

Available online at www.sciencedirect.com

JOURNAL OF ENVIRONMENTAL SCIENCES ISSN 1001-0742 CN 11-2629/X www.jesc.ac.cn

Journal of Environmental Sciences 20(2008) 45-49

Observation of the nighttime nitrate radical in Hefei, China

LI Suwen, LIU Wenqing*, XIE Pinua, LI Ang, **QIN Min, PENG Fumin, ZHU Yanwu**

Key Laboratory of Environmental Optical and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China. E-mail: swli@aiofm.ac.cn

Received 2 March 2007; revised 12 April 2007; accepted 23 April 2007

Abstract

Observation of nighttime nitrate radical (NO₃) was performed by using long path differential optical absorption spectroscopy (LP-DOAS), on the outskirts of Hefei, China. The time series of NO_3 and supporting parameters were simultaneously measured for a week (31 May-7 June 2006). The results indicated that the average concentration of NO₃ was 15.6 pptv with an average lifetimes of 96 s, whereas, NO₃ production rates varied from $8 \times 10^5/(\text{cm}^3 \cdot \text{s})$ to $2.98 \times 10^7/(\text{cm}^3 \cdot \text{s})$. Furthermore, the calculated N₂O₅ concentration averaged at 380 pptv. Analysis of data indicated that direct sinks were probably dominating the NO₃ loss process during this campaign. The results were compared with other campaigns in the boundary layer.

Key words: nitrate radical; nighttime chemistry; differential optical absorption spectroscopy; sinks

Introduction

Nighttime chemistry plays a key role in determining the initial chemical conditions for photochemistry during the following morning, in the troposphere. And the nitrate radical (NO₃) is the main oxidant in nocturnal chemistry (Bey et al., 2001; Geyer et al., 1999, 2001; Heintz et al., 1996; Smith et al., 1995; Robert et al., 2004). NO₃ reacts with a number of volatile organic compound (VOCs), which initiates their nighttime degradation. Furthermore, the nitrate radical has a strong influence on the levels of nitrogen compounds and it is responsible for the nonphotochemical conversion of nitrogen to nitric acid via N₂O₅ (Geyer et al. 1999, 2001; Wood et al., 2005; Vrekoussis et al., 2003, 2004).

In this article, the authors reported the recent results from a field campaign (31 May-7 June 2006) on the outskirts of Hefei (117°23'E, 31°86'N), China. The observation showed that the possibility of investigations of nighttime NO₃ concentration was obtained by long path differential optical absorption spectroscopy (LP-DOAS) (LI et al., 2007). The authors also calculated N₂O₅ concentrations, the production rates of NO₃, and the lifetime of NO₃. In addition, the correlation studies yielded the probable sink processes for NO₃. Finally, the results were compared with other campaigns of NO₃ in the boundary layer.

1 NO₃ chemistry

By far the significant source of NO₃ is the oxidation

of nitrogen dioxide (NO_2) by ozone (O_3) in the boundary layer:

$$NO_2 + O_3 \longrightarrow NO_3 + O_2$$
 (1)

The reaction rate is $k_1 = 1.4 \times 10^{-13} \exp(-2470/T) \text{ cm}^3/\text{s}$, then $k_{1(298 \text{ K})} = 3.55 \times 10^{-17} \text{ cm}^3/\text{s}$ (Vrekoussis *et al.*, 2004). The production rate P_{NO_3} of NO₃ can be calculated from the concentration of NO₂ and O₃ (Heintz et al., 1996; Carslaw et al., 1997; Geyer et al., 2001):

$$P_{\rm NO_3} = C_{\rm NO_2} \times C_{\rm O_3} k_1 \tag{2}$$

Assuming local steady state conditions for the nitrate radical, which is usually established in the order of a few minutes, the NO₃ lifetime can be calculated from the measured concentration and production rate (Heintz et al., 1996; Carslaw et al., 1997; Geyer et al., 2001; Vrekoussis *et al.*, 2003, 2004):

$$\frac{d}{dt}C_{NO_3} = P_{NO_3} - C_{NO_3}/\tau_{NO_3} = 0$$
(3)

$$\tau_{\rm NO_3} = \frac{C_{\rm NO_3}}{C_{\rm NO_2}C_{\rm O_3}k_2} = \frac{C_{\rm NO_3}}{P_{\rm NO_3}} \tag{4}$$

During the daytime, NO₃ has a very short lifetime (about 5 s) (Amekudzi et al., 2005; Heintz et al., 1996; Gever et al., 2001) because of its rapid photolysis. The photolysis frequency for solar zenith angles below 70° is about 0.3/s (Noxon, 1980; Geyer et al., 2001; Platt et al., 2002; Vrekoussis et al., 2004):

$$NO_3 + h\nu \longrightarrow NO_2 + O(^{3}P)$$

 $NO_3 + h\nu \longrightarrow NO + O_2$

^{*}Corrsponding author. E-mail: wqliu@aiofm.ac.cn.

LI Suwen et al.

$$NO_3 + NO \longrightarrow NO_2 + NO_2$$
 (7)

 $k_{6 (298 \text{ K})} = 2.6 \times 10^{-11} \text{ (cm}^3\text{/s)}$ (Vrekoussis *et al.*, 2004). However, NO is rapidly oxidized by the reaction with ozone.

$$O_3 + NO \longrightarrow NO_2 + O_2$$
 (8)

Rate constant is $k_8 = 1.8 \times 10^{-14}$ (cm³/s), resulting in a typical lifetime of NO of the order 1 min at 30 ppbv ozone. At night, as there is no photolysis of NO₂ (providing an NO source during the day) and the rapid reaction of NO and ozone (Reaction 8), NO levels are generally very low except in the vicinity of the NO source or in the absence of ozone. The NO₃ lifetime and its concentrations are expected to become much larger at nighttime.

In the continental boundary layer, NO₃ can rapidly react with several volatile organic compounds, in particular, with alkenes such as monoterpene and isoprene (Carslaw *et al.*, 1997; Smith *et al.*, 1995; Mihelcic *et al.*, 1993; Geyer *et al.*, 2001). NO₃ can noticeably contribute to the degradation of several hydrocarbons in nighttime atmosphere (Geyer *et al.*, 2001; Heintz *et al.*, 1996).

Another major scavenging process besides the direct NO_3 sinks is based on the combination of NO_3 and NO_2 to yield N_2O_5 :

$$NO_3 + NO_2 + M \Longrightarrow N_2O_5 + M \tag{9}$$

Owing to the thermal decay of N_2O_5 , a temperature dependent equilibrium between the three species is established favoring N_2O_5 at typical boundary layer temperatures and moderate NO₂-levels of more than 1 ppbv:

$$C_{\rm N_2O_5} = K_{\rm eq\,(T)} C_{\rm NO_2} C_{\rm NO_3} \tag{10}$$

The strong temperature-dependent equilibrium constant is $K_{eq (T)} = 9.7 \times 10^{14} (T/300)^{0.01} \times exp(-11080/T) (cm^3/s)$ (Vrekoussis *et al.*, 2003, 2004). Loss processes for N₂O₅ are indirect sinks of NO₃. A possible sink of N₂O₅ is its homogeneous reaction with water vapor, producing HNO₃, and the rate constant is in the range (3–9)×10⁻²² cm³/s.

$$N_2O_5 + H_2O \longrightarrow HNO_3 + HNO_3$$
 (11)

Reaction of N_2O_5 on aerosol surfaces is another possible sink of N_2O_5 . Finally, N_2O_5 can be removed by dry deposition to the ground (Geyer *et al.*, 1999, 2001).

In the marine atmosphere, reaction with DMS is of importance (Noxon, 1983; Allan *et al.*, 1999; Vrekoussis *et al.*, 2003, 2004). Here the discussion is restricted to the continent boundary layer, Hefei, China.

2 Experimental

2.1 Location

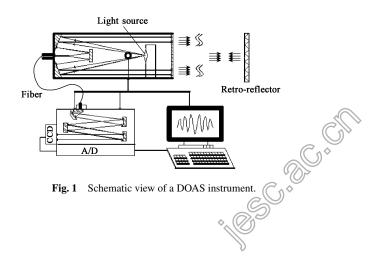
The measurement was performed by LP-DOAS on the outskirts of Hefei (117°23'E, 31°86'N). The LP-DOAS

setup was deployed on the fifth floor of the Anhui Institute of Optics and Fine Mechanics building. There was little traffic and few industries, and the main pollution came from urban Hefei, which is situated at a distance of about 18 km (center).

2.2 Experimental system

The concentrations of NO₃, NO₂, and O₃ were averaged along the optical path of 3 km (NO₃) and 0.7 km (NO₂ and O₃) by LP-DOAS. The meteorological data of temperature, wind speed, wind direction, and relative humidity were provided by a meteorological station nearby.

Figure 1 shows the important part of the DOAS system. A Cassegrain telescope was used to transmit and receive light. The reflecting system consisted of an array of 13 retro-reflectors. A 610-nm long-pass red filter, to reduce stray light effects below 610 nm, was placed in the fiber optic coupler. A diameter fiber bundle, 7×0.1 mm, which was regulated by a mode mixer to reduce the unwanted structures, carried light to the spectrometer. The CCD detector, cooled to -45° C, was mounted in the focal plane of the spectrograph. Finally the optical signal was stored and analyzed in the computer (Li *et al.*, 2007).


3 Results

The data presented here covered a week from 31 May to 7 June 2006. The following analysis of the NO_3 budget was restricted to the nighttime, exceeded the detection limits (3.8 pptv) of the DOAS system, and photolysis of NO_3 could be neglected.

3.1 Time series of O₃, NO₂, NO₃, and N₂O₅

The time series of O_3 concentrations are shown in Fig.2a. The change of ozone showed a typical diurnal variation. During the measuring period the average values ranged closer to 50 ppbv, but typically, the minimum was around 20 ppbv with a maximum of 80 ppbv. The NO₂ concentrations (Fig.2b) averaged at 8.2 ppbv. NO₂ values were typically varied between 1 and 51.9 ppbv, and maximum of 51.9 ppbv appeared on June 2, 2006.

Nighttime measurement of NO₃ was performed for a week. The maximum value of 43.7 pptv appeared on June 2, 2006, and NO₂ also reached a maximum value at this time. Fig.2c shows the time series NO₃ concentrations with an average concentration of 15.6 pptv.

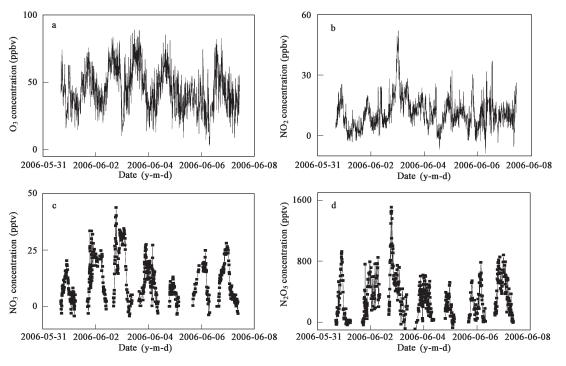


Fig. 2 Time series of O₃ (a), NO₂ (b), NO₃ (c), and N₂O₅ (d) concentration.

Although N_2O_5 could not be directly measured by the DOAS technique, its equilibrium concentration was calculated from the measured levels of NO₂, NO₃, and temperature (11). N_2O_5 concentrations varied from 5 pptv to 1578 pptv. As shown in Fig. 2d, the mean N_2O_5 concentration was about 380 pptv.

3.2 Meteorological data

Temperature (*T*), relative humidity (RH), wind speed (WS), and wind direction (WD) are shown in Fig.3. Usually, low wind speeds prevailed over the measurement period, wind speed ranged up to 4 m/s at an average of 1.4 m/s. The dominant wind direction was east and northwest appearing during more than 80% of the nighttime cases. Thus the measurement site was hardly affected by urban pollution from southeast Hefei. The relatively unpolluted air masses from ambient agricultural areas should have reached the measurement site. The temperature and relative humidity showed a typical diurnal variation, with mean values of 298 K and 82%, respectively. Both quantities showed high relative humidity and low temperatures during nighttime.

3.3 NO₃ production rate and lifetime

The production rate P_{NO_3} was calculated from reaction (1) using the measured levels of NO₂ and O₃. The production rate varied from $8 \times 10^5/(\text{cm}^3 \cdot \text{s})$ to $2.98 \times 10^7/(\text{cm}^3 \cdot \text{s})$ (Fig.4a). Maybe there was some direct correlation between the production rates of nitrate radicals and their concentrations, which will be discussed in the following.

To obtain a measure of the depletion of NO_3 radicals, it was interesting to inspect its lifetime, which is shown in Fig.4b. Generally, the NO_3 lifetime ranged between several seconds and a maximum value of about 698 s, which

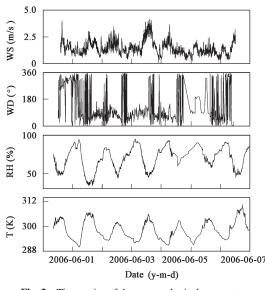


Fig. 3 Time series of the meteorological parameters.

appeared on June 4, 2006. The mean NO_3 lifetime was observed at about 96 s.

3.4 Nature of the NO₃ possible sinks during this campaign

Nature of the NO₃ possible sink during this campaign was obtained by analyzing the correlation between NO₃ concentrations and its production rate and that between the NO₃ lifetime and NO₂ concentrations, respectively (Allen *et al.*, 1999; Heintz *et al.*, 1996; Geyer *et al.*, 2001; Vrekoussis *et al.*, 2003). Correlation studies were a powerful tool to get qualitative information, whether NO₃ was depleted directly or indirectly (via N₂O₅) during this campaign. Considering a simple reaction scheme with

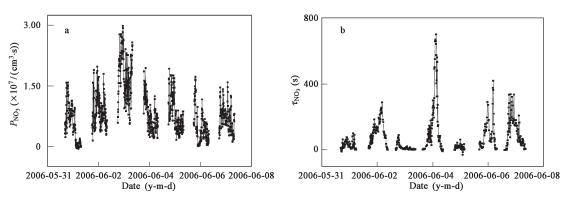


Fig. 4 Time series of NO₃ production (a) and τ_{NO_3} lifetime (b).

the NO₃ production Reaction (1), the equilibrium between NO₃ and N₂O₅, and two different removal paths of NO₃, (a) direct and (b) indirect loss, with corresponding NO₃ degradation frequencies f_{dir} and f_{indir} , the NO₃ and N₂O₅ concentrations were given by the following equations (Allen *et al.*, 1999; Heintz *et al.*, 1996; Geyer *et al.*, 2001; Vrekoussis *et al.*, 2003):

$$k_1 C_{\rm NO_2} C_{\rm O_3} + k_{-9} C_{\rm N_2O_5} = f_{\rm dir} C_{\rm NO_3} + k_{+9} C_{\rm NO_2} C_{\rm NO_3} \qquad (12)$$

$$k_{+9}C_{\rm NO_2}C_{\rm NO_3} = f_{\rm indir}C_{\rm N_2O_5} + k_{-9}C_{\rm N_2O_5}$$
(13)

Eq.(13) indicated that the "effective" equilibrium constant K_{eq} (9) slightly decreased in the presence of N₂O₅ sinks. Both Eqs.(12) and (13) could easily be combined, yielding:

$$C_{\rm NO_3} = C_{\rm NO_2} C_{\rm O_3} k_1 \times (f_{\rm dir} + C_{\rm NO_2} k_9 \frac{f_{\rm indir}}{k_{-9} + f_{\rm indir}})^{-1} \approx (14)$$
$$P_{\rm NO_3} \times (f_{\rm dir} + C_{\rm NO_2} K_{\rm eq} f_{\rm indir})^{-1}$$

For conditions where the loss of NO₃ proceeded only via direct sink ($f_{indir} = 0$), Eq.(14) is reduced to:

$$C_{\rm NO_3} = P_{\rm NO_3} \times f_{\rm dir}^{-1} \tag{15}$$

In the case of negligible direct sinks of the nitrate radical $(f_{\text{dir}} = 0)$, an indirect dependency of the concentrations of NO₃ and NO₂ was obtained from Eq.(13) yielding an inverse correlation of NO₂ and NO₃:

$$C_{\rm NO_3} = P_{\rm NO_3} \times (C_{\rm NO_2} K_{\rm eq} f_{\rm indir})^{-1}$$
(16)

$$\tau_{\rm NO_3}^{-1} = C_{\rm NO_2} \times K_{\rm eq} \times f_{\rm indir} \tag{17}$$

3.4.1 Reaction with NO

The reaction of NO₃ with NO was very unlikely to be an NO₃ sink on the outskirts of Hefei because of the expected low values of NO during nighttime. This is assumed for two reasons, because of the absence of direct NO sources near the measurement site and the rapid reaction of NO with ozone at typical O₃ levels (50 ppbv), as the measurement was on the outskirts of Hefei, which converts NO to NO₂ in an order of minutes. Thus, the impact of NO-polluted air, contributing to NO₃ loss could probably be neglected.

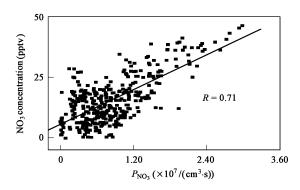


Fig. 5 Correlation of NO₃ production rate and NO₃ concentrations.

3.4.2 Reaction with VOCs

To one's knowledge only reactions with biogenic VOCs have played the important role of direct scavengers of NO₃ in the continental boundary layer during earlier measurement campaigns (Heintz *et al.*, 1996; Geyer *et al.*, 2001), especially in summer. Unfortunately, VOCs were not measured during this campaign. However, the probable sink could be drawn from the supporting parameters.

Following expression (15) of a direct correlation between NO₃ concentrations and its production rate predicted direct sinks. Fig.9 shows the correlation of NO₃ concentration and P_{NO_3} . A clear positive correlation was found. The coefficient *R* of the correlation was 0.71. This analysis pointed out that the contribution of direct sinks (e.g., NO₃–VOCs reactions) might be dominant during this campaign.

3.4.3 Indirect loss of NO₃ via N₂O₅

In the case of negligible direct sinks of the nitrate radical, an indirect dependency of the concentrations of NO₃ and NO₂ was obtained from Eq.(17), yielding an inverse correlation of NO₂ and the lifetime of NO₃. Fig.6 shows the lifetime of NO₃ as a function of the concentration of NO₂. The analysis was restricted to data with NO₃ and NO₂ above the detection limits. A linear fit was performed for this data yielding an indirect dependency at a correlation coefficient R = -0.31.

The correlation coefficient R of nitrate radical concentration and P_{NO_3} was 0.71, whereas, R of the radical lifetime versus NO₂ concentration was -0.31. This analysis pointed out that the contribution of indirect sinks was dess

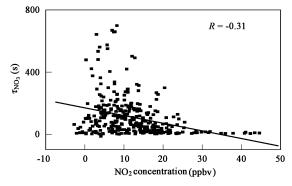


Fig. 6 Correlation of the NO₃ lifetime and NO₂ concentrations.

important, although direct sinks were predominant during this campaign.

3.5 Comparison with other observations in the boundary layer

The results of this campaign were compared with observations in Lindenberg ($14^{\circ}07'E$, $52^{\circ}13'N$), Germany (Geyer *et al.*, 2001). Similar removal processes for NO₃ were found in Table 1, which were direct sinks in June, for they were in a similar condition. Levels of NO₂ and O₃ were higher during this study, perhaps lending support to the enhanced values of NO₃ and a shorter lifetime during this campaign (Table 2).

Table 1	Comparison	of the NO ₃ in the	boundary layer
---------	------------	-------------------------------	----------------

Average values	Continental Hefei (June)	Continental Lindenberg (May–Sep.)
NO ₃ (pptv)	15.6	5.7
$\tau(s)$	96	130
Major removal path	Direct	Direct (by monoterpenes)
Reference		Geyer et al., 2001

 Table 2
 Comparison of the NO2, O3, and NO3 in the continental boundary layer

Site of	Coordinates	Average levels		
observation		NO ₂ (ppbv)	O ₃ (ppbv)	NO ₃ (pptv)
Lindenberg Hefei	14°07′E, 52°13′N 117°23′E, 31°86′N	3.9 8.2	32 50	5.7 15.6

4 Conclusions

The concentrations of NO₃, NO₂, and O₃ were simultaneously measured by LP-DOAS for a week on the outskirts of Hefei, China. The average concentration of NO₃ was 15.6 pptv with an average lifetime of 96 s, whereas, NO₃ production rates varied from $8 \times 10^5/(\text{cm}^3 \cdot \text{s})$ to 2.98 $\times 10^7/(\text{cm}^3 \cdot \text{s})$. Moreover, the calculated N₂O₅ concentration was about 380 pptv. The correlation coefficient *R* of NO₃ concentration and *P*_{NO3} was 0.71, whereas, the correlation

coefficient of the radical lifetimes versus NO₂ concentrations was R = -0.31. This analysis pointed out that the contributions of indirect sinks were less important, whereas, those of the direct sinks were predominant, during this campaign.

Acknowledgements

This work was supported by the National Hi-Tech Development Program (863) of China (No. 2005AA641010). The authors would like to thank the DOAS group for their help.

References

- Allan B J, Carslaw N, Coe H, Burgess R A, Plane J M C, 1999. Observations of the nitrate radical in the marine boundary layer. *J Atmos Chem*, 33: 129–154.
- Amekudzi L K, Sinnhuber B M, Sheode N V, Meyer J, Rozanov A, Lamsal L N et al., 2005. Retrieval of stratospheric NO₃ vertical profiles from SCIMACHY lunar occultation measurement over the Antarctic. J Geophys Res, 110: D20304. doi:10.1029/2004JD005748.
- Bey I, Aumont B, Toupance G, Toupance G, 2001. A modeling study of the nighttime radical chemistry in the lower continental troposphere: 2. Origin and evolution of HOx. J Geophys Res, 106: 9991–10001.
- Carslaw N, Carpenter L J, Plane J M C, Allan B J, Burgess R A, Clemitsshaw K C, Coe H, Penkett S A, 1997. Simultaneous observations of nitrate and peroxy radicals in the marine boundary layer. J Geophys Res, 102: 18917–18933.
- Geyer A, Alicke B, Mihelcic D, Stutz J, Platt U, 1999. Comparison of tropospheric NO₃ radical measurements by differential optical absorption spectroscopy and matrix isolation electron spin resonance. *J Geophys Res -Atmospheres*, 104(D21): 26097–26105.
- Geyer A, Alicke B, Konrad S, Stutz J, Platt U, 2001. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin. J Geophys Res, 106(D8): 8013–8025.
- Heintz F, Platt U, Flentje H, Dubois R, Platt U, 1996. Long-term observation of nitrate radicals at the Tor Station, Kap Arkona (Rügen). J Geophys Res, 101: 22891–22910.
- Li S W, Liu W P, Xie P H, Li A, Qin M, Dou K, 2007. The measurement of nightime nitrate radical in the atmosphere with long path differential optical absorption spectroscopy. Advance in Atmospheric Sciences, 24(5): 875–880.
- Mclaren R, Salmon R A, Liggio J, Hayden K L, Anlauf K G, Richard L W, 2004. Nighttime chemistry at a rural site in the Lower Fraser valley. *Atmospheric Environment*, 38: 5837–5848.
- Mihelcic D, Klemp D, Müsgen P, Päsgen H W, Thomas A V, 1993. Simultaneous measurements of peroxy and nitrate radical at Schauinsland. J Atmos Chem, 16: 313–335.
- Noxon J F, 1983. NO₃ and NO₂ in the mid-Pacific troposphere. *J Geophys Res*, 88: 11017–11021.
- Platt U, Alicke B, Dubois R, Geyer A, 2002. Free radicals and fast photochemistry during BERLIOZ. J Atmos Chem, 42: 359–394.
- Smith N, Plane J M C, Nien C F, Solomon P A, 1995. Nighttime radical chemistry in the San Joaquin valley. Atmos Environ, 29: 2887– 2897.
- Wood E C, Bertram T H, Wooldbrige P J, Cohen R C, 2005. Measurements of NO₃, N₂O₅, O₃ east of the San Francisco Bay. *Atmos Chem Phys Discuss*, 5: 483–491.
- Vrekoussis M, Kanakidou M, Mihalopoulos N, Crutzen P J, Lelieveld J, Perner D, Berresheim, Baboukas E, 2003. Role of the NO₃ radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign. *Atmos Chem Phys Discuss*, 3: 3135– 3169.
- Vrekoussis M, Kanakidou M, Mihalopoulos N, Crutzen P J, Lelieveld J, Perner D, Berresheim, Baboukas E, 2004. Role of the NO₃ radicals in oxidation processes in the eastern Mediterranean troposphere during the MINOS campaign. Atmos. *Chem Phys*, 4: 169–182.