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Artificial neural network model for identifying taxi gross emitter from remote
sensing data of vehicle emission
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Abstract
Vehicle emission has been the major source of air pollution in urban areas in the past two decades. This article proposes an

artificial neural network model for identifying the taxi gross emitters based on the remote sensing data. After carrying out the field
test in Guangzhou and analyzing various factors from the emission data, the artificial neural network modeling was proved to be an
advisable method of identifying the gross emitters. On the basis of the principal component analysis and the selection of algorithm
and architecture, the Back-Propagation neural network model with 8-17-1 architecture was established as the optimal approach for this
purpose. It gave a percentage of hits of 93%. Our previous research result and the result from aggression analysis were compared, and
they provided respectively the percentage of hits of 81.63% and 75%. This comparison demonstrates the potentiality and validity of the
proposed method in the identification of taxi gross emitters.
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Introduction

Poor air quality has become a serious problem in
the world. Reports show that the on-road vehicle emis-
sions constitute the major source of air pollution in
urban areas. It contributes over 60% of the carbon
monoxides (CO), 30% of the hydrocarbons (HC), and
20% of the nitrogen oxides (NOx) in the national
records (USEPA, 1998; Pokharel et al., 2001a; Fish-
er, 2003). A recent investigation conducted by China
Environmental Protection Agency (CEPA) shows that
vehicle emissions account for 79% of air pollutants,
and this figure will remain air unchanged in the fu-
ture (CEPA, http://www.people.com.cn/GB/qiche/1049/

3021570.html). Further research shows that the majority
of the vehicle emissions come from the 10%–30% of the
used cars (Bishop et al., 1997; Calvert et al., 1993). They
are really the gross emitters.

In the last two decades, the national and local gov-
ernment have established various programs of inspection
and maintenance (I/M), as well as the total planning and
control standards. However, these programs have been
heavily criticized as costly or even wasteful, causing incon-
venience to the testers and drivers (Bishop and Stedman,
1996). Because the test data do not reflect the real emission
of running cars, many vehicles, which had passed the emis-
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sion test in the test station, are playing the roles of gross
polluters in real world driving conditions (Washbum et al.,
2001). Thus, researchers are looking for new methods for
collecting and analyzing the real-time emission data from
running cars.

One of these methods makes use of remote sensing
technique, which employed non-dispersed infrared instru-
ment in 1980s (Bishop et al., 1989) and tunable diode
laser system in 1998 (Nelson et al., 1998) to acquire the
real-time data of vehicle emission in driving conditions.
This technique has been widely applied in the United
States, Canada, Mexico, Australia and so on (Chan et
al., 2002). On the other hand, new methods for analyzing
vehicle emission data were developed. The emission-factor
models based on dynamometer test, MOBILE (USEPA,
1993) and EMFAC (CARB, 1996), have been widely
employed to evaluate air quality in North America (Yu,
1998). The relation between emission intensity and driving
speed was investigated by Andre (2000) in Europe. Yu
(1998) developed an on-road model for estimating the
CO, HC emission rate from the vehicle speed. Researchers
in Tsinghua University have explored the characteristic
and effects of vehicle emissions in Beijing and Macao
(Hao et al., 2001). For the remote sensing data, people in
Denver University have done a series of experiments and
analysis of the remote sensing data collected from different
district in Denver (Pokharel et al., 2002, 2001b), Chicago
(Pokharel et al., 2000) and Los Angeles (Pokharel et al.,
2001a).
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The remote-sensing system of vehicle emissions were
also applied in several major cities in China. This paper
analyzes the factors affecting vehicle emissions based on
the remote sensing test data of taxi emissions from a field
test in Guangzhou, Guangdong Province, China during the
year of 2004. It also proposes a model for identifying the
on-road gross emitters by combing the remote-sensing data
and the idle test data, once a set of vehicle remote sensing
characteristics were given. The percentage of hits reaches
93%. The model can be used as a ground-work for the
identification of gross emitters in I/M system.

1 Field data acquisition

1.1 On-site measurement

A remote sensing test of vehicle emissions was carried
out in Guangzhou in 2004. The test involved 17-d field
measurement in different locations in the city to collect
the representative profile of vehicle emissions. A typical
remote sensing system employing tunable diode laser
technique is shown in Fig.1.

Fig. 1 Remote sensing system of vehicle emission based on tunable diode
laser technique.

When a car is passing the measurement system, its
speed and acceleration are first measured and recorded,
representing the current conditions of the engine to reduce
the error produced in abnormal states. The measurement
instrument continuously sends laser beams across the road
through the exhaust plumes of the car. This beam is
received by the receiver installed on the opposite side of
the road. Based on the changing intensity of the received
signal, the emissions analyzer gives the concentrations of
the pollutants, including CO in percent, HC and NOx
in part per million (ppm). The license plate number is
also recorded by a camera (Zeng et al., 2006). It is used
for accessing the detail information of the vehicle. This
information includes vehicle type, age, odometer reading,
as well as the idle-test data collected from Guangzhou
Vehicle Composite Capability Inspection Station. Addi-
tionally, the test also measures and records the environment
data of the testing field, including site slope, humidity,
temperature, speed and direction of wind.

In the experiment performed, the above measurements
have been done at four sites for 276 vehicles, of them
118 are taxies. A total number of 11028 groups of data
were acquired; of them 7883 groups were considered
valid. Among the groups of valid data, 2558 groups were
measured from taxies.

1.2 Data analysis

According to our previous research (Zeng et al., 2006),
the emission analyzer gives valid concentration of pollu-
tants mostly for vehicle speed between 15 and 75 km/h,
acceleration lower than 1.6 m/(h·s) and the site slop
between 0◦ and 5◦. All pollutant concentrations concerned
in this paper are given by the remote sensing system
using measurement data for taxies in the above mentioned
conditions. 877 groups of the data were preserved to study.

By using these data, the following analyses were made.
The effects of vehicle age and odometer reading on
pollutant concentrations are shown in Figs.2a and 2b,
respectively. It is seen that the concentrations of CO, HC
and NOx go higher when a car gets older in age and greater
in mileage.

All measurement data of 25 vehicles were analyzed
independently. Figs.3a and 3b show the representative
relation between the pollutant concentrations versus the

Fig. 2 Pollutant concentrations versus vehicle age (a) and versus odome-
ter reading (b).

Fig. 3 Pollutant concentrations versus vehicle speed (a) and versus vehi-
cle acceleration (b).
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speed and acceleration, respectively. Apparently, vehicle
speed and acceleration have similar effects on the variation
trend of pollutant concentrations.

While the above figures show the variation trends of
pollutant concentrations versus the vehicle characteristics
and engine conditions, the relations between them are
by no means the precise ones. In addition to the speed
and acceleration, the pollutant concentrations depend up-
on other conditions of the engine as well. Furthermore,
vehicle emissions are closely related with the environment
conditions. The interaction between these conditions also
gives impacts on the emission. There are no available
standards for remote sensing test in this country. Thus,
identification of gross emitter is still a difficult task.

2 Methodological approaches

2.1 Principal component analysis

Artificial neural network was applied in this study for
identifying gross emitters. Artificial neural network is
a nonlinear processing system consisting of processing
elements interconnected via connection weights and has
been widely applied for its outstanding learning ability.
Training with the groups of input and output data, neural
network can encode the relationship between the input and
output data. But the remote sensing data is originally high
in dimension as mentioned above. Analysis of such a large
number of measurements would be difficult and take too
much time to train the network. So, principal component
analysis was applied at first for data reduction and analysis.

All 877 sets of data were analyzed. Each piece of
data had twelve components, including sites’ slope, in-
stantaneous speed and acceleration, speed and direction
of wind, temperature, plume, and emission concentrations
of CO, CO2, HC and NOx. The characteristic rates of

each principal component are shown in Table 1. Because
the accumulative total contribution rate of the first eight
items is 89.7%, the first eight principle components were
selected. They reserve the information of all primitive data.
Then, the weights of all items to each principal component
were calculated, as shown in Table 2. According to the data
of Table 2, the eight effecting variables, the emissions of
CO, CO2 and HC, vehicle age, acceleration, speed, plume
and the emissions of NOx, are reserved orderly to the
further research.

2.2 Artificial neural network model

Although there are many kinds of neural networks
applied in many fields, a back-propagation (BP) was used
in this study. It is a simple but effective neural network,
consisting of an input layer, an output layer and several
hidden layers. The BP algorithm is an interactive gradient
algorithm designed to minimize the root mean square
error between the actual output of neural network and the
desired output (Hagan et al., 1996).

The success of the neural network depends greatly
on defining the influencing parameters for the problem.
According to the results of principle components analysis,
the eight variables, speed, acceleration, plume, vehicle
age and the emissions concentration of CO, CO2, HC,
NOx, are chosen as input units. To avoid error caused by
different dimensions, all input data are preprocessed, and
normalized in amplitude to the interval [0, 1].

According to the aim of this study, the output layer
is set to only one union. The targets are set by the
results of idle test obtained from the Guangzhou Vehicle
Composite Capability according to the national standard
(GB/T 14761.5-93). If the vehicle emissions exceed the
national limitations under the idle test, the target value is
1, otherwise the value is 0.

Table 1 Characteristic rates of each primary component

Variable Principal component

X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12)

Latent root 2.695 1.843 1.458 1.383 1.194 0.905 0.714 0.576 0.511 0.395 0.323 0.003
Variance contribution 0.225 0.154 0.121 0.115 0.099 0.075 0.059 0.048 0.043 0.033 0.027 0.000
Accumulative contribution 0.225 0.378 0.500 0.615 0.714 0.790 0.849 0.897 0.940 0.973 1.000 1.000

Where, X(I=1, 2, 3···12) is the I principal component.

Table 2 Weights of each principle component

Variable Principal component

X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) X(9) X(10) X(11) X(12)

Slope –0.350 0.158 0.160 –0.406 –0.082 0.282 0.380 0.313 –0.007 0.391 0.425 –0.001
Speed 0.022 –0.313 –0.567 0.148 0.027 0.412 0.174 0.284 –0.050 0.305 –0.426 –0.002
Acceleration 0.047 –0.179 0.056 0.335 0.702 0.326 –0.152 0.010 –0.066 –0.023 0.473 0.001
Vehicle age –0.039 0.475 –0.079 0.263 –0.284 0.183 –0.543 0.070 –0.454 0.268 0.075 0.000
Wind speed –0.186 0.328 –0.268 –0.350 0.103 0.451 –0.312 –0.165 0.467 –0.315 –0.089 0.000
Wind direction –0.145 0.228 –0.306 –0.209 0.422 –0.515 –0.130 0.549 –0.119 –0.103 –0.061 0.002
Temperature –0.063 0.415 –0.384 0.087 0.230 –0.139 0.454 –0.578 –0.183 0.146 0.041 0.005
Plume –0.291 0.076 0.520 –0.113 0.357 0.168 0.011 –0.099 –0.304 0.052 –0.605 -0.003
CO 0.544 0.150 0.038 –0.244 0.042 0.174 0.122 0.093 –0.210 –0.140 –0.013 0.708
CO2 –0.543 –0.155 –0.034 0.241 –0.044 –0.172 –0.127 –0.092 0.212 0.147 0.009 0.706
HC 0.337 0.352 0.217 0.218 0.171 –0.098 –0.006 0.123 0.578 0.502 –0.166 –0.003
NOx –0.158 0.334 0.105 0.530 –0.132 0.155 0.395 0.335 0.070 –0.504 -0.052 0.005

Where, X(I=1, 2, 3···12) is the I principal component.
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Then, 17 unions are chosen in the hidden layer accord-
ing to Kolmgorov’s theory. The Kolmogorov’s mapping
neural network existence theorem states that given any
continuous function f : [0, 1]n → Rm, f (x) = y, f can be
implemented exactly by a three layer, (2n+1) processing
elements in the middle layer, and m processing elements in
the output layer (Nielsen, 1987).

Furthermore, it has been proved that a three layer neural
network, having sigmoid units in its hidden layer has been
shown mathematical to approximate any given real valued
continuous multi-variable function to the projected degree
of accuracy (Hagan et al., 1996). And compared with the
performance of different network algorithms, the improved
BP neural network with Levenberg-Marquardt algorithm
was chosen.

Finally, 300 groups of data are chosen. Of them 200 are
used as training data and the remained 100 are used as the
test data.

The Matlab 7 attached with the neural network toolbox
(edition 4.0.3) is used in the work to establish the model.
The experimental results show that the performance goal
is obtained at the 37th epoch. Test results show that the
percentage of hits is up to 93%. Fig.4 shows the training
error curve. And Fig.5 represents the error distribution of
the test.

Fig. 4 Training error curve.

Fig. 5 Error distribution of the test.

3 Comparison and discussion

This BP neural network model based on taxies data
is capable of identifying gross emitters using remote-
sensing data. The percentage of hits of 93% is better
than the 81.63% obtained from our former research (Guo
et al., 2006) based on the same experimental data. The
difference between the two results shows that the data
pre-processing and correct classification of vehicles are
very important. Different characteristics in usage, different
categories models of gross emitters should be established
respectively. Then, high accuracy would be achieved.

Regression analysis was believed as another useful
method to identify the characteristics of vehicles that are
more likely to be gross emitters. During this research,
regression analysis acquires the percentage of hits of 75%
using the same groups of data. The amendment simultane-
ous equation is as follows.

Y = −0.0266x1 − 0.0155x2 + 0.1834x3 + 0.1289x4 + 0.5644x5+

0.1502x6 + 0.3421x7 + 0.2173x8 − 0.13538

Where, the sequence of xi (i=1, 2, 3···8) denotes speed,
acceleration, plume, vehicle age, the emission of CO, CO2,
HC, NOx, respectively. Y is the output.

The results show that neural network model performs
better than the regression analysis model. In sum, the BP
neural network is capable of predicting vehicle emission
based on remote-sensing data. The results also imply
that remote-sensing data is suitable for emission model
evaluation.

4 Conclusions

In this paper, we adopt artificial neural network to identi-
fy the gross emitters with vehicle emission remote-sensing
data from Guangzhou, Guangdong Province. Vehicle emis-
sion is a complex multivariable nonlinear process. The
BP neural network model is a valid model with good
prediction ability. The experimental results show that the
performance goal is obtained at the 37th epoch, and the
percentage of hits is up to 93%. The findings also indicate
that speed, acceleration, plume and vehicle age play a
significant role in determining the prediction results, as
well as the emissions concentration of CO, CO2, HC and
NOx.

Vehicle emission is the major source of air pollution
today and in the future. Pollution control is very impor-
tant in improving air quality. This model identifies gross
emitter effectively. Our work can be used as groundwork
for identifying gross taxies’ emitters. Then it can reduce
the cost and improve efficiency of in-use I/M system.
Other catalogues vehicle gross emitter identification model
should be established in our future research. More reli-
able remote-sensing data will be accumulated with more
advanced test technique, intelligent algorithm and data
mining technology.
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