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Abstract : The HCI emission characteristics of typical municipal solid waste( MSW) components and their mixtures have been investigated in
a ©150 mm fluidized bed. Some influencing factors of HCI emission in MSW fluidized bed incinerator was found in this study. The HCI
smission is increasing with the growth of bed temperature, while it is decreasing with the increment ot oxygen concentration at furnace exit.
When the weight percentage of auxiliary coal is increased, the conversion rate of C! to HCI is increasing. The HCI emission is decreased,
if the sorbent(CaD) is added during the incineration process. Based on these experimental results, a 14 x 6 x 1 three-layer BP neural
networks prediction model of HCI emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and
hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction
results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and
good generalization ability. It was found that BP neural network is an effectual method used to predict the HCI emission of MSW/coal co-
fired fluidized bed incinerator.
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Introduction fired fluidized bed incinerator.

With the depletion of space for landfilling of municipal 1 Experimental

1.1 Apparatus and procedure
Experimental facility in Fig.1 is composed of a riser of

solid waste and the rising prices for raw materials, more and
more fluidized bhed incinerators have heen used to treat MSW

due to the primary advantages of hygienic control, volume
reduction and energy recovery. Because the MSW has high
moisture content and low heat value in China, in order to
maintain stable combustion, the auxiliary fuel has to be
added. China has the biggest coal production in the world,
s0 it is a good choice to use coal as the auxiliary fuel for
MSW incinerators .

However, a great amount of HCl is emitted when MSW
is being incinerated because of relatively high chlorine
content , which leads to not only serious environment pollution
but also high temperature corrosion of superheater ( Niu,
1999) . Some reports about HCl emission in MSW combustion
process can he found in previous studies ( Manninen, 1997;
1998; Wang, 1999; Liu, 2000;
Dong, 2002) . However, MSW combustion is a process with
multi influencing factors, so it is very difficult to build an
accurate mathematical model of HCl emission characteristics .

Desroches-Ducamme,

Preliminary study indicated that the total of HCl emissions of
single-component wastes is greater than the HCl emission of
equivalent raw wastes. Hence, HCl emission of MSW is
absolutely not equal to the linear weighted sum of its
components, and the interactions between the components
have to be considered. The HCI emission characteristics have
many influencing factors, and the relationship between HCI
emission and each factor is nonlinear and very complex. BP
neural network has good ability of self-adapting, self-
organizing and fault tolerance, so it is suitable for pollution
emission prediction of MSW incineration .

The aims of this study were to investigate the effects of
several influencing factors, such as bed temperature, oxygen
concentration, percentage of auxiliary coal, sorbent and fuel
sulfur content etc., on the HCl emission characteristics in
MSW/coal co-fired fluidized beds and to build a BP neural
networks prediction model of HCl emission in MSW/coal co-
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150 mm i.d and 3000 mm height, a feed system, an airing
system, a cyclone and a primary air electric preheater. The
bed material consisted of 0.6 mm average diameter silica sand
mixed with a minor quantity of the ash remaining in the bed
after combustion. The recycle system included a eyclone that
separates combustion gases and entrained solids, and then the
collected solids were injected into the bed. The fuel was fed
continuously by the band conveyer, and the delivery rate,
about 0.2 kg/min, was regulated by the frequency control
electric engine. The oxygen conceniration al furnace exit was
controlled by air preheater and flowmeters. The setup was

ki
yﬂs

1- Ignition system
2-Wind box
3.Slag extraction
4-Furnace body
5-Feed system

6-Aliring system
7-Flue gas testing
8-Cyclone

9. Air preheater

Fig.1 Sechematic disgram of ¢ 150 mm fluidized bed
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equipped for continuous measurement of temperature detected
by HP 34970A data acquirer. Data were collected through
computer every minute. The concentrations of CO, CO,, 0,,
NOx and SO, were measured by using Testo flue gas
analyzer, and HCl concentration was measured by using
DIKMA No.14 L HCI detector tube. The measuring point of
flue gas was at the exit of furnace chamber.
1.2 Sample

The municipal refuse used in this work was collected by
classification criteria of combustible municipal solid waste
mainly classified in 6 categories ( paper, plastic, rubber,
kitchen residue, wood, fabric), and the coal was Leiyang
anthracite. Each category was separately dried and broken
into pieces that mean diameter less than 10 mm, with the
propetties listed in Table 1.

Table 1 Proximate and ultimate analysis of the fuels
Proximate analysis, W% Ultimate analysis, W%
M A v FC C H N 3 Cl 0O
Wood 16.18 (.82 68.08 14.9245.88 5.54 0.97 (.50 0.06 30.05
0.57 2.58 97.15 Q.00 82.5513.94 0.33 0.03 0.00 0.00
Paper 10.3 8.15 70.68 10.87 39.88 6.42 0.40 0.20 0.70 33.95
Fabric 5.20 0.58 B3.52 10.7051.72 5.04 2.32 0.12 0.09 34.93

Sample

Plastic

Rubber .65 (4.28 68.64 19,23 75.56 7.51 1.08 0.92 0.04 0.00
Kitcher ¢ 5 15 47 63.86 15.3742.18 6.16 3.02 0.14 .14 27.59
residue

PVC  0.01 0.04 99.49 0.27 35.13 4.12 0.05 0.0l 4657 14.07

Anthracite 1.00 21.20 5.50 72.3072.64 2.16 1.02 0.68 0.12 1.18
Notes: M, A, V and FC represent the weight percentages of moisture, ash,
volatile and fixed carbon respectively in proximate analysis; and C, H, N, 8, Cl
and ) represent the weight percentages of carbon, hydrogen, nitrogen, sulphur,
chlorine and oxygen respectively in ultimate analysis

2 Results and discussion

HCl originates from both the combustion of organic
chloride, such as PVC, mbber, fabric, wood, paper and
coal, and the reaction between inorganic chloride, such as
NaCl and KCl, and other substance. The formation and
inhibiting reactions of HCl are mainly:

NaCl + H,0 ——NaOH + HCl, (1)
2NaCl + S0, + 0.50, + H,0 —=Na, S0, + 2HCl, (2)
2NaCl + H, 0 + $i0, —>Na, $i0, + 2HCl, (3)
RCl+ 0, —>CO, + H,0 + HCI, (4)
CaCl, + SO, + H,0—=CaS0, + 2HCI, (5)
2HCl + 0.50, ====C, + H,0. (6)

Only a part of fuel Cl transforms to HCl in the
combustion process. In order to estimate the ability of
releasing HCl of the fuel, conversion rate of fuel Cl n was
employed in this paper.

HCl

n:mxloo% (7)

HCI is the real emission concentration of HCl, and
H(l,,.,, is the theory emission concentration of HCl when all
of fuel Cl transforms to HCL.

2.1 Bed temperature

As shown in Fig.2, the conversion rate of Cl to HCI is
increasing with the growth of bed temperature. The
reasonable explanation is that the growth of temperature leads
to the increment of vapor partial pressure of NaCl or RCI,
and then the reactions (1}-—(5) move to right, accordingly
more HC] is produced (Ma, 1997}. However, for different

fuels, the conversion rates of Cl to HCI are different, in
which those of anthracite, fabric, rubber, PVC and 2% PVC
+ anthracite are higher, and the others are lower. A
probable explanation is that there are relatively more alkali
oxides and alkali mental salts in the incineration ashes of
paper, wood and kitchen residue, which have high
dechlorinating ability. These substances are very apt to react
with Cl in fluidized bed incinerator, and the resultants are
kept as KCl or CaCl,. CaCl, is able to decompose largely at
high temperature because of its low melting point,
accordingly, the Reaction (5 ) moves to right with
temperature growing { Wawrzinek, 2001). Nevertheless, the
incineration ashes of PYC and rubber almost do not contain
atkali oxides and alkali mental salts, so their conversion rates
of Cl to HCl are relatively high. NaCl has a lattice energy
{786 kJ/mol) higher than the molecular bond energy of PVC,
consequently, the chlorine in PYC are more readily available
for being released than that in NaCl(Wang, 1999). That is, the
conversion rate of Cl to HCl of NaCl is lower than that of PVC.
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Fig.2 Cl—*HC variation with bed temperature( E4 = 2.0}

2.2  Oxygen conceniration at furnace exit

As shown in Fig.3, the conversion rate of Cl to HCI is
decreasing with the growth of oxygen concentration at furnace
exit, but the decrease degrees are different. A probable
explanation is that all of the reactions (1)—(4) and (6)
move to right with oxygen concentration increasing, but the
effect of Reaction (6) is stronger than the total of the effects
of reactions (1)—(4). In general, the effect of oxygen
concentration at furnace exit on the conversion rate of Cl to
HCI is not obvious .
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Fig.3 Cl—HCl variation with oxygen concentration(bed temperature = 850°C )
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2.3 Percentage of auxiliary coal

As shown in Fig.4, the conversion rate of Cl to HCl is
increasing with the growth of weight percentage of coal in the
mixture, The conversion rate of Cl to HCI is about 40% when
MSW firing separately, but that is greater than 80% when
coal firing separately. The reasonable explanation is that the
biomass wastes, such as wood, paper and kitchen residue,
contain relatively more active ingredients (K, Ca, Na etc),
which have strong chlorine retention ability .
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Fig.4 Cl=HCI varation with weight percentage of coal

2.4 Sorbent: CaO

Although MSW has strong chlorine retention ability, the
chlorine retention efficiency is improved largely when CaQ is
added, as shown in Fig.5. On the other hand, the chlorine
retention growth of
temperature. At high temperature, CaCl, is ready to sintering
because of the low melting point (772°C), thereby the
gaseous diffusion resistance is increased. Consequently, HCI
can react with CaO only on its surface, and the most of Ca0
are not availably utilized. This indicates that the chlorine
retention efficiency of Ca0 in MSW fluidized bed incinerator
can be improved by means of decteasing its grain size and

efficiency is declining with the

increasing its specific surface area.
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Fig.5 Effect of Ca0 on chlorine retention efficiency

2.5 Fuel sulfur content

When the fuel sulfur content is relatively high, adding
Ca-based sorbent (CaO) can availably inhibit S0, emission,
but it is more difficult to dechlorinate than before. The reason
may be that CaO tends to react with S0, but not HCI, which
can be explained by the following reactions:

Ca0 + 2HC} CaCl, + H,0, (8)

CaCl, + 50, + 0, —CaS0, + Cl,, {(9)
CaCl, + SO, + H,0 —=CaS0, + 2HC. (10)

3 BP neural networks prediction model

3.1 Model building

HCl emission is affected by many factors, such as MSW
composition, bed temperature, oxygen concentration, weight
percentage of coal, Ca/S mole
percentage, bed material,
furnace type, fluidization air velocity and bed height etc.
Accordingly, it is very difficult to describe the influencing
factors of HC] emission quantitatively, but it can be solved by
correlation  analysis Canonical
correlation analysis technique is a statistical method that is
used to investigate the correlation between two sets of

ratio, secondary air

turbulivity, residence time,

canonical technique

varighles, The modeling process is as the follows,

Given that original input and output data are X, and ¥,
respectively. In order to eliminate the effects of different
dimensions and different orders of magnitude between data,
X, and Y, are transformed to X and Y by using zero standard
error of mean method. Let it be supposed that X and Y are
as follow respectively, when p, < p, and p, + p, = p.

Xy X xlp]
X = (x,,xl,A,xpl) = | %2 X 9521.:I y
L%Xa X2 X,
(11)
[y e Fig,
Y= (yioyesAuy, ) = |90 ¥0 Ve,
LY  ¥a Yop,
(12)
Xy Ty Xip y1p2
Consequently,( X, ¥} = | %z xn " Xap, : Y,
Xpp Xaa X, Yop,
(13)
The sample correlation matrix is B = B Rw] ,
Ry Ry
(14)

where Ry, is the sample correlation matrix of X, and R,y is
that of ¥, but Ry, and Ry; are those of X and V.,
After the sample correlation matrix determines, we need

’a:pl )and Bs = (Bu ’Bsz s

’Bipz ), and then make a linear transformation .

to search vectors o = (@, , g,

Hi = Xai}

S vl (15)
where 1; and v, are the ith couple of canonical correlation
variables{ i =1, 2, -, k).

Then the ith canonical correlation coefficient X,, the
corresponding generalized eigenvalue A and generalized
eigenvector ¢; will be solved according to R, RyRyya, —
AN Rypa, = 0.
coefficient between two variables X and ¥. If two variables
are incorrelative, then the correlation coefficient between X
and Y is 0; if two variables are entirely correlative, then the
correlation coefficient between X and Y is 1.

The data sample sets used in this paper originated from

Finally we will analyze the correlation
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experiments and literatures { Estelle, 1998; Dong, 2002;
Xie, 1999), whose total number is 260. The results of
canonical correlation analysis are listed in Tahle 2. As shown
in this table, the loads of PVC and NaCl are the biggest two
in all of these loads, which indicates that PVC and NaCl are
the main source of HCl emission in MSW fluidized bed
incinerator. The bed temperature has plus load for HCI
ermission, while the oxygen concentration has minus load for
HCI emission. The load of fuel sulfur content is a very little

minus, which indicates that the fuel sulfur content has tiny
The loads of kitchen residue,
inorganic materials, paper, fabric, wood, plastic, rubber

effect on HCl emission.

and ceal are minus, and their values are close to each other.
However, the loads of bed material and furnace type are close
to zemo, accordingly, it is proved that there is no direct
relationship between HCl emission and bed material, furnace type,
and they do not need to be considered in the modeling process.

Table 2 Canonical correlation coefficient of influencing factors for neural network prediction model

Kitchen residue Inorganic materials Paper Fabrie Wood Plastic Rubber Coal
-0.1523 - 0.0582 - (.0872 -0.128 -0.218 -0.2134 -0 1768 -0.1892

Bed temperature Oxygen concentration MVC NaCl Ca/8 mole rativ Fuel sulfur content Bed iaterial Furnace type
0.0178 - 0.0682 0.5621 0.6733 -0.121 -0.0217 0.0001 -0.0Mm2

In a word, the following fourteen parameters was chosen
as the input nodes of the neural networks prediction model:
kitchen residue, Inorganic materials, paper, fabric, wood.
rubber, plastic, coal, bed temperature, oxygen concentration
at furnace exit, PYC, NaCl, Ca/S mole ratio and fuel sulfur
content .

After the input and output nodes were fixed on, the

Kitchen residue
Inorganic

materials

Plastic

Bed
temperature
Oxygen

concentration
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PVC

Ca/S mole ratio
Fuel sulfur
content

Toput layer

hidden nodes need to be fixed on by dynamic construction
method. That is, adequate nodes were employed in the
beginning, and then the void nodes will be removed until the
number of hidden nodes can not be minified. At last, six was
adopted as the optimal of hidden
Consequently, the structure of neural networks prediction
model of HCl emission is 14 x 6 x 1, as shown in Fig.6.

number nodes.

Output layer

Hidden layer

Fig.6 BP neural nelworks prediction model of HCI emission

3.2 Prediction examples

By using the BP neural nelworks prediction model
mentioned ahove, several prediction results were obtained, as
shown in Fig. 7. The prediction results indicate: the HCI
emission is increasing with the growth of bed temperature,
while it is decreasing with the increment of excess air
coefficient; when Ca/S mole ratio is increasing, the HCI
emission is decreasing; if the weight percent of auxiliary coal
is raised, the HCl emission will increase; PVC and NaCl are
the two important influencing factors of HCl emission in MSW
fluidized bed incineration process. These results give good
agreement with the experimental results.
3.3 Model assessment

The selected method of training samples and testing
sample has rarely been reported before. Relatively more
Lraining samples not only expand the prediction scope but also
decrease the error owing to lack of typical samples, but too
many training samples prolong the training time. However,
too few training samples affect the generalization ability
badly. The principle advanced in literature (Qi, 1999) is
that there should be 5—10 training samples at least per
weight. In order to ensure the set of testing samples is
included in the set of training samples and avoid the
extrapolation phenomenon in testing process, the maximal and
minimal samples should be selected as the training samples in
actual application. There are 260 data samples in this paper,
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in which 178 for training and 82 for testing.
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Fig.7 Several prediction examples

Fig.8 shows the absolute and relative errors of the HCl
neural networks prediction model for training and testing
samples. It indicates: the absolute errors of training samples
are mostly within + 20 mg/Nm’, and those of testing are
mostly within = 25 mg/Nm’; the relative errors of training
samples are mostly within + 15% , and those of testing are
mostly within + 20% .
prediction effect and generalization ability. However, the

This proves that this model has good

errors of a few samples are relatively big, even very big. The

Training sample No.
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probable reasons are as that: a few testing samples are
situated in the blind area of the set of training samples; some
wrong information was involved in the neural networks during
training process; the self-errors of a few testing samples are
relatively big; the neural networks have errors at some
degree, because it adopls nonlinear approach. In general,
this model established the nonlinear mapping from these
influencing factors to the HCl emission with comparatively
high accuracy.
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Fig.8 The errors of HCI neural networks prediction model with absolute error and relative error

4 Conclusions

Experimental studies have been carried out on the HCI
emission during fluidized bed co-combustion of MSW and
coal. The following are concluded:

(1) the conversion rate of Cl to HCI is increasing with
the growth of bed temperature; the conversion rate of Cl to
HCl is decreasing with increasing oxygen concentration at
furnace exit;

(2) the conversion rate of €l to HCl is increasing with
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the growth of weight percentage of coal in the mixture;

(3) the HCl emission is decreased largely when Ca0 is
added ;

(4) when the fuel sulfur content is relatively high,
adding Ca-based sorbent((a()) can availably inhibit the S0,
emission, but it is more difficult to dechlorinate than before;

(5) the HCl emission is directly affected by the
characteristics of MSW components.

To simulate and predict the HCl emission of combustion
process, a model based on BP neural networks are proposed
and developed. Using this model, the HCl emission
concenlration during fluidized bed co-combustion of MSW and
coal can be outputted by inpuiting 14 influencing factors
mentioned above. The prediction results of this BP neural
networks model give good agreement with the experimental
results. Consequently, BP neural network is an effectual
method used to predict the HCl emission of MSW/coal co-
fired fluidized bed incinerator.
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