Fractal analysis of polyferric chloride-humic acid (PFC-HA) flocs in different topological spaces

WANG Yili¹*, LU Jia¹, DU Baiyu¹, SHI Baoyou², WANG Dongsheng²

1. College of Environmental Science and Engineering, The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China. E-mail: wangyilimail@126.com
2. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

Abstract

The fractal dimensions in different topological spaces of polyferric chloride-humic acid (PFC-HA) flocs, formed in flocculating different kinds of humic acids (HA) water at different initial pH (9.0, 7.0, 5.0) and PFC dosages, were calculated by effective density-maximum diameter, image analysis, and N₂ absorption-desorption methods, respectively. The mass fractal dimensions (Dₘ) of PFC-HA flocs were calculated by bi-logarithm relation of effective density with maximum diameter and Logan empirical equation. The Dₘ value was more than 2.0 at initial pH of 7.0, which was 11% and 13% higher than those at pH 9.0 and 5.0, respectively, indicating the most compact flocs formed in flocculated HA water at initial pH of 7.0. The image analysis for those flocs indicates that after flocculating the HA water at initial pH greater than 7.0 with PFC flocculant, the fractal dimensions of Dₘ for dried powders of PFC-HA flocs formed in HA water with initial pH 9.0 and 7.0 were all close to 2.9421, and the Dₘ values of flocs formed at initial pH 5.0 were less than 2.3746. It indicated that the pore surface fractal dimensions of PFC-HA flocs dried powder mainly show the irregularity from the mesopore-size distribution and macropore-size distribution.

Key words: polyferric chloride-humic acid (PFC-HA) flocs; topological spaces; fractal dimensions; effective density; image analysis; pore surface fractal

Introduction

Humic acids (HAs) are one of the main constituents of natural organic matter (NOM) in surface waters (Edzwald, 1993; Edzwald and Tobiason, 1999; Jekel, 1986). It has been recognized that NOM is the primary precursor of many important disinfection byproducts (DBPs) formed during water chlorination. DBPs, such as trihalomethanes (THMs), haloacetic acids (HAAs), are suspected carcinogens, which pose great health risks to water consumers (Edzwald, 1993; Edzwald and Tobiason, 1999; Jekel, 1986). The United States Environmental Protection Agency has proposed that enhanced coagulation is a best available technology (BAT) for NOM removal. Extensive previous studies have paid the most attention to the reaction behavior between FeCl₃ and HAs (Edzwald, 1993; Edzwald and Tobiason, 1999; Jacangelo et al., 1995). The results proved that FeCl₃ had good performance on HAs removal during enhanced coagulation process. However, a few studies focused on the HAs removal and coagulated flocs with polyferric chloride (PFC), an inorganic polymer flocculant (IPF), which had a good performance on particle removal from natural water or wastewater. These research works show that PFC has good performance on HAs removal (Wang et al., 2006a, 2006b), and the formed PFC-HAs flocs with fractal morphology have an important effect on HAs removal also.

A review of previous work shows floe fractal properties, such as mass fractal or fractal characteristics under different dimensions, could give some hints on the formation dynamics and the microstructure of flocs induced by coagulants. Generally, a mass fractal may have some influence on bulk physical structural characteristics, such as flocc density, settling rates, and flocc strength (Gregory, 1997; Li and Logan, 2001; Serra and Logan, 1999). A two-dimensional fractal dimension could indicate the compact or loose structure of flocs, and floe irregular boundary could have positive relation with the one-dimensional fractal characteristics (Feder, 1988; Gregory, 1997; Jiang and Logan, 1991; Li and Logan, 2001; Mandelbrot, 1982; Serra and Logan, 1999). In fact, the physical and chemical
properties of floc surface also have an important effect on the kinetic growing of flocs, and more irregular and rough surfaces will imply high collision and attachment rates between different flocs in flocculation/flotation and filtration etc. However, the surface fractal dimension as an indication on the irregularity and roughness of surfaces (Avnir et al., 1983, 1985; Douglas, 1989; Fripiat et al., 1986; Neimark and Unger, 1993; Pfeifer and Obert, 1989; Pfeifer et al., 1989; Russ, 1994; Wang, 2006b, 2007) has rarely been reported in above coagulation process.

In this article, the fractal dimensions of polyferric chloride humic acid (PFC-HA) flocs in different topological spaces were studied.

1 Materials and methods

1.1 Humic acid solutions

Solutions of test water were prepared using dissolved HA reagent (Tianjin Jinke Fine Chemical Institute, China) in deionized water and filtrated with a 0.45-μm membrane, then diluted with tap water of equal volume, corresponding to a mass concentration 4.79 mg/L (as dissolved organic carbon (DOC)) and 0.33 cm−1 (UV254) was performed. A 1 000-mL solution sample was used in the coagulation jar test. The initial pH of these solutions were kept at 9.00 ± 0.05, 7.00 ± 0.05, 5.00 ± 0.05, respectively. Moreover, the turbidity of these solutions was close to 1.12 NTU (Turbidimeter 2100N, HACH, USA).

1.2 Coagulant

Polyferric chloride (Tianjin Tianshui Water Purifying Ltd., China) was used as coagulant. PFC, with basicity (OH/Al molar percentage) 15.4%, contained 10.4% (W/W) Fe2O3 and was diluted to 0.1761 mol/L solution with ultrapurified water for use.

1.3 Apparatus and procedures

1.3.1 Jar test

Coagulation experiments were carried out by performing a series of jar tests. A JTY variable-speed jar tester (Tangshan Dachang Chemical Ltd., China) was used with 50 mm × 40 mm flat paddle impellers with cylindrical jars containing 1 L sample. Two speeds were used with a rapid mix at 200 r/min for 1.0 min, followed by a slow stir phase at 30 r/min for 15 min. Then, the flocs were allowed to settle for 30 min, after measurements of UV254, turbidity measurements were taken. A 50-mL supernatant collected from just below the water surface was analyzed for UV254 using a UV-Vis spectrum meter (UV8500, Shanghai Techcomp Ltd., China), and turbidity was measured at the same time. In addition, the pH of supernatant was measured. During this stage, UV254 removal was used as an indicator of NOM removal. Three kinds of flocs were produced at each optimum coagulant dosage. When initial pH was 9.0, 7.0, and 5.0, the corresponding optimum PFC dosages were 22.93, 14.20, and 14.20 mg/L (as Fe3+), respectively, for HA solution.

1.3.2 Floc settling rate and fractal dimension

The experimental apparatus for the settling of flocs consists of a Pyrex glass column (Fig. 1). The column is 400 mm in height to ensure that the terminal settling velocity could be reached, and 30 mm in radius was set to neglect the wall effect on aggregate settling. During each run of the settling-coagulation experiments, a floc was introduced into the top of the column, which was filled with deionized water. After the slow mixing, flocs were withdrawn from the stirred tank. To ensure that the free water within the flocs was exactly the same in density as that in the setting column, prior to being introduced into the setting column, the flocs were transferred in series through two Petri dishes of water identical to that used for making solution placed in the column using a wide mouthed pipet. Flocs that broke up during any transfer steps were discarded.

Images of floc, while passing through the observation region in the Pyrex glass-settling column, were captured using a microscope objective (AVENIR TV Zoom Lens SR12575, 12.5 mm–75 mm F1.8, Japan) connected with a HV1302UM charge-coupled device (CCD) camera (China Daheng Group Corporation, Beijing Image Vision Technology Branch) and a computer. Image analysis software (MiVnt, China Daheng Group Corporation, Beijing Image Vision Technology Branch) was used to determine the floc settling velocity and had been calibrated using a yardstick. The image grabber was manually triggered to take a series of 20 images. The time between each frame was set at 1 s. This indicates that the distance traveled by the floc could be calculated per frame and therefore per time period, thus giving a settling velocity. The equivalent diameter of each floc was recorded with another HV1302UM charge-coupled device (CCD) camera after it settles to the bottom of this column and had been calibrated using a coin for approximately 120 aggregates for each set of coagulation conditions.

1.3.3 Floc image acquisition and processing

To obtain the floc images with high resolution, a image processing system (Fig. 2) was built, and its main components include a computer-controlled digital CCD camera (China Daheng Group Corporation, Beijing Image Vision Technology Branch), Computar Macro Zoom lens (MLM-
3XMP, Goyo Optical Inc., Japan), lighting provided by a stroboscopic lamp, image acquisition, and image analysis software. The strobe light was placed on the opposite side of the jar from the camera to provide back-lighting, which produces particle images as shadows. As a focused floc was introduced into a colorimetric tube filled with deionized water and passed through the observation region in the colorimetric tube, its images were recorded by computer-controlled digital CCD camera.

1.3.4 Fractal geometry in different topological space

Geometric characteristics were derived for the images collected after slow-stirring stage at optimum dosage of coagulant. Unlike spherical particles that can be described by a single parameter of diameter only, nonspherical particles can be characterized in many ways. The software then determines the area, the perimeter, and the second-order moments of the image for each floc.

The effective density of floc can be deduced from its setting rate, and the mass fractal dimension can be calculated by regression analysis of the logarithm of the effective density versus the logarithm of the characteristic length, such as the diameter of equivalent circle and long axis of the particle image (Gregory, 1997; Wang and Tambo, 2000). When Reynolds numbers of a setting floc were between 0.1 and 1.0, the Logan empirical formula (Li and Logan, 1999) was used to calculate the fluid drag coefficient \( C_D \). At other large Reynolds numbers, Allen or Logan empirical formulas (Yan and Fan, 1999) could be used to estimate \( C_D \). If \( C_D \) was determined, the effective density of a floc could be given through its relation with the setting rate.

The one-dimensional fractal dimension of flocs was calculated by regression analysis of the logarithm of their perimeter versus the logarithm of their corresponding characteristic length. The two-dimensional fractal dimension of flocs was calculated by regression analysis of the logarithm of their projected area versus the logarithm of their corresponding characteristic length or perimeter (Jin and Wang, 2001). In this work, the long diameter of the particle image was taken as the characteristic length. The three-dimensional fractal dimension of flocs cannot be calculated in a similar manner as \( D_2 \) since aggregate volume cannot be measured directly with the present apparatus. However, aggregate volume can be estimated by assuming thickness in the direction normal to the viewing direction. Thus, the equivalent spheres and ellipsoid were used to estimate floc volume. Once their volumes were calculated, \( D_3 \) could be obtained from regression analysis of these volumes versus their corresponding characteristic length similar to the procedure for \( D_2 \) (Jin and Wang, 2001). This method of calculating \( D_3 \) essentially represents a hypothesis that information on three dimensional characteristics can be extracted from a two-dimensional image.

1.3.5 Cryofixation and vacuum drying of PFC-HA flocs

Cryofixation of PFC-HA flocs samples were carried out by plunge freezing in liquid nitrogen at 77 K. A 15-mL plastic centrifugal tube containing 10 mL flocculated water with flocs was plunged in liquid-nitrogen tank for 30 min. The cryofixation samples were put in the vacuum-freeze dryer (FD-1A, Beijing Boyikang Laboratory Instruments Ltd., China) for 24–48 h. Sublimation of the ice formed from void or interstitial water of the sample was then obtained by the vacuum-freeze drying process (Negre et al., 2004). Then, the dry floc samples were obtained and stored in a desiccator.

1.3.6 Analytical methods

The surface area and pore size distribution of the dried PFC-HA powder have been measured by nitrogen adsorption using ASAP 2000 (Micromeritics, USA).

1.3.7 Pore surface dimension

To evaluate the pore surface fractal dimension of PFC-HA, flocs have been performed using a well-established method based on the fractal version of the Frenkel-Halsey-Hill (FHH) equation and thermodynamic equation. The length scale, where fractal behavior was determined from fractal FHH equation plots, was also computed according to the references (El Shafei et al., 2004; Neimark and Unger, 1993; Wang et al., 2006b, 2007).

2 Results

2.1 Fractal dimensions in three-dimension topological space-mass fractal dimension

Figure 3 shows the regression plot of the logarithm of the effective density \( \rho_e \) of the flocs at initial pH 7.0 versus the diameter of equivalent circle \( d_e \) or long diameter of their images \( d_L \). The effective densities were given when using Logan empirical equations for fluid drag coefficient \( C_D \) calculation. Then, according to Eq. (1), the mass fractal dimension \( D_3 \) can be calculated from the slope of the regression lines.

\[
\rho_e \propto d_L^{D_3-3}
\]

where, \( \rho_e \) is the effective density of floc and \( d_L \) is the diameter of equivalent circle or long diameter of floc. The regression plots for flocs at initial pH 9.0 and 5.0 had the similar shape to that at initial pH 7.0 and were omitted. The mass fractal dimensions of flocs at these three situations were given in Table 1. It is easily observed that the correlation coefficient \( r \) of linear regression of the logarithm of the effective density of flocs calculated by Logan empirical formulas versus long diameter of their images was higher than others. Therefore, the mass fractal dimensions can be calculated by the logarithm of the effective density of flocs calculated by Logan empirical formulas versus long diameter of their images. The mass...
fractal dimension of flocs at initial pH = 7.0 is higher than that at initial pH = 9.0, and the least mass fractal dimension was found for flocs at initial pH = 5.0.

2.2 Fractal dimensions based on floc images

To demonstrate the effect of coagulant dosages on the fractal dimensions of flocs, Table 2 shows that the fractal dimensions and average diameters in the different topological spaces of PFC-HA flocs formed under different PFC dosages. For HA water with initial pH 9.0, all the fractal dimensions $D_1$, $D_2$, $D_3$ in the different topological spaces of flocs continue to decrease as the PFC dosage increases. $D_2$ based on the logarithm of areas (A) versus long diameter ($\log A$ vs. $\log d_1$) of floc images were higher than those based on the logarithm of areas versus perimeters (P) ($\log A$ vs. $\log P$) of floc images. $D_3$ values were calculated by the logarithm of equivalent sphere volumes ($V_{sphere}$) or equivalent ellipsoid volumes ($V_{ellipsoid}$) versus long diameter of floc images. In general, equivalent ellipsoid volumes may give a more accurate estimation for volume. The average diameters fluctuated as the PFC dosage increases. For HA water with initial pH 7.0, only the fractal dimensions $D_2$ based on ($\log A$ vs. $\log d_1$) relation and $D_3$ based on ($\log V_{sphere}$ vs. $\log d_1$) relation continue to decrease as the PFC dosage increases, others fluctuate as the PFC dosage increases. For HA water with initial pH 5.0, all the fractal dimensions fluctuate as PFC dosage increases. In this work, the maximum arithmetic average diameter for flocs was about 2.31 mm in flocculated HA water at initial pH 9.0 at PFC dosage of 22.93 mg/L (as Fe$^{3+}$). However, the maximum arithmetic average diameter of about 2.45 mm for flocs in flocculated HA water at initial pH 7.0 at PFC dosage of 5.46 mg/L (as Fe$^{3+}$) and at initial pH 5.0, the maximum arithmetic average diameter was given at PFC dosage of 3.28 mg/L (as Fe$^{3+}$) as 1.66 mm.

2.3 Pore surface fractal dimensions

The pore surface fractal dimensions of dried PFC-HA flocs powder were calculated by fractal FHH equation or thermodynamic equation, and the corresponding linear regressions plots are shown in Fig. 4. Sample 1 was cryofixation-vacuum-freeze-dried PFC-HA flocs in flocculated HA water at initial pH 9.0, and sample 2 and sample 3 were flocs in flocculated HA water at initial pH 7.0 and 5.0, respectively. The calculated pore surface

![Fig. 3](image_url)

Table 1  Mass fractal dimensions ($D_f$) of PFC-HA flocs with numbers of about 110–120

<table>
<thead>
<tr>
<th>Initial pH</th>
<th>($\log \rho$ vs. $\log d_1$)$^a$</th>
<th>($\log \rho$ vs. $\log d_1$)$^a$</th>
<th>($\log \rho$ vs. $\log d_1$)$^b$</th>
<th>($\log \rho$ vs. $\log d_1$)$^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 ± 0.05</td>
<td>2.20</td>
<td>0.3359</td>
<td>2.23</td>
<td>0.415</td>
</tr>
<tr>
<td>7.00 ± 0.05</td>
<td>2.69</td>
<td>0.1428</td>
<td>2.56</td>
<td>0.2360</td>
</tr>
<tr>
<td>5.00 ± 0.05</td>
<td>1.70</td>
<td>0.6089</td>
<td>1.97</td>
<td>0.3241</td>
</tr>
</tbody>
</table>

$^a$ Allen empirical formula; $^b$ Logan empirical formula.

Table 2  Fractal dimensions and average diameters in the different topological spaces of PFC-HA flocs

<table>
<thead>
<tr>
<th>Initial pH</th>
<th>PFC (mg/L, as Fe$^{3+}$)</th>
<th>$D_1$ ($\log P$ vs. $\log d_1$) ($R^2$)</th>
<th>$D_2$ ($\log A$ vs. $\log d_1$) ($R^2$)</th>
<th>$D_3$ ($\log V_{sphere}$ vs. $\log d_1$) ($R^2$)</th>
<th>$D_3$ ($\log V_{ellipsoid}$ vs. $\log d_1$) ($R^2$)</th>
<th>Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 ± 0.05</td>
<td>3.28</td>
<td>1.17 (0.95)</td>
<td>1.97 (0.95)</td>
<td>1.66 (0.96)</td>
<td>2.96 (0.95)</td>
<td>1.95 ± 1.89</td>
</tr>
<tr>
<td>7.00 ± 0.05</td>
<td>5.46</td>
<td>1.11 (0.93)</td>
<td>1.82 (0.90)</td>
<td>1.61 (0.93)</td>
<td>2.73 (0.90)</td>
<td>2.06 ± 2.09</td>
</tr>
<tr>
<td>5.00 ± 0.05</td>
<td>14.20</td>
<td>1.17 (0.93)</td>
<td>1.46 (0.84)</td>
<td>1.24 (0.90)</td>
<td>2.19 (0.84)</td>
<td>1.29 ± 1.20</td>
</tr>
</tbody>
</table>
fractal dimensions of dried powder are given in Table 3. For HA water with initial pH 9.0 and 7.0, the pore surface fractal dimensions at optimum PFC dosage were 2.9421 and 2.9479 respectively, based on fractal FHH equation. A little difference was shown when using the nitrogen adsorption data and desorption data. However, for HA water with initial pH 5.0, the pore surface fractal dimension for these dried powder at optimum PFC dosage was 2.3746 based on fractal FHH equation with nitrogen adsorption data and 2.106 with nitrogen desorption data. When using thermodynamic equation, their pore surface fractal dimensions at optimum PFC dosage were different from that using fractal FHH equation and often show values higher than 3 (except at pH 5.0).

3 Discussion

In the floc settling-speed test, the geometric parameters of PFC-HA flocs at horizontal projected view and vertical projected view can be calculated using MiMnt software. The ratio between the average diameters (arithmetic average diameter or median diameter) for PFC-HA flocs at horizontal projected view and at vertical projected view were close to 0.85 (Table 4).

The settling rates and effective densities of flocs formed in different initial pH vs. equivalent diameters are shown in Fig. 5. Fig. 5a indicates that the settling rates of flocs formed in initial pH 5.0 were mostly less than the flocs with the same size formed under initial pH 7.0 and 9.0. The ratio among the average settling rates for those flocs in HA water at initial pH 9.0, 7.0, and 5.0 was 1.11:1:0.50. In Fig. 5b, except for one floc, the effective densities of other flocs formed in initial pH 5.0 were less than the flocs with the same size formed at pH 9.0 and 7.0. The ratio among the average effective density for those flocs in HA water at initial pH of 9.0, 7.0, and 5.0 was 1.11:1:0.98 for Allen empirical formula, and 1.09:1:1.42 for Logan empirical formula.

The mass fractal dimensions ($D_m$) of PFC-HA flocs, being more than 2.0, calculated by bi-logarithm relation of effective density-maximum diameter and Logan empirical formula at initial pH 7.0 had 11%–13% greater than those at other initial pH. Therefore, in comparison with the PFC-HA flocs in HA water at initial pH of 5.0 and 9.0, the most compact flocs were formed in HA water at initial pH of 7.0, and the very smaller and looser flocs were formed in HA water at initial pH of 9.0.

Table 4 shows the average diameter (arithmetic average diameter/median diameter) and their ratio of PFC-HA flocs at different projected views. For HA water with initial pH 5.0 and 9.0, the most compact flocs were formed in HA water at initial pH of 7.0, and the very smaller and looser flocs were formed in HA water at initial pH of 9.0.

Table 3 Pore surface fractal dimensions of cryofixation-vacuum-freeze-dried PFC-HA flocs powder

<table>
<thead>
<tr>
<th>Initial pH</th>
<th>FHH desorption equation</th>
<th>FHH desorption equation</th>
<th>Thermodynamic equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 ± 0.05</td>
<td>$2.9421 (R^2 = 0.9507)$</td>
<td>$2.9369 (R^2 = 0.9688)$</td>
<td>$3.3255 (R^2 = 0.9772)$</td>
</tr>
<tr>
<td></td>
<td>(0.7375 &lt; x &lt; 0.9939)</td>
<td>(0.552 &lt; x &lt; 0.9738)</td>
<td>(0.7375 &lt; x &lt; 0.9939)</td>
</tr>
<tr>
<td>7.00 ± 0.05</td>
<td>$2.9479 (R^2 = 0.9283)$</td>
<td>$2.9496 (R^2 = 0.9906)$</td>
<td>$3.6159 (R^2 = 0.9733)$</td>
</tr>
<tr>
<td></td>
<td>(0.8423 &lt; x &lt; 0.99)</td>
<td>(0.7436 &lt; x &lt; 0.9742)</td>
<td>(0.7392 &lt; x &lt; 0.9953)</td>
</tr>
<tr>
<td>5.00 ± 0.05</td>
<td>$2.9736 (R^2 = 0.9935)$</td>
<td>$2.106 (R^2 = 0.9779)$</td>
<td>$2.5367 (R^2 = 0.9975)$</td>
</tr>
<tr>
<td></td>
<td>(0.7388 &lt; x &lt; 0.9765)</td>
<td>(0.5547 &lt; x &lt; 0.9394)</td>
<td>(0.7388 &lt; x &lt; 0.9028)</td>
</tr>
</tbody>
</table>

$R^2$: linear definite coefficient; $x$: ratio of $p$ and $p_0$. 

Fig. 4 Fractal analysis according to fractal FHH isotherm equation and thermodynamic model for cryofixation-vacuum-freeze-dried PFC-HA flocs powder. (a) fractal FHH adsorption; (b) fractal FHH desorption; (c) thermodynamic equation. $N/N_0$: fractions of surface coverage; $P_0/P$: ratio of saturation and equilibrium pressures of the adsorbate; $S$: area of the “condensed adsorbate-vapor” equilibrium interface.
of other samples, and those parameters of sample 2 (initial pH 7.0) were higher than sample 1 to certain extent. The pore-size distribution (PSD) of sample 3 shows that some macropores exist in its surface. However, the BET specific surface area of these samples has a different trend from above surface geometrical parameters, and that of sample 2 was a little larger than that of sample 3, and the sample 1 (initial pH 9.0) possessed the smallest. In general, the pore surface fractal dimensions ($D_s$) for sample 1, sample 2, and sample 3 showed that the former two samples had more ability for space-filling than the later one.

Although the geometrical irregularities and roughness of the surface are the essential reasons for the obtained $D_s$, it is known that absorbed film volume and pore size distribution are used to define fractal in fractal FHH equation. The FHH type equation might be sensitive to the pore size distribution, therefore, pore size distribution can contribute significantly to the surface fractural dimension (El Shafei et al., 2004; Neimark and Unger, 1993; Sokolowska and Sokolowski, 1999). If the pore size distribution is fractal, the following Eq. (2) could be used to express these fractal relations.

$$J(r) = br^{2-D_s},$$

where, $J(r)$ is the pore size distribution function, $r$ is pore radius, and $D_s$ is the surface fractal dimensions determined by pore size distribution. Therefore, the corresponding $D_s$ for dried powder of PFC-HA flocs are listed in Table 6. Compare to the fractal dimensions for pore-size distribution, it can be shown that these pore surface fractal dimensions (Table 3) of PFC-HA flocs powder cannot totally represent the space-filling capability of irregular pore surface but mainly show the irregularity from the mesopore-size distribution and some macropore-size distribution.

In addition, compared with the fractal FHH equation, the significant high pore surface $D_s$ values for these samples were calculated through thermodynamic model, and most of them exceeded 3 (Table 3). Due to the hysteresis loop of a model in the $N_2$ absorption-desorption isotherm for sample 3 (Zhao, 2005), the close values of its pore surface fractural dimension could be determined by both thermodynamic model and fractal FHH adsorption equation if the fractal scale is reduced. This result is given in Fig. 6, the former fractal scale is in the range 3.17–7.12 nm and the
about 9, had a same tendency with the corresponding
from the horizontal projected images with magnification of
flocs formed under three initial HA solution pH, calculated
D
values of the flocs show 14%–43% di
ff
fective density can be estimated by
sphericity, even had di
ff
erent tendency as
erative density of PFC-HA flocs, being more
ower, calculated by bi-logarithm relation of effective
density-maximum diameter. Logan empirical formula at
ial pH 7.0 had 11% or 13% greater than those at other
ial pH 9.0 or 5.0, which indicated that the most compact
flocs were formed in HA water at initial pH 7.0. Both the
ighest value of \( D_t \) or effective density of PFC-HA flocs
could not express their highest settling rate completely.

The image analysis for PFC-HA flocs indicated that
fter flocculating the HA water at initial pH greater than
0 with PFC flocculant, the fractal dimensions of \( D_2 \) (logA
s. log(\( d_h \)) and \( D_3 \) (log\( V_{sphere} \) vs. log(\( d_h \)) of PFC-HA flocs
decreased with the increase in PFC dosages, and PFC-
HA flocs showed a gradually looser structure. However,
the fractal dimensions of PFC-HA flocs in flocculated
water at initial pH 5.0 fluctuated with the addition of
PFC. At the optimum dosage of PFC, the \( D_2 \) (logA
s. log(\( d_h \)) values of the flocs show 14%–43% difference
with their corresponding \( D_t \), even had different tendency as
the change of initial pH values. But the \( D_t \) values of the
flocs formed under three initial HA solution pH, calculated
from the horizontal projected images with magnification of
about 9, had a same tendency with the corresponding \( D_t \)
ones.

The pore-size distribution (PSD) of sample 3 (initial pH
5.0) shows that some marcopores exist in its surface, and
BET specific surface area of these samples indicates that
sample 1 (initial pH 9.0) possesses the smallest one among
them. Based on fractal FHH adsorption and desorption
equations, the pore surface fractal dimensions \( D_t \) for dried
powders of sample 1 (initial pH 9.0) and sample 2 (initial
pH 7.0) were all close to 2.9421, but \( D_s \) values of sample
3 (initial pH 5.0) were less than 2.3746. It appears that
these pore surface fractal dimensions of PFC-HA flocs
powder cannot fully represent the space-filling capability
of irregular pore surface but mainly show the irregularity
from the mesopore-size distribution and some marcopore-
size distribution.

4 Conclusions

The PFC-HA floc effective density can be estimated by
its settling-speed using Logan empirical formula and the
mass fractal dimensions \( D_t \) of PFC-HA flocs, being more
than 2.0, calculated by bi-logarithm relation of effective
density-maximum diameter. Logan empirical formula at
initial pH 7.0 had 11% or 13% greater than those at other
initial pH 9.0 or 5.0, which indicated that the most compact
flocs were formed in HA water at initial pH 7.0. Both the
highest value of \( D_t \) or effective density of PFC-HA flocs
could not express their highest settling rate completely.

The image analysis for PFC-HA flocs indicated that
after flocculating the HA water at initial pH greater than
7.0 with PFC flocculant, the fractal dimensions of \( D_2 \) (logA
s. log(\( d_h \)) and \( D_3 \) (log\( V_{sphere} \) vs. log(\( d_h \)) of PFC-HA flocs
decreased with the increase in PFC dosages, and PFC-
HA flocs showed a gradually looser structure. However,
the fractal dimensions of PFC-HA flocs in flocculated
water at initial pH 5.0 fluctuated with the addition of
PFC. At the optimum dosage of PFC, the \( D_2 \) (logA
s. log(\( d_h \)) values of the flocs show 14%–43% difference
with their corresponding \( D_t \), even had different tendency as
the change of initial pH values. But the \( D_t \) values of the
flocs formed under three initial HA solution pH, calculated
from the horizontal projected images with magnification of
about 9, had a same tendency with the corresponding \( D_t \)
ones.

The pore-size distribution (PSD) of sample 3 (initial pH
5.0) shows that some marcopores exist in its surface, and
BET specific surface area of these samples indicates that
sample 1 (initial pH 9.0) possesses the smallest one among
them. Based on fractal FHH adsorption and desorption
equations, the pore surface fractal dimensions \( D_t \) for dried
powders of sample 1 (initial pH 9.0) and sample 2 (initial
pH 7.0) were all close to 2.9421, but \( D_s \) values of sample
3 (initial pH 5.0) were less than 2.3746. It appears that
these pore surface fractal dimensions of PFC-HA flocs
powder cannot fully represent the space-filling capability
of irregular pore surface but mainly show the irregularity
from the mesopore-size distribution and some marcopore-
size distribution.

Acknowledgments

This work was supported by the National Natural
Science Foundation of China (No. 20407004, 50578012,
50178009), the High-Tech Research and Development
Program (863) of China (No. 2007AA06Z301), the Fok
Ying Tung Education Foundation of National Education
Ministry of China (No. 91078), the Beijing Municipal
Commission of Education Project, Program for New Cen-
tury Excellent Talents in University (No. NCET-06-0120),
the Beijing Nova of Science and Technology, Beijing Key
Subject (No. XK100220555).

References

dimensions between two and three II: Fractal surfaces of
Avnir D, Farin D, Pfeifer P, 1985. Surface geometric irregularity
of particulate materials: the fractal approach. Journal of
Colloid and Interface Science, 103: 112–123.
Douglas J F, 1989. How does surface roughness affect polymer-
Edzwald J K, 1993. Coagulation in drinking water treatment:
Particles, organics and coagulants. Water Science and
requirements and a broader view. Water Science and
Technology, 40(9): 63–70.


