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Abstract: The planar 20 k- double equations’ turbulence model was adopted and transformed into non-orthogenal
curvilinear coordinates. The concentration convection-diffusion was introduced to planar 2D SIMPLEC algorithm of
flow in non-orthogonal curvilinear coordinates. The numerical model of pollutant transportation in non-orthogonal
curvilinear coordinates was constructed. The model was applied to simulate the flow and pollutant concentration
fields. In the testing concentration field, two optimal operations of contamination discharging both along bank and in
the centerline at the first bend of the meandering channel were adopted. Comparison with available data showed the
model developed was successful, was valuable to engineering application.
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Introduction

Along with the rapid development of economy, a lot of
wasiewater harmful to human and other lives has been
discharged into natural environment without disposal, which
made great harm to surface water and ground water. Natural
water such as rivers, lakes and ocean has some ability of self-
purification, so it s a significative preject to research the
environmental hydraulic engineering to utilize its ability of
self-purification to save the expenses of environmental
protection. It is the precondition to make clear the
convection-diffusion rule and concentration distribution of
pollutanl in water and provide the rvute to settle the problem.
And the hydrodynamic characteristic of rivers with flexural
boundaty is a basic thesis of environmental hydrodynamics.
Coordinate transformation is an effective way to solve the
problem, because of the flexural boundary and complicated
topography of natural rivers. At present, in the computation
of N-§ equations in curvilinear coordinate, conlravariant
velocity was adopted as the calculating varable, which
increases the complexity of the equations. Many researchers
ignored the non-orthogonal terms of the equations and solved
N-5 equations in orthogonal curvilinear coordinate. Patankar
and Spalding provided a remarkably successful method, the
SIMPLE algorithm in 1972, Since then it has widely been
used in the field of numerical simulation of incompressible
flows and several variants have appeared. The SIMPLER
(Patankar, 1981), SIMPLEC ( Van Doormaal, 1984 ),
SIMPLEX ( Raithby, 1988) and SIMPLET ( Sheng, 1998)

algorithms are typically representative of variants that improve

on SIMPLE algorithm in both convergence behavior and
computer cost. Il is noled that all of these algerithms are very
successfully in handling the velocily-pressure coupling, only
if the velocity field is linearly proportional to the pressure
field, and all the coefficients are independent of the pressure
in the discrete equations. Because of the depth-averaged
shallow water model was established on the hydrostatic
approximation, the problem of velocity-pressure coupling was
iransformed into that of water depth-velocity coupling.

In this paper, the research employed orthogonal
curvilinear coordinate transformation lo generate numerical
grid, but depth-averaged k-¢ double equations turbulence
model in non-erthogonal curvilinear coordinates was adopted
to calculate the velocity field, which could modify the error
derived from nen-orthogonal term. The contamination
convective-diffusion equation is introduced into the SIMPLEC
algorithm of non-orthogenal curvilinear coordinate system,
and  the

transportalion in non-orthogonal curvilinear coordinates is

numerical model flow and  contamination
developed. The model has been applied to simulate the flow
and concentration field in meandering channel of laboralory
and the comparison between measured and calculated has
been conducted of velocity and concentration of 4 cross

sections .
1 Mathematic model

The planar 2-D flow and pollute convection-diffusion
equation in Cartesian system can be written in general

format as
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Introducing a curvilinear coordinate system(E, T}) , Eq.(1)

can be written as
a 1

d 1 @
5; CHo®) + 5 52 (HoU®) + ﬂ(HpV(D)
—T(a¢$ - ,B(P,?))
3 ( HI,
J
where @ is the depth-averaged variable in general format, U
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and V are the coniravariant velocity along the £ and 7
directions . respectively, I'y is the exchange coefficient, and
S represents a source term. The values of &, 1y, S5 in

each lists in Table 1.
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where s, is the source term of pollution intension; u, » are
the depth-averaged velocity in Carlesian coordinate system
along x, y direction; k, ¢ are the depth-averaged turbulent
kinetic energy and its dissipation rate, respectively; H is the
water depth; z, is the water level; z, is the bed elevation; v
is the molecule viscosity coefficient; v, is the isotropic
turbulent viscosity coefficient; p ¢ is the effective viscosity
coefficient; z,, , 7,, is the bottom shear stresses; n is the
bottom roughness and C,, Cel , CE2 ,5,,0, and o, are the

turbulent constants. The value of turbulent constants are
listed in Table 2.

Table 2 Turbulent constant

. ., €, ok g, e,

0.09 1.44 1.92 1.0 1.3 1.0

2 Equation discretization

Control volume method was adopted to discrete the
equations, and for treating convection terms, the hybrid
scheme was used to simplicity . Eq.(2) was discretized to the
Eq.(3):
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3 Boundary conditions

At the inlet, the known boundary values for all the
dependent variables{ u, v, & and ) are prescribed either
from the experimental data or analytical profiles,

E =k,
At the downstream outlet, the normal gradients of all
) dZ, du _dv
e T an TR T

U = U, v = vy, E:EU.

dependent variables are set to zero

dk  Jde
In- a0

At wall boundary, the k- double equations’ turbulence
model is the high Reynolds number model, which is only
applied to the mature turbulent flow, but near the wall,
viscosity plays the main effect. As the value of the variable
changes quickly, it need make grid dense in order 1o simulate
the actual flow well. So, the “wall function method” was
employed, that used the solution resulting from semi-
analyzing method 1o replace the distribution law of velocity,
turbulent kinetic energy and iurbulent kinetic energy
dissipation rate from wall to the core area of turbulent flow
approximately, and appending the impact of wall, such as
wall stress, to the difference equations, besides, set the

coefficient of boundary to zero.
4 SIMPLEC algorithms

The overall numerical procedure can be summarized as
follows: (1) Started with guessed fields u", v+~ , and
according lo the water level of the inlet and outlet, give the
water level of full area and calculating the water depth H™ of
every grid point; (2) calculate the coordinate changing
coefficient; (3) solving the momentum equation lo get ",
"5 (4) solving the k-e turbulent model to get k",¢"; (5)
solving the water depth correction equation to get I, and
modify water-depth H = H™ + o, H'; (6) modify velocity u,
v and the effective viscosity coefficient u,, then return to
step 3 and repeat the whole procedure until convergence
reached; (7 ) solving the concentration equation until
convergence reached. Where o, is the under-relaxation
coefficient ,

During solving the medel, the under-relaxation method
was applied in order to convergence of the non-linear
equation . The ADI technique and TDMA algorithin have been
employed, and the maximal error of continuity equation act as
the criterion 10 judge convergence. In the calculation of
constant flow, the maximal absolute value of velocity error
among two sequential steps al each point in the caleulation

domain act as the criterion to judge convergence.
5 Model application

Chang{Chang, 1971) conducted a series of experiments

in meandering channels measured” both flow and neutral
buoyant pollutant concentration. The channels had smooth
beds and rectangular cross sections and uniform 90° bends in
alternating directions interconnected by straight reaches. The
channel with a single meander is illustrated in Fig. | with the
water depth # = 0.115 m and bulk velocity U/, = 00.366
m/s. The model was applied with a grid system of 167 x 23,
the time step At = 5s and roughness is 0.015. The program
will converge to prescriptive value 10°7 at 800th time step
and velocity field of whole river reach is drawn as Fig. 2. In
order to validate the model further, velocity of 4 cross
sections with measured data is selected to compare with
computing results (Fig.3). The contamination concentration
at 4 cross sections has been compared between measured and
computed, which is discharged in the centerline and from
bank at the entrance of the first bend, as Fig. 4 and Fig. 5.

Fig.2 Computed velocity field of meandering channel in lab
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Fig.3 Comparisons of measured and computed velocity{Section 1 to 4)

The comparison of velocity coincides very well with the
experimental data, but there are some dispersion at the
boundary between the calculated outcome and experimental
data. First, the lateral diffusion coefficient of contaminant is
difficult to make certain. Second, the schmidt number o,
plays a very important action in the diffusion of contaminant

in turbulent flow. In this paper, the value of o is 1.0, buw
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Fig.4 Comparisons of concentration discharged in centerline(Section 1 tn 4)
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Fig. 5 Comparisons of concentration discharged from bank(Section 1 10 4)

Ye J. adopt 0.5(Ye, 1997). The finite difference scheme of
convection term is another reason to impact the diffusion of
contaminant. For the sake of simpleness, hybrid scheme is
adopted in the discretization of the convection term, and
high-order scheme such as third-order upstream, fifth-order

upstream has better precision than that used in this study.

6 Conclusions

The numerical model of depth-averaged pollutant

convection-diffusion in non-orthogenal curvilinear coordinates
has been developed and the SIMPLEC algorithm has been
adopted to solve the equations. The model has been applied

to simulate the flow and concentration field. In validating

concentration field, we adopt two optimal operations of

conlamination discharging both along bank and in the
centerline at the first bend of the meandering channel in the
laboratory, and the calculating results coincide well with the

measured data .
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