhSCH}_2{\rm CH}({\rm CO}_2\!-\!i\!-\!{\rm Pr}){\rm CH}_2{\rm CO}_2\!-\!i\!-\!{\rm Pr} \\ \\ \\ \\ 4\!-\!{\rm NO}_2{\rm PhSCH}_2{\rm CO}_2{\rm Me} \\ \\ \\ 4\!-\!{\rm NO}_2{\rm PhSCH}_2{\rm CO}_2\!-\!i\!-\!{\rm Pr} \\ \\ \\ 2\!-\!{\rm Cl}\!-\!4\!-\!{\rm NO}_2{\rm PhSCH}_2{\rm CO}_2\!-\!i\!-\!{\rm Pr} \\ \\ \\ 2\!-\!{\rm Cl}\!-\!4\!-\!{\rm NO}_2{\rm PhSCH}_2{\rm CO}_2\!-\!i\!-\!{\rm Pr} \\ \\ \\ 2\!-\!{\rm NO}_2{\rm PhSCH}_2{\rm CO}_2{\rm Me} \\ \end{array}$	1.42 2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.40 2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	1.83 2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 0.85 - 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 2.01 - 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 1.20 - 2.10 - 2.97 - 1.78 - 2.62 - 3.43
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{l} {\rm PhSCH(CO_2E_1)CH_2CO_2Et} \\ {\rm PhSCH(CO_2-\it{i}-Pr)CH_2CO_2-\it{i}-Pr} \\ {\rm PhSCH_2CH(CO_2Me)CH_2CO_2Me} \\ {\rm PhSCH_2CH(CO_2Et)CH_2CO_2Et} \\ {\rm PhSCH_2CH(CO_2-\it{i}-Pr)CH_2CO_2-\it{i}-Pr} \\ {\rm 4-NO_2PhSCH_2CO_2Me} \\ {\rm 4-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-Cl-4-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-Cl-4-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-NO_2PhSCH_2CO_2Me} \\ \end{array}$	2.60 3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	2.96 3.11 3.05 3.63 4.29 1.52 2.76 2.39	2.62 3.29 2.24 3.04 3.64 1.78 2.51	- 2.04 - 3.10 - 1.50 - 2.52 - 3.56	- 2.64 - 2.79 - 2.35 - 2.98 - 3.69	- 2.10 - 2.97 - 1.78 - 2.62 - 3.43
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{l} {\rm PhSCH(CO_2-\it{i}-Pr)CH_2CO_2-\it{i}-Pr} \\ {\rm PhSCH_2CH(CO_2Me)CH_2CO_2Me} \\ {\rm PhSCH_2CH(CO_2Et)CH_2CO_2Et} \\ {\rm PhSCH_2CH(CO_2-\it{i}-Pr)CH_2CO_2-\it{i}-Pr} \\ {\rm 4-NO_2PhSCH_2CO_2Me} \\ {\rm 4-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-Cl-4-NO_2PhSCH_2CO_2Me} \\ {\rm 2-Cl-4-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-NO_2PhSCH_2CO_2-\it{i}-Pr} \\ {\rm 2-NO_2PhSCH_2CO_2Me} \\ \end{array}$	3.53 1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	3.11 3.05 3.63 4.29 1.52 2.76 2.39	3.29 2.24 3.04 3.64 1.78 2.51	- 3.10 - 1.50 - 2.52 - 3.56	- 2.79 - 2.35 - 2.98 - 3.69	- 2.97 - 1.78 - 2.62 - 3.43
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{l} \operatorname{PhSCH_2CH(CO_2Me)CH_2CO_2Me} \\ \operatorname{PhSCH_2CH(CO_2Et)CH_2CO_2Et} \\ \operatorname{PhSCH_2CH(CO_2\cdot i\cdot \operatorname{Pr})CH_2CO_2\cdot i\cdot \operatorname{Pr}} \\ \operatorname{4-NO_2PhSCH_2CO_2Me} \\ \operatorname{4-NO_2PhSCH_2CO_2\cdot i\cdot \operatorname{Pr}} \\ \operatorname{2-Cl-4-NO_2PhSCH_2CO_2Me} \\ \operatorname{2-Cl-4-NO_2PhSCH_2CO_2\cdot i\cdot \operatorname{Pr}} \\ \operatorname{2-Cl-4-NO_2PhSCH_2CO_2\cdot i\cdot \operatorname{Pr}} \\ \operatorname{2-NO_2PhSCH_2CO_2\cdot i\cdot \operatorname{Pr}} \\ \operatorname{2-NO_2PhSCH_2CO_2Me} \end{array}$	1.96 2.98 3.95 1.16 2.79 2.26 3.20 1.88	3.05 3.63 4.29 1.52 2.76 2.39	2.24 3.04 3.64 1.78 2.51	- 1.50 - 2.52 - 3.56	- 2.35 - 2.98 - 3.69	- 1.78 - 2.62 - 3.43
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{split} & \text{PhSCH}_2 \operatorname{CH}(\operatorname{CO}_2 \operatorname{Et}) \operatorname{CH}_2 \operatorname{CO}_2 \operatorname{Et} \\ & \text{PhSCH}_2 \operatorname{CH}(\operatorname{CO}_2 \text{-} i \text{-} \operatorname{Pr}) \operatorname{CH}_2 \operatorname{CO}_2 \text{-} i \text{-} \operatorname{Pr} \\ & 4 \text{-} \operatorname{NO}_2 \operatorname{PhSCH}_2 \operatorname{CO}_2 \operatorname{Me} \\ & 4 \text{-} \operatorname{NO}_2 \operatorname{PhSCH}_2 \operatorname{CO}_2 \cdot i \text{-} \operatorname{Pr} \\ & 2 \text{-} \operatorname{Cl}_1 \text{-} 4 \text{-} \operatorname{NO}_2 \operatorname{PhSCH}_2 \operatorname{CO}_2 \operatorname{Me} \\ & 2 \text{-} \operatorname{Cl}_1 \text{-} 4 \text{-} \operatorname{NO}_2 \operatorname{PhSCH}_2 \operatorname{CO}_2 \cdot i \text{-} \operatorname{Pr} \\ & 2 \text{-} \operatorname{NO}_2 \operatorname{PhSCH}_2 \operatorname{CO}_2 \operatorname{Me} \end{split}$	2.98 3.95 1.16 2.79 2.26 3.20 1.88	3.63 4.29 1.52 2.76 2.39	3.04 3.64 1.78 2.51	- 2.52 - 3.56	- 2.98 - 3.69	- 2.62 - 3.43
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	PhSCH ₂ CH(CO ₂ - <i>i</i> -Pr)CH ₂ CO ₂ - <i>i</i> -Pr 4-NO ₂ PhSCH ₂ CO ₂ Me 4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	3.95 1.16 2.79 2.26 3.20 1.88	4.29 1.52 2.76 2.39	3.64 1.78 2.51	- 3.56	- 3.69	- 3.43
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{l} 4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\mathrm{Me} \\ \\ 4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\text{-}i\text{-}\mathrm{Pr} \\ \\ 2\text{-}\mathrm{Cl}\text{-}4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\mathrm{Me} \\ \\ 2\text{-}\mathrm{Cl}\text{-}4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\text{-}i\text{-}\mathrm{Pr} \\ \\ 2\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\mathrm{Me} \end{array}$	1.16 2.79 2.26 3.20 1.88	1.52 2.76 2.39	1.78 2.51			
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	$\begin{array}{l} 4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\mathrm{Me} \\ \\ 4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\text{-}i\text{-}\mathrm{Pr} \\ \\ 2\text{-}\mathrm{Cl}\text{-}4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\mathrm{Me} \\ \\ 2\text{-}\mathrm{Cl}\text{-}4\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\text{-}i\text{-}\mathrm{Pr} \\ \\ 2\text{-}\mathrm{NO}_2\mathrm{PhSCH}_2\mathrm{CO}_2\mathrm{Me} \end{array}$	2.79 2.26 3.20 1.88	2.76 2.39	2.51	- 0.70	- 1.57	- 1.46
19 20 21 22 23 24 25 26 27 28 29 30 31 32	2-Cl-4-NO ₂ PhSCH ₂ CO ₂ Me 2-Cl-4-NO ₂ PhSCH ₂ CO ₂ - <i>i</i> -Pr 2-NO ₂ PhSCH ₂ CO ₂ Me	2.26 3.20 1.88	2.39				
20 21 22 23 24 25 26 27 28 29 30 31 32	$ \begin{aligned} &2\text{-}\text{Cl-4-NO}_2\text{PhSCH}_2\text{CO}_2\text{-}i\text{-}\text{Pr} \\ &2\text{-}\text{NO}_2\text{PhSCH}_2\text{CO}_2\text{Me} \end{aligned} $	3.20 1.88		2.21		-2.15	- 2.55
21 22 23 24 25 26 27 28 29 30 31 32	2-NO ₂ PhSCH ₂ CO ₂ Me	1.88	2.90			- 1.81	- 2.07
22 23 24 25 26 27 28 29 30 31 32		1.88		2.94		- 2.40	- 3.11
23 24 25 26 27 28 29 30 31 32	2-NO ₂ PhSCH ₂ CO ₂ -i-Pr		1.43	1.80	- 0.76	- 1.46	- 1.54
24 25 26 27 28 29 30 31 32		2.76	2.01	2.44		-2.15	- 2.53
25 26 27 28 29 30 31 32	4-Cl-2-NO ₂ PhSCH ₂ CO ₂ Me	2.24	1.67	2.18	- 1,70	- 1.85	- 2.04
26 27 28 29 30 31 32	4-Cl-2-NO ₂ PhSCH ₂ CO ₂ -i-Pr	3.00	2.19	2,90		- 2.44	- 3.12
27 28 29 30 31 32	2,4-diNO ₂ PhSCH ₂ CO ₂ Me	2.05	1.75	2.05		-2.10	- 2.15
28 29 30 31 32	2,4-diNO ₂ PhSCH ₂ CO ₂ -i-Pr	2.81	2.24	2.77		-2.67	- 3,20
29 30 31 32	4-NO ₂ PhSOCH ₂ CO ₂ Me	0.80	1.42	0.77		-2.53	- 1.66
30 31 32	4-NO ₂ PhSOCH ₂ CO ₂ -i-Pr	1.64	1.93	1.53		-3.11	- 2.70
31 32	2-Cl-4-NO ₂ PhSOCH ₂ CO ₂ Me	1.35	1.56	1.23		- 2.74	- 2.30
32	2-Cl-4-NO ₂ PhSOCH ₂ CO ₂ -i-Pr	2.01	2.09	1.96		- 3.35	- 3.28
	2-NO ₂ PhSOCH ₂ CO ₂ Me	0.74	1.57	0.73		- 2.47	-1.67
33	2-NO ₂ PhSOCH ₂ CO ₂ -i-Pr	1.59	2.00	1.54		-3.11	-2.75
	4-Cl-2-NO ₂ PhSOCH ₂ CO ₂ Me	1.29	1.71	1.20		- 2.75	- 2.30
34	4-Cl-2-NO ₂ PhSOCH ₂ CO ₂ -i-Pr	2.22	2,15	1.96		- 3.38	- 3.36
35	2,4-diNO ₂ PhSOCH ₂ CO ₂ Me	0.63	1.59	1.09		- 2.94	- 2.41
36	2,4-diNO ₂ PhSOCH ₂ CO ₂ -i-Pr	1.61	2.12	1.83		- 3.54	- 3.38
37	4-NO ₂ PhSO ₂ CH ₂ CO ₂ Me	0.78	1.20	0.80		- 2.66	- 1,99
38	4-NO ₂ PhSO ₂ CH ₂ CO ₂ -i-Pr	1.80	1.71	1.51		- 3.26	- 2.99
39	2-Cl-4-NO ₂ PhSO ₂ CH ₂ CO ₂ Me	1.45	1.36	1,24		- 2.89	- 2.57
40	2-Cl-4-NO ₂ PhSO ₂ CH ₂ CO ₂ - i-Pr	2.40	1.86	1.91		- 3.53	- 3.58
41	2-NO ₂ PhSO ₂ CH ₂ CO ₂ Me	0.78	1.05	1.36		-2.43	- 2.36
42	2-NO ₂ PhSO ₂ CH ₂ CO ₂ - <i>i</i> -Pr	1.72	1.75	2.06		-3.08	- 3.32
43	4-Cl-2-NO ₂ PhSO ₂ CH ₂ CO ₂ Me	1.30	1.44	1.18		- 2.90	- 2.56
44	4-Cl-2-NO ₂ PhSO ₂ CH ₂ CO ₂ - i-Pr	2.45	1.86	2.51		- 3.37	- 3.89
45	T-01-2-1102 1 11002 0112 002 1 6-FF	0.93	1.08	0.84	-1.14	- 2.18	- 1.38
46	PhSO ₂ CH ₂ CO ₂ Me	2.04	1.77	2.06	-2.41	-3.10	- 3.08
47			1.28	1.32	-2.38	- 2.46	- 2.03
48	PhSO ₂ CH ₂ CO ₂ Me	1.31		1.71	- 2,48	- 2.57	- 2.55

Table 1 (Cont'd)

		$\log K_{ow}$			$\log S_{\mathrm{W}}$		
No.	Compounds	Expt.	Pred.			Pred.	
			Eq.(1)	Eq.(3)	Expt.	Eq.(2)	Eq. (4
49	4-NO ₂ PhSO ₂ C(CH ₂) ₂ CO ₂ Me	1.33	1.61	1.20	- 3.38	- 3.12	- 2.7
50	$4-NO_2PhSO_2C(CH_2)_2CO_2-i-Pr$	2.05	2.20	2.05	- 4.26	- 3.76	- 3.6
51	$4-NO_2PhSO_2C(CH_2)_3CO_2-i-Pr$	2.36	2.48	2.35	- 3.76	- 4.10	-4.1
52	4-NO ₂ PhSO ₂ C(CH ₂) ₅ CO ₂ -i-Pr	2.84	3.06	2.90	- 4.88	- 4.76	- 4.9
53	4-NO ₂ PhSO ₂ C(CH ₂) ₆ CO ₂ -i-Pr	3.41	3.32	3.14	- 5.07	-5.05	- 5.2
54	4-BrPhSO ₂ C(CH ₂) ₂ CO ₂ Me	2.32	1.96	2.21	-3.67	-3.05	- 3.3
55	4-BrPhSO ₂ C(CH ₂) ₃ CO ₂ Me	2.45	2.06	2.52	-3.55	- 3.35	- 3.7
56	4-BrPhSO ₂ C(CH ₂) ₄ CO ₂ Me	2.73	2.28	2.80	-4.01	- 3.65	- 4.2
57	4-BrPhSO ₂ C(CH ₂) ₅ CO ₂ Me	2.94	2.53	3.16	-4.48	-4.02	- 4.6
58	4-CIPhSO ₂ C(CH ₂) ₂ CO ₂ Me	2.03	1.89	1.82	-3.31	- 2.94	-2.8
59	4-ClPhSO ₂ C(CH ₂) ₃ CO ₂ Me	2.28	1.98	2.17	- 3.00	- 3.25	- 3.3
60	4-ClPhSO ₂ C(CH ₂) ₂ CO ₂ - <i>i</i> -Pr	2.64	1.61	2.57	- 3.54	- 3.59	- 3.7
61	4-ClPhSO ₂ C(CH ₂) ₂ CO ₂ - t -Bu	2.68	2.68	2.86	- 4.12	-3.91	-4.1
62	4-ClPhSO ₂ C(CH ₂) ₄ CO ₂ - <i>i</i> -Pr	3.16	2.81	3.12	- 4.65	- 4.21	- 4.
63	4-ClPhSO ₂ C(CH ₂) ₅ CO ₂ - <i>i</i> -Pr	3.49	3.11	3.42	- 5.54	- 4.59	- 5.0
64	4-ClPhSO ₂ C(CH ₂) ₆ CO ₂ - i -Pr	3.83	3.36	3.64	- 5.52	- 4.87	- 5.3
65	$4-\text{MePhSO}_2\text{C}(\text{CH}_2)_2\text{CO}_2-i-\text{Pr}$	2.52	2.49	2.46	- 3.23	- 3.63	- 3.6
66	4-MePhSO ₂ C(CH ₂) ₃ CO ₂ -i-Pr	2.78	2.66	2.81	- 3.34	- 3.99	- 4.
67	4-MePhSO ₂ C(CH ₂) ₂ CO ₂ Me	1.77	2.01	1.73	- 2.88	-3.01	- 2.0
68	4-MePhSO ₂ C(CH ₂) ₂ CO ₂ Et	2.23	2.20	2.12	-3.01	-3.12	- 3.
69	4-MePhSO ₂ C(CH ₂) ₃ CO ₂ Et	2.31	2.45	2.38	- 2.96	- 3.65	- 3.
70	$4-\text{MePhSO}_2\text{C}(\text{CH}_2)_4\text{CO}_2$ - i -Pr	2.88	2.94	3.03	- 3.91	-4.27	- 4.
71	$4-\text{MePhSO}_2$ C(CH ₂) ₅ CO ₂ - i -Pr	3.21	3.23	3.33	-4.62	-4.65	- 4.
72	4-MePhSO ₂ C(CH ₂) ₅ CO ₂ Me	2.54	2.57	2.68	-4.61	- 3.97	-4.
73	PhSO ₂ C(CH ₂) ₂ CO ₂ Me	1.43	1.70	1.35	- 2.26	-2.66	-2.
74	PhSO ₂ C(CH ₂) ₃ CO ₂ Me	1.63	1.78	1.66	- 3.00	-2.96	- 2,
75	PhSO ₂ C(CH ₂) ₄ CO ₂ Me	1.98	2.00	1.94	-2.55	- 3.25	- 3.
76	$PhSO_2C(CH_2)_5CO_2Me$	2.30	2.24	2.30	- 3.85	- 3.61	- 3.
77	4-NO ₂ PhSO ₂ CH(Me)CO ₂ Me	1.06	1.43	1.17	- 2.96	- 2.98	- 2.0
78	4-NO ₂ PhSO ₂ C(Me) ₂ CO ₂ Me	1.38	1.70	1.45	- 3.39	- 3.26	- 3.
79	4-NO ₂ PhSO ₂ C(Et) ₂ CO ₂ Me	2.24	2.23	2.18	-4.18	- 3.79	- 3.
80	$4-NO_2$ PhSO ₂ C($n-Bu$) ₂ CO ₂ Me	3.38	3.42	3.93	- 5.55	-5.32	- 5.
81	4-NO ₂ PhSO ₂ C(CH ₂ Ph) ₂ CO ₂ Me	4.46	4.23	4.78	- 6.24	- 5.97	- 6.
82	$4-NO_2$ PhSO ₂ C($n-Bu$) ₂ CO ₂ Et	3.81	3.73	3.69	- 5.76	- 5.54	- 5.
83	4-NO ₂ PhSO ₂ C(Me)(CH ₂ Ph)CO ₂ Et	3.40	3.31	3.32	- 5.44	- 5.10	- 5.
84	$4-NO_2$ PhSO ₂ C(Me)(CH ₂ CH = CH ₂)CO ₂ Et	2.30	2.51	2.36	- 4.56	- 4.17	- 4.
85	$4-NO_2$ PhSO ₂ C(Me)(CH ₂ - α -Naph)CO ₂ Et	4.40	4.13	4.33	- 5.83	6.00	- 6.
86	$4-NO_2PhSO_2C(n-Bu)_2CO_2-i-Pr$	4.06	4.09	3.95	- 5.85	- 5.93	- 5.9
87	4-NO ₂ PhSO ₂ CH(Me)CO ₂ CH(CH ₂) ₅	2.82	2.61	3.27	- 4.61	-4.28	- 4.
88	4-NO ₂ PhSO ₂ CH(CH ₂ CO ₂ Et)CO ₂ Me	1.40	2.40	1.20	- 3.04	- 4.05	- 2.0
89	4-NO ₂ PhSO ₂ CH(CH ₂ CO ₂ - <i>i</i> -Pr)CO ₂ - <i>i</i> -Pr	2.18	3.24	2.86	- 4.29	- 4.89	- 4,
90	4-NO ₂ PhSO ₂ C(CH ₂ CO ₂ Et) ₂ CO ₂ - <i>i</i> -Pr	3.56	4.62	3.35	- 4.81	- 6.54	- 4.
91	$4-NO_2 PhSO_2 C (= CHPh) CO_2 Me$	2.90	2.84	2.63	- 4.57	- 4.42	- 4.1
92	$4-NO_2PhSO_2C(=CHPh)CO_2Et$	3.20	3.12	2.95	- 4.6	- 4.77	- 4.0
93	$4-NO_2PhSO_2C(=CHPh)CO_2-i-Pr$	3.62	3.34	3.74	- 5.07	-4.88	- 5.
94	$4-NO_2PhSO_2C(= CHPh)CO_2-i-Bu$	3.68	3.60	3.86	- 5.28	- 5.37	- 5
95	$4-\text{MePhSO}_2\text{C}(=\text{CHPh})\text{CO}_2-i-\text{Pr}$	3.92	3.67	3.73	- 5.50	- 4.93	- 4.
96	$4-\text{CIPhSO}_2\text{C}(=\text{CHPh})\text{CO}_2-i-\text{Pr}$	4.18	3.59	4.05	- 5.65	- 4.70	- 5.

Notes: Expt. is the experimental value; Pred. is the predictive value, $S_{\mathbf{W}}$ is in mol/L

With the six parameters, the models for S_w and K_{ow} of the compounds were founded through stepwise regression analysis as follows:

$$\log K_{\text{OW}} = -12.576 + 1.808 \, V_{\text{mc}} + 76.995 \, \varepsilon_{a} + 3.501 \, \pi^{*} \,,$$

$$(n = 96, \, r_{\text{adj}}^{2} = 0.766, \, SD = 0.433, \, F = 104.94, \, p < 0.001)$$

$$\log S_{\text{W}} = 5.194 - 2.012 \, V_{\text{mc}} - 1.874 \, q^{-} - 3.560 \, \pi^{*} \,,$$
(2)

 $(n = 71, r_{adj}^2 = 0.855, SD = 0.545, F = 139.13, p < 0.001)$

where n represents the number of compounds. As can be seen, V_{mc} , ε_a , π^* , q^- of six parameters are significant. From the equations, the lower correction coefficients of 0.766 and 0.855, together with the greater standard errors of 0.433 and 0.545 are obtained. Fig. 1 and Fig. 2 show that the fit is not good. It suggests that the models are not more successful. The structures of compounds are significantly different, and result in the different solvation mechanics.

Fig. 1 Plot of predicted log $K_{\rm OW}$ vs. observed log $K_{\rm OW}$

2.2 Atomic charge model

All possible geometric and electronic descriptors (Table 2) were used to correlate the partition properties of 96 sulfur-containing carboxylates. By the stepwise linear regression, the following regression equations were found the best:

$$\log K_{0W} = 0.412 + 0.015 S + 0.007 M_W - 1.340 Q_{0C} - 1.135 Q_N - 2.309 q^-,$$

$$(n = 96, r_{\text{adj}}^2 = 0.938, SD = 0.223, F = 289.24, p < 0.001)$$
(3)

$$\log S_{\rm W} = 1.943 - 0.047S + 0.475S^2 - 0.009M_{\rm W} + 1.468Q_{\rm oc} + 0.410Q_{\rm N} + 3.076O,$$

$$(n = 71, r_{\rm adj}^2 = 0.936, SD = 0.364, F = 170.31, p < 0.001)$$

Fig. 2 Plot of predicted log $S_{\mathbf{W}}$ vs. observed log $S_{\mathbf{W}}$

 $Q_{\rm OC}$ is the sum of absolute values of atomic charges on carbon and oxygen atoms of carboxyl group, $Q_{\rm N}$ is the square root of sum of squared charges on nitrogen atoms. Of all variables, only six were found statistically significant, and others were omitted.

For log $K_{\rm ow}$ and log $S_{\rm w}$, the equations give correction coefficients ($r_{\rm adj}^2$) of 0.938 and 0.936, standard deviations (SD) of 0.223 and 0.364, and F-test values (F) of 289.24 and

170.31, respectively. In comparison with TLSER models, the models of the atomic charge method have better predictive capability. Fig. 1 and Fig. 2 illustrate better fit between the predicted and observed values. These results reveal the value of the equations. The function of geometric and electronic parameters can be seen to fit well with the experimental data for the compounds.

It is clear that for the partition properties of compounds, molecular size, molecular shape, carboxyl, nitrogen and the most negative charge play dominant roles. The contribution of q^- , representing the hydrogen-bonding accepting capability of solute molecule, is great. The signs with S and $M_{\rm w}$ agree with theoretical expectation: $K_{\rm ow}$ increases and $S_{\rm w}$ decreases with increasing cavity formation energy in water

(Pearlman, 1986) or increasing preference for solute-solvent dispersion interactions (Hermann, 1972; Schüürmann, 1995). $M_{\rm w}$ picks up some of the significance of the surface area. The negative effect (for $K_{\rm ow}$) and the positive effect (for $S_{\rm w}$) of the electronic descriptors show that $K_{\rm ow}$ increases and $S_{\rm w}$ decreases with decreasing electrostatic interactions among the solvent and solute molecules, involving polarizability and the capability of hydrogen-bonding formation. The predicting models are well suited to predict the partition properties of the compounds because they more completely illustrate the solvation mechanism.

Table 2 The calculated geometric and electronic descriptors

Symbol	Defination
S	The molecular surface area
S^2	Equal to $S \times S \times 10^{-4}$
M_{W}	The molecular weight
o	The molecular ovality
O^2	The square of the ovality
μ	The dipole moment
α	The polarizability
Q_{0}	The square root of sum of the squared net charges on oxygen atoms
$Q_{o}2$	The square of Q_0
Q_04	The square of $Q_0 2$
Q_{N}	The square root of sum of the squared net charges on nitrogen atoms
$Q_{\rm N}2$	The square of Q_N
Q_N4	The square of $Q_N 2$
Q_{S}	The square root of sum of the squared net charges on sulfur atoms
Q_{S} 2	The square of Q_8
$Q_{\rm S}4$	The square of Q_82
$Q_{\rm OC}$	The sum of absolute values of atomic net charges on carbon and oxygen atoms of carboxyl
Q_{ON}	The sum of absolute values of atomic net charges on nitrogen and oxygen atoms of nitro
Q_{os}	The sum of absolute values of atomic net charges on sulfur and oxygen atoms of sulfonyl
<i>q</i> -	The absolute value of the most negative atomic net charge
q H +	The most positive net charge of hydrogen atom
$E_{ m HOMO}$	Energy of the highest occupied molecular orbital
$E_{\rm LUMO}$	Energy of the lowest unoccupied molecular orbital

3 Conclusions

For the partition properties of aromatic sulfur-containing compounds, the atomic charge approach is more successful because of its inclusion of more complete factors influencing solvation effect. The geometric and electronic descriptors account for cavity effects, electrostatic interactions, and hydrogen-bonding effect. The obtained models can reveal the solvation mechanism for the structural dependence of compound properties. The theoretical predictive models for partition properties based on semiempirical MO calculations performed on the whole molecule have better predictive capability and general applicability and are easy to use.

References:

Bodor N, Babanyi Z, Wong C, 1989. A new method for the estimation of partition coefficient[J]. J Am Chem Soc, 111: 3783-3786.

Bodor N, Huang M J, 1992. An extended version of a novel method for the estimation of partition coefficients[J]. J Pharm Sci. 81: 272-

Brinck T, Murray J S, Politzer P, 1993. Octanol/water partition coefficients expressed in terms of solute molecular surface areas and electrostatic potentials[J]. J Org Chem, 58: 7070—7073.

- Councily M L, 1983. Analytical molecular surface calculation[]]. J Appl Crystallogr, 16: 548-558.
- Connolly M L, 1985. Computation of molecular volume[J]. J Am Chem Soc., 107: 1118-1124.
- Eisfeld W, Maurer G, 1999. Study on the correction and prediction and octanol/water partition coefficients by quantum chemical calculations [J]. J Phys Chem B, 103: 5716—5729.
- Famini G R, 1989. Using theoretical descriptors in quantitative structure-activity relationships V [M]. MD: CRDEC-TR-085, U.S. Army Chemical Research, Development and Engineering Center, Aberdeen Proving Ground.
- Feng L., Han S K, Wang L S et al., 1996. Determination and estimation of partitioning properties for phenylthiocarboxylates [J]. Chemosphere, 32: 353—360.
- Haeberlein M, Brinck T, 1997. Prediction of water-octanol partition coefficients using theoretical descriptors derived from the molecular surface area and the electrostatic potentials [1]. J Chem Soc Perkin Trans, 2: 289—294.
- Han S K, Jiang L Q, Wang L S et al., 1992. Hydrolysis of phenylthio, phenylsulfinyl and phenylsulfonyl acetates, and neighboring group effect[J]. Chemosphere, 25: 643—649.
- Hansch C, Leo A, 1979. Substituent constants for correlation analysis in chemistry and biology[M]. New York: Wiley.
- Hansch C, Leo A, Hoekman D, 1995. Exploring QSAR-hydrophobic, electronic, and steric constants; ACS professional reference book[M].
 Washington, DC: American Chemical Society.
- He Y B, Wang L S, Han S K et al., 1995. Determination and estimation of phenylsulfonyl acetates [J]. Chemosphere, 30: 117-125.
- Hermann R B, 1972. Theory of hydrophobic bonding II: The correlation of hydrocarbon solubility with solvent cavity surface area[J]. J Phys. Chem., 76: 2754—2759.
- Hong II, Ilan S K, Wang X R et al., 1995. Prediction of partition coefficient and toxicity for phenylthio, phenylsulfinyl and phenylsulfonyl acetates [J]. Environ Sci Technol, 29: 3044—3048.
- Kamlet M J, Abboud J M, Abraham M H et al., 1983. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π × , α, and β, and some methods for simplifying the generalized solvatochromic equation[J]. J Org Chem, 48: 2877—2887.
- Kamlet M J, Doherty R M, Abaham M H et al., 1988. Linear solvation energy relationships. 46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes) [J]. J Phys. Chem., 92: 5244—5255.
- Leo A, Hansch C, Elkins D, 1971. Partition coefficients and their uses[J]. Chem Rev, 71: 525-616.
- Leo A, 1990. In: Comprehensive medicinal chemistry (Hansch C, ed.) [M]. Oxford: Pergamon Press, Vol. 4.
- Leo A, 1991. In: Methods in enzymology(Langone J. ed.)[M]. San Diego: Academic Press, Vol. 202.
- Leo A J, 1993. Calculating log $P_{\rm out}$ from structures [J]. Chem Rev, 93: 1281—1308.
- Liu X H, Wu C D, Han S K et al., 2001. Predicting physicochemical properties of α-phenylsulfonyl acetates using quantum chemical descriptors [J]. Toxicol Environ Chem, 80: 41-51.
- OECD, 1981. OECD Guideline for testing of chemicals [R]. Paris.
- Pearlman R S, 1986. Molecular surface area and volume: Their calculations and use in predicting solubility and free energies of desolvation.

 In: Partition coefficient; Determination and estimation(Dunn ∭ W.J., Block J.H., Pearlman R.S. ed.)[M]. New York, Oxford: Pergamon Press. 3—20.
- Schttlirmann G, 1995. Quantum chemical estimation of octanol/water partition coefficient-first results with aromatic phosphorothionates [J]. Fresenius Environ Bull, 4: 238—243.
- Wilson L Y, Famini G R, 1991. Using theoretical descriptors in quantitative structure-activity relationships: Some toxicological indices[J]. J Med Chem, 34: 1668—1674.
- Yalkowsky S H, Pinal R, 1993. Estimation of the aqueous solubility of complex organic compounds[J]. Chemosphere, 26: 1239-1261.

(Received for review August 6, 2002. Accepted September 1, 2002)