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Abstract

Predicting long-term potential human health risks from contaminants in the multimedia environment requires the use ofmodels.
However, there is uncertainty associated with these predictions of many parameters which can be represented by ranges or probability
distributions rather than single value. Based on a case study with information from an actual site contaminated with benzene, this
study describes the application of MMSOILS model to predicthealth risk and distributions of those predictions generated using Monte
Carlo techniques. A sensitivity analysis was performed to evaluate which of the random variables are most important in producing
the predicted distributions of health risks. The sensitivity analysis shows that the predicted distributions can be accurately reproduced
using a small subset of the random variables. The practical implication of this analysis is the ability to distinguish between important
versus unimportant random variables in terms of their sensitivity to selected endpoints. This directly translates into a reduction in data
collection and modeling effort. It was demonstrated that how correlation coefficient could be used to evaluate contributions to overall
uncertainty from each parameter. The integrated uncertainty analysis shows that although drinking groundwater risk is similar with
inhalation air risk, uncertainties of total risk come dominantly from drinking groundwater route. Most percent of the variance of total
risk comes from four random variables.
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Introduction

The assessment of risk in complex systems is almost
inevitably affected by uncertainties. In the case of assess-
ing potential health risks from different exposure routes,
there are many contributing factors. The importance of
adequately characterizing variability and uncertainty in
fate, transport, exposure, and dose-response assessments
for human health and ecological risk assessments has been
emphasized in several U. S. Environmental Protection
Agency documents and activities (USEPA, 1986, 1992,
1996c, 1997), which also recommend that a sensitivity
analysis be used to help determine factors of importance to
the assessment. Although the USEPA’s guidance does not
dictate an approach to sensitivity, examples provided in the
guidelines including use of rank correlation coefficients,
standardized rank regression coefficients, and scatter plots.
The importance of systematically distinguishing and eval-
uating various kinds of uncertainties was too identified
by some researchers (Bennettet al., 1998; Fewtrellet al.,
2001; Havelaar, 1998).

There are many articles on performing sensitivity and
uncertainty analyses for environmental numerical simula-
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tion based on some actual case study of the transport of
contaminants (Hamby, 1994; James and Oldenburg, 1997;
Helton et al., 1995; Pelmulderet al., 1996; Manteufel,
1996). Approaches to sensitivity and uncertainty analyses
cited in these works include: differential sensitivity analy-
sis, one-at-a-time sensitivity measures, sensitivity indices,
qualitative analysis, Pearson’sρ and Spearman’sρ, re-
gression and standardized regression techniques, variance
analysis, tests involving segmented input distributions,and
the propagation of uncertainty owing to variance in major
parameter values in model. However, no consensus exists
as to a “best” method. Rather, it is indicated that the
method and the objectives of the analysis should be jointly
evaluated (Millset al., 1999).

An approach was presented in this study, using the
multimedia models of MMSOILS (USEPA, 1996b), to
address the question posed–that is, how many variables
need to be treated as random and the parameter uncertainty
in the human health risk model for a particular case
study. The first objective of this paper was to implement
an approach to sensitivity analysis, within a multimedia
setting, to identify the random variables most important
in contributing to the predicted variability of selected
model endpoints, such as lifetime potential risk owing to
exposure to benzene in drinking groundwater. The second
objective was to compare the sensitivity analysis results
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for the models evaluated to determine their degree of
similarity, despite differences of exposure route. The final
objective was to demonstrate model integration includ-
ing uncertainty analysis. Parameters used in health risk
assessment were uncertain and thus were represented by
distributions. By considering the combined uncertainties
attributable to both the transport and exposure/risk input
parameters, the authors obtained total human health risk
as a distribution of values. The integration of uncertainty
analyses also allows comparison of the relative importance
of uncertainty arising from drinking groundwater route,
inhalational air route and every random variable.

1 Methods

The MMSOILS model is Multimedia Contaminant Fate,
Transport, and Exposure model for estimating exposure
and risk resulting from the multimedia release of contam-
inants from hazardous waste units. The model addresses
the transport of a chemical in groundwater, surface water,
soil erosion, the atmosphere, and accumulation in the food-
chain. The human exposure pathways considered in the
model include: soil ingestion, air inhalation of volatiles
and particulates, dermal contact, ingestion of drinking
water, consumption of fish, consumption of plants grown
in contaminated soil, and consumption of animals graz-
ing on contaminated pasture. For multimedia exposures,
the methodology provides estimates of human expo-
sure through individual pathways and combined exposure
through all pathways considered. The risk associated with
the total exposure dose is calculated based on chemical-
specific toxicity data. With a Monte Carlo simulation
capability MMSOILS model allows the user to specify
statistical distributions and associated characteristics (e.g.,
mean, standard deviation) of model input parameters,
thus, enabling the user to quantify uncertainty in model
estimates as a function of input parameter uncertainty
(USEPA, 1996b).

The USEPA has made clear that there are a number of
situations in which a Monte Carlo analysis can be useful.
For example, a Monte Carlo may be useful in performing
risk assessments that addresses sensitivity and uncertainty
analysis issues. MMSOILS uses the Monte Carlo method.
Given a set of deterministic values for each of the input
variables,X1, X2 ... Xn, the composite model computes
results such as exposure concentrationC, i.e.:

C= function(X1, X2, X3...Xn) (1)

Application of the Monte Carlo simulation procedure
requires that at least one of the input variables,X1 ... Xn, be
uncertain, with the uncertainty represented by a cumulative
probability distribution (USEPA, 1996b). The method in-
volves the repeated generation of pseudo-random values of
the uncertain input variable(s). The pseudo-random values
are drawn from the specified distribution and are within
the range of any imposed bounds. Then the model is
applied, using these values, to generate a series of model
responses. These responses are statistically analyzed to
yield the cumulative probability distribution of the output.

Optionally, for each Monte Carlo realization, a vector of
information unique to that realization can be saved. By
doing this, all the information generated by the model
during all Monte Carlo simulations is preserved, and can be
used for post-processing purposes, such as for sensitivity
and uncertainty analysis.

2 Case study and model descriptions

2.1 Case study

The case study modeled in this article is based on an
actual site in which groundwater has become the sole
source of urban and industrial water supplies due to the
lack of surface water. However, a petrochemical factory
was built in 1984 on the recharge area which supplies
the drinking water well field. The potential health risk
of the drinking groundwater well field is of particular
concern with approximately 3700 m away from the factory
because well water is pumped for domestic direct uses.
The foundations of oil tanks and waste water pipes were
placed directly on the aquifer. Because of the easily
corroded pipes, leakage from pipe lines and oil tanks
has resulted in petroleum contamination of the soils. The
thickness of the contaminated soils is about 3 m. With
precipitation recharge into groundwater the petroleum
byproducts continuously leached from the contaminated
soils are threatening the drinking groundwater. The mean
infiltration through the soil to the water table is 4.12
cm/a. The sources of benzene pollutant in daily life of
human being and environment were drinking groundwater
and air inhalation resulting from contaminant soil. High
and significant acute myeloid leukemia risks with positive
benzene dose response relationships were identified across
published studies and especially in more highly exposed
workers in benzene-related industries. Although risks for
chronic myeloid leukemia and acute lymphocytic leukemia
are sparse and inconclusive, risks for chronic lymphocytic
leukemia tended to show possible dose response relation-
ships (Robertet al., 2005). Because benzene with 138.64
mg/kg in soil is a typical carcinogenic contaminant of the
petroleum byproducts, it was chosen as the chemical of
concern for this study. The contamination source areas and
location of the receptor wells are shown in Fig.1. For the
multimedia scenario examined, it is assumed to be initially

Fig. 1 Environmental setting and exposure routes of case study.
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present in the contaminated soils but not initially present
in any other media (i.e., at the beginning of the problem all
other media are uncontaminated). Finally, it is important to
note that these are model projections assuming no future
remedial actions and no biodegradation of benzene.

The variables that are treated as random for simulations
are shown in Table 1. The variables listed are grouped
by source geometry, contaminant-related variables, infil-
tration and leaching data, groundwater data, and exposure
factor data. Food ingestion or dermal contact scenarios
were not considered because the exposure routes just were
drinking groundwater from the well field and inhalation
air working on the contaminated soils in the study case.
For each variable, the distribution type and the parameters
of the distribution are provided (minimum, maximum,
mean, and standard deviation). Cross-correlations between
variables are not considered, and the random variables
are deliberately chosen to eliminate any cross-correlations.
The distributions for the random variables are chosen to
reflect a site that is generally well characterized; that is,
the distributions are chosen to have narrow ranges. The
exposure factor data come from EPA’s statistical data
(U S EPA, 1996a). The remaining data are deterministic
and are the same as previously used to benchmark three
multimedia models in a deterministic setting (Millset al.,
1997).

2.2 MMSOILS model descriptions

The model uses analytical or quasi-analytical techniques
to solve transport equations, and simulate contaminant
migration from a source to the unsaturated zone, saturated
zone, surface soil, atmosphere, and surface water. The
four basic functions of the multimedia methodology are

developed as a tool to estimate exposures and health
risks associated with the release and subsequent fate and
transport of chemicals from contaminated soils and various
hazardous waste sites. They are: (1) based on chemical
properties and land use at the site, estimate the chemical
release rate from the soil into each environmental media;
(2) based on the chemical release rate and the proximity
to exposed populations, estimate the chemical concen-
tration at exposure points in each environmental media
considered; (3) based on the chemical concentration at
exposure points and assumptions regarding human intake
levels, estimate the human exposure through inhalation,
ingestion and absorption; 4) based on the estimated hu-
man exposures at exposure points, estimate the potential
health risk based on toxicity data for the specific chemical
(USEPA, 1996a). Although the model predicts risks from
exposure to chemicals only and assumes the well used by
the receptor is screened near the surface of the aquifer
and concentrations in the water withdrawn are reflective
of water in the aquifer at that location.

Often the most basic parameters, such as contaminant
concentration in soil, vary significantly over a given site
and the distribution may be poorly understood. These
uncertainties, coupled with approximations that were used
to streamline the modeling process, lead to the results that
may differ from reality by orders of magnitude. To evaluate
these uncertainties, MMSOILS utilizes the Monte Carlo
simulation method. By representing input parameters in
terms of a probability distribution rather than a single
deterministic value, this method allows quantitative esti-
mation of the uncertainty in the predicted concentrations
and human health risks. The Monte Carlo simulator can
be used to quantify the uncertainty in the three broad

Table 1 Random variables for Monte Carlo uncertainty analysis scenario for benzene contaminant

Variable Distribution type Mean Minimum Maximum Standard deviation

Source geometry
W: source width (m) Uniform 165 27 303 79.7
L: source length (m) Uniform 170 85 255 49

Contaminant-related variables
Kd: partition coefficient for contaminated soil (ml/g) Uniform 1.37 0 2.74 0.79
Kh: henry’s law constant (atm m3/mol) Truncated normal 5.55×10−3 4.7×10−3 6.4×10−3 4.20×10−4

Infiltration and leaching
I: annual recharge to groundwater (cm/a) Truncated normal 4.12 0.21 8.24 2.04
Fc

1: field capacity for 1st unsaturated zone (cm3/cm3) Truncated normal 0.27 0.198 0.342 0.036
Fc

2: field capacity for 2nd unsaturated zone (cm3/cm3) Truncated normal 0.091 0.07 0.243 0.01
KS

1: hydraulic conductivity for 1st unsaturated zone (cm/h) Truncated normal 1.32 0.06 5.75 2.65
KS

2: hydraulic conductivity for 2nd unsaturated zone (cm/h) Truncated normal 21 0.91 181 21
ρ: bulk density of the contaminated soil (mg/cm3) Truncated normal 1.4 1.1 1.7 0.14
Ts: thickness of contaminated soil (m) Uniform 3 2.29 3.71 0.41

Groundwater data
S: hydraulic gradient (m/m) Truncated normal 0.007 0.004 0.011 0.002
θ: effective porosity (cm3/cm3) Truncated normal 0.3 0.17 0.42 0.058
ax : longitudinal dispersivity coefficient (dimensionless) Truncated normal 0.1 0.05 0.15 0.025
H: thickness of aquifer (m) Uniform 80 66.7 93.3 7.68
Kgw: groundwater hydraulic conductivity (m/d) Truncated normal 36.6 17.5 111.84 9.15
X: distance to groundwater receptor along centerline (m) Uniform 3700 2982 4418 414
Y: distance to groundwater receptor in cross-gradient direction (m) Uniform 0 –50 50 28.9

Exposure factor
Iw: water ingestion (L/d) lg-normal 1.24 0.3 3.5 0.65
SFw: carcinogen potency factor for oral route (mg kg−1 d−1)−1 Uniform 0.035 0.015 0.055 0.012
Ia: inhalation rate (m3/d) Triangular 19.0 6.0 32.0 7.5
SFa: carcinogen potency factor for inhalation (mg kg−1 d−1)−1 Uniform 0.0174 0.0077 0.027 0.0056
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classes of input data that exhibit different uncertainty
characteristics: chemical properties, environmental media
properties, and human health exposure/intake parameters,
so all MMSOILS parameters in each category can be
evaluated for uncertainty and summary statistics and distri-
butions of the input and output parameters can be provided
(USEPA, 1996b; Millset al., 1997).

In the study of human exposure and risk analysis, the
tail of the total risk distribution is of particular interest.
Exposure and risk analyses often use the probability of
the upper 5% tail (the 95th percentile) of their distribution
to provide a conservative estimate of the possible effects
of environmental contamination on a human population.
Because the Monte Carlo sample size to be used in the
analysis must be large enough to obtain a reasonable
statistic for the 95th percentile, ten thousand Monte Carlo
simulations were performed with 95% percentile confi-
dence level for this study. This number is large enough
to provide a statistically representative sampling for each
sample size.

3 Results and discussion

3.1 Simple regression for sensitivity analysis

A question of practical concern in performing prob-
abilistic risk assessments is the importance of specific
random variables in influencing an endpoint of impor-
tance, such as distribution of risks from exposure to
contaminated groundwater. These, along with parameter
values randomly selected from their respective probability
distributions were input to MMSOILS and were used to
calculate risk with Monte Carlo methods. The process
results in a distribution of risk based on the uncertaintiesin
model parameters. Issues of importance in the sensitivity
analysis are to determine how sensitive every random

variable is by comparing correlation coefficient between
input parameters and risks.

A correlation coefficient is a number between –1 and
1 which measures the degree to which two variables are
linearly related. There are a number of different correla-
tion coefficients that might be appropriate depending on
the kinds of variables being studied. Pearson’s product
moment correlation coefficient, usually denoted byr, is
one example of a correlation coefficient. It is a measure
of the linear association between two variables that have
been measured on interval or ratio scales. However, it
can be misleadingly small when there is a relationship
between the variables but it is a non-linear one. Especially
the implicit assumption is made that the two variables are
jointly normally distributed. When this assumption is not
justified, a non-parametric measure such as the Spearman
rank correlation coefficient (RCC) might be more appro-
priate. The Spearman rank correlation coefficient may also
be a better indicator that a relationship exists between
two variables when the relationship is non-linear (Howell,
1987). A set of data that monotonically increases in a
highly non-linear manner might have a smallr, but the
RCC might be high near±1.

The sensitivity analysis is performed for three endpoints
including inhalation air risk, drinking groundwater risk
and total risk for exposure to benzene using MMSOILS.
Results are shown in Table 2 and indices are used in the
table to evaluate sensitivity. Because the model response
is nonlinear, to reduce the possibility that some important
random variables might have been missed in the analysis,
the Spearman’s rank correlation coefficients were also
calculated. The column labeled “rank” in Table 2 is based
on decreasing values ofR2. Note the difference among the
rankings of drinking groundwater, inhalation air and total
risks in Table 2. The most important variables for all three
endpoints are source geometries. The remaining variables

Table 2 Results of simple regression analysis for human health risk based on modeling results using full suite of random variables

Parameter Drinking water risk Air inhalation risk Total risk

R2 RCCa Rankb R2 RCCa Rankb R2 RCCa Rankb

W 0.15 0.5022 1 0.0223 –0.3342 5 0.064 0.2710 4
Iw 0.146 0.4032 2 NA NA NA 0.111 0.3267 1
I 0.138 0.4828 3 0.0001 –0.0137 15 0.103 0.3651 2
SFw 0.068 0.3019 4 NA NA NA 0.05 0.2378 5
L 0.053 0.2733 5 0.0238 –0.2766 4 0.012 0.1132 10
Kgw 0.033 –0.1879 6 2.77E–05 0.0136 16 0.025 –0.1508 7
S 0.027 –0.1910 7 0.0004 0.0162 8 0.017 –0.1442 9
ax 0.01 –0.0986 8 0.0003 –0.0117 9 0.01 –0.0957 11
Ts 0.01 0.1081 9 1.53E–05 –0.0102 17 0.008 0.0759 12
X 0.009 –0.0958 10 NA 0.0139 NA 0.006 –0.0734 14
H 0.0087 –0.0936 11 0.00017 –0.0094 12 0.008 –0.0879 13
ρ 0.0028 0.0570 12 0.0029 0.0399 6 0.006 0.0757 15
Kd 0.001 0.1071 13 0.2611 –0.4849 1 0.079 –0.3575 3
Ks

2 0.0008 0.0312 14 9.7E–07 0.0088 18 0.0007 0.0270 17
θ 0.0003 –0.0120 15 0.00015 0.0173 14 4.4E–05 –0.0014 21
Y 0.0001 –0.0057 16 NA 0.0196 NA 2.25E–06 0.0059 22
Kh 4.65E–05 0.0065 17 0.0015 0.0401 7 0.0009 0.0329 16
Ks

1 1.8E–05 –0.0188 18 0.00016 0.0113 13 0.0001 –0.0090 18
Fc

2 9.15E–06 0.0060 19 0.00025 –0.0167 11 4.78E–05 –0.0051 20
Fc

1 2.29E–06 0.0074 20 0.00028 0.0109 10 7.76E–05 0.0163 19
Ia NA NA NA 0.0584 0.2566 3 0.019 0.1714 8
SFa NA NA NA 0.079 0.2976 2 0.029 0.2105 6

a Spearman rank correlation coefficient; b rank is based onR2 value, the square of Pearson’s product moment correlation coefficient.
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are mostly different shown by the order of selection.
To more fully explore the above results, three scatter

plots of correlations generated by MMSOILS are shown
in Fig.2, respectively. All the plots show untransformed
data, the probability distribution used for each independent
variable, and simpleR2 values. The independent variables
chosen for the scatter plots are source geometry width,
infiltration rate and thickness of aquifer. Some variables
like source geometry width produce higherR2 and RCC
values for all the three endpoints (Table 2); on the contrary,
some variables like thickness of aquifer have low values of
all indices. The scatter plot shows that infiltration rate has a
high correlation with drinking groundwater risk, however,
has a very low correlation with inhalation air risk. There
are some variables like infiltration rate shown by Table 2.
Increasing absolute values of the indicators corresponds to
increasing sensitivity to endpoints, as defined by the ratio
in the Table 2, but the results in Table 2 and Fig.2 are
interpretable only with respect to a specific problem. For
these results,R2 and RCC both provide comparable indi-
cation of this sensitivity, both in absolute value of the index
and possession of the appropriate positive or negative sign
to indicate the direction of sensitivity. To provide a more
sensitivity analysis, the information previously discussed
and presented is based on for farther stepwise regression
analysis.

3.2 Stepwise multiple regression for sensitivity analysis

One practical issue inherent in the probabilistic ap-
proach is the number of variables that have to be treated
as random and the justification for the choice of random
variables. Suppose,M+N variables are required as input

to an analysis, whereM equals the number of variables
treated as random andN equals the number of variables
treated as deterministic. By performing a Monte Carlo
analysis using such a model as MMSOILS, a distribution
of endpoints is predicted. Now, the question is whether
a comparable distribution can be generated where less
than M random variables are used and more thanN
deterministic variables are used (M+N remains the same).
Mills et al. (1999) has shown the implicit procedures of the
approach. Here, a stepwise multiple regression approach is
used to perform this task as simple regression approach
only could test sensitivity for every random variable.

One of the same endpoints used previously is also
selected for the analysis. Based on the correlation coef-
ficient of the simple regression analysis, the procedure
to produce higher and higherR2 is continued untilR2 is
calculated for all random variables, is automated within
the software used. The results are shown in Fig.3a. The
number of sensitive random variables for three endpoints
is different. The plots in Fig.3a show that the asymptotes
for R2 are approximated 0.641 with eleven variables, 0.447
with six variables and 0.541 with fourteen variables for
drinking groundwater risk, inhalation air risk and total
risk, respectively. TheR2 with maximum possible 1.0
is not achieved by either model, and less than 1.0 is
indicative of the nonlinear relationships between variables.
However, many of the sensitive variables remain the same.
As shown in Fig.3a, only two of the six variables selected
as most important for inhalation air risk are the same
with those for drinking groundwater risk; however, some
variables like the sourceKd are selected by inhalation air
risk but not by drinking groundwater risk, and some like

Fig. 2 Scatter plots created from MMSOILS simulations of drinking water and inhalation air risks.
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Fig. 3 Stepwise multiple linear regression approach to sensitivity analysis for selected endpoints (a) and comparisons of CDFs for selected model
endpoints using all random variables (RVs) to generate the CDFs and using a sensitivity subset of random variables to generate the sumset (b).

the x-direction dispersivity coefficient,ax, are selected by
drinking groundwater risk but not by inhalation air risk.
A similar result occurs for different risks as endpoints as
shown in Fig.3a. The most important random variables
selected by each endpoint are very different. Considering
the plots along with Table 2, the choice of these variables
is plausible.

Using the random variables identified as most important
in producing the distribution of concentrations in Fig.3b,
each model is rerun and treats only those 6, 11 and
14 variables as random according respectively to three
different endpoints; the remaining former random vari-
ables are treated deterministically, using mean values from
their distributions. The sensitivity analysis is performed
for groundwater, atmospheric and total risk endpoints
for exposure to benzene. The comparison is shown in
Fig.3b. The 45-degree line shown in Fig.3b is the line of

perfect correlation; if the two distributions being compared
are identical, all points would fall on those lines. The
result for atmospheric risk fully agrees to within 80%,
but approximately agrees to within 80% for groundwater
risk. However, the result for total risk is the same apart
from difference of 75% percentile values. Relative to
the percentile values themselves for all endpoints, the
confidence intervals are small. According to the results and
those in the simple regression analysis too, it is conceivable
that these random variables above specified are enough to
indicate the specific sensitivity.

3.3 Integrated uncertainty analysis

To determine the relative influence of random variables
attributable to different endpoints is done using sensitivity
analysis. As previously described, a complete Monte Carlo
method was performed by varying input variables, yielding
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a range of exposure risk values. This, in turn, may indicate
whether or not an uncertainty analysis is required or if the
uncertainty analysis can be simplified and performed on
one endpoint using only some variables.

The following exercise illustrates how we determined in
which form the data of uncertainty are most appropriately
expressed. Consider different input random variables with
known distributions,X1, X2 ... Xn, who were transformed
by a model to yield an outputY. The proportion of the
variance in the predicted outputY attributable to the
variance from the input parameterXi is a function as
follows (Bevington, 1969):

Y = function(δX1

/

X̄1, δX2

/

X̄2, · · · δXn

/

X̄n) (2)

The resulting influence of theXi distribution can be
calculated using the following equation:

pi =
ωiδXi/.X̄i

n
∑

i=1
ωiδXi/.X̄i

× 100% (3)

Where, pi is the exact analytic formulation of the
proportion of variance in the outputY attributable to the
variance from inputXi; δXi is standard deviation of variable
Xi; Xi is mean value of variableXi; δXn /Xn is the coefficient
of variation forXn; ωi is the weight forXi, and here equals
to the correlation coefficient, because the more sensitive
Xi is to Y with the higher correlation coefficient value
betweenXi and Y. As discussed in an earlier section,
when the absolute value of Pearson’s product moment
correlation coefficient is very small, but that of Spearman
rank correlation coefficient is high, the former is more
accurately selected asωi instead of the later avoiding
spurious correlation.

Uncertainty analysis through the model yields a range
of human health risk results. Fig.4 illustrates projections
of the total risk, the risk from soil gas, and the risk from

the corresponding groundwater. The uncertainty analyses
with three different distributions are illustrated in the small
figure, which is a box-and-whisker plot included in Fig.4.
The “whisker” is line with 95th percentile extending right
the box. They show the extent of the rest of the sample.
The more left and right lines of the “box” are the 25th
and 75th percentiles of the sample. The middle line is
mean value and the distance between the left and right of
the box is the inter-quartile range. It is clear that the risk
from groundwater is higher than that from soil gas from
60th to 95th percentile of risk, and both are almost the
same at higher and lower percentiles of risk. The drinking
groundwater risk has a more dispersive distribution than
inhalation air risk while the distribution of total risk is
most dispersive. Note that the probability of total risk
higher than 10−6, the USEPA advised health risk value
(USEPA, 1996d), is larger than 95%, that was also shown
by Fig.3b. Although the percent of risk from soil gas and
groundwater is little difference, the percent of uncertainty
from them is not able to be distinguished for total risk.
The following discussion demonstrates ways to identify
the percent uncertainty of random variables and the relative
influence of soil gas and groundwater on the total risk.

Because the total risk is always concerned with health,
here it is only analyzed for uncertainty. With the results
from regression analysis and Eq. (3), the findings of the
uncertainty analysis, presented in Fig.5, are based on
the calculation of correlation coefficient indicating the
contribution of the variance of fourteen different random
variables and two exposure routes on total risk. These
two exposure routes are drinking groundwater and inhala-
tion air. The results indicate that uncertainty in drinking
groundwater accounts for approximately 74% of the vari-
ance in the total risk indicating its potential importance to
risk uncertainty, while uncertainty stemming from soil gas
exposure accounts for approximately 26%.

An analysis of the importance of variance of individual

Fig. 4 Cumulative percentile of three different risk endpoints ant the box-and-whisker plot.
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Fig. 5 Percentage describing the variance of total risk as a result of variance of variable and exposure route.

parameters reveals that four random variables are the
dominant sources of variance in total risk as illustrated in
Fig.5. They are in sequence contaminated soilKd, water
ingestion, annual recharge and source geometry width. In
the case studied here, uncertainty in these four variables
contributes roughly 77% of the variance in the total risk
prediction. With knowledge such as this, resources could
be focused on obtaining a more accurate representation
of these variables thus decreasing uncertainty in total
risk. Other variables in Fig.5 show contributions at the
1%–7% level, indicating that greater knowledge of these
distributions will reduce variance but to a lesser degree.
However, the summed contribution of these variables is
not trivial relative to the variance attributed to other four
variables, accounting for 23% of the variance in total
risk. The influence of each model varies with the case
study being considered. The results provided here serve
to illustrate the analysis techniques and the type of infor-
mation they can yield. More accurate characterization of
variance importance for these parameters requires methods
with better resolution at low variance such as regional
sensitivity analysis (Spearet al., 1994).

4 Conclusions

This paper describes the application of MMSOILS mod-
el with Monte Carlo simulation, to a contaminated soils
containing a typical organic chemical (Benzene) resulting
from petrochemical factory. The actual risk calculation
is hypothetical because of our assumptions to include no
future remedial action and no biodegradation of benzene.
Three endpoints drinking groundwater risk, inhalation air
risk and total risk are predicted. A sensitivity analysis,
using simple and stepwise multiple regression, is con-
structed to evaluate which of the random variables are
most important in producing the predicted distributions
of health risks. Pearson’s product moment correlation
coefficient and Spearman rank correlation coefficient give
comparable results which have practical implications, in
that a method is provided to distinguish between important

versus unimportant random variables in terms of sensi-
tivity of selected endpoints. The numbers of the random
variables accurately reproduce the probability distribution
originally developed using 22 random variables are six for
inhalation air risk, eleven for drinking groundwater risk
and fourteen for total risk while the remaining random
variables are set to their mean values, an affirmation that
none of the remaining variables is important. This directly
translates into a reduction in data collection and modeling
effort.

The integrated uncertainty analyses have also enabled
the evaluation of which parameters from random variables
and both exposure routes (groundwater and air) exert the
greater influence on final risk variance for a particular
total risk endpoint. It was observed that for this particular
contamination scenario with the chosen parameter distri-
butions, uncertainty introduced by drinking groundwater
route was dominant of total risk uncertainty. Further anal-
ysis indicated that most percent of the variance of total risk
in this scenario comes from four random variables which
are in sequence contaminated soilKd, water ingestion,
annual recharge and source geometry. The uncertainty
resulting from the four variables is almost 77% percent of
the variance in total prediction, so it should be to get more
accurate data charactering these variables. It is important
to remark that the influence of individual parameters
will always be site specific and that by developing the
methodology and framework with which to perform the
uncertainty analysis, site risk assessment will be more
robust.
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