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Abstract
A quantitative structure-activity relationship (QSAR) model on depuration rate constants (kd) of polychlorinated biphenyls (PCBs)

in freshwater mussel Elliptio complanata was successfully constructed using electrotopological state indices (ESI) and partial least
squares (PLS) regression. The cross validated Q2

cum and the correlation coefficient R for the model were determined to be 0.845 and
0.954, respectively. The satisfactory Q2

cum and R values indicated significantly high robustness and good predictive ability for the model.
The model was tested and found acceptable for the prediction of logkd (the logarithm of the depuration rate constants) by validation
set. According to the model, an increase in the values of S aasC, S5′ , S4, S5 and S4′ led to increased logkd, and a decrease in the values
of NCl, S2′ and S6 also resulted in increased logkd. Among these descriptors, NCl, S aasC, S5′ , S4 and S5 made significant contributions to
the value of logkd. These significant descriptors showed that the depuration of PCBs in Elliptio complanata may be mainly attributed
to an equilibrium partitioning process among compartments with different lipid contents, while the reactivity of PCBs with enzymes or
other molecules may play a subordinate role.
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Introduction

Polychlorinated biphenyls (PCBs), due to their high
hydrophobicity and low degradability, have now attracted
close international attention. Extensive applications of
PCBs since 1929 as heat transfer fluids, organic diluents,
plasticizers and paint additives have now led to their ubiq-
uitous existences in soil, water, sediment and organisms
(Mandalakis et al., 2008). Chronic exposure to PCBs may
cause a wide range of toxic and biological effects such as
immune deficiency, reproductive failure, teratogenesis and
abnormal behaviors in both animals and humans (Iwata et
al., 2004; Zhang et al., 2002).

Despite of the persistence of PCBs, they are found
to be depurated to different extents in aquatic organisms
(Drouillard et al., 2007; Morrison et al., 1995; O’Rourke
et al., 2004; Rodrı́guez-Ariza et al., 2003). The occurrence
of this biological process counteracts the effect of bioac-
cumulation more or less, and should thus be taken into
account in making any ecotoxicological risk assessment.
Once the contaminants are ingested by the bivalves, both
bioaccumulation and depuration processes begin simulta-
neously until chemical equilibrium is achieved between the
organisms and the surrounding environment. During the
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process of depuration, bivalves eliminate these xenobiotics
to water, feces, or some other surrounding media as well as
metabolizing by biotransformation (Drouillard et al., 2007;
Van der Linde et al., 2001). In the case of biotransforma-
tion, parent compounds are modified by enzyme-mediated
reactions into residual metabolites, which are more hy-
drophilic and, thus, possibly better excretable. It is thought
that the effects of biotransformation may also be adverse,
resulting in more toxic organic metabolites (Van der Linde
et al., 2001). Therefore, it is necessary to understand how
organisms depurate contaminants of persistent organic
pollutants (POPs) like PCBs.

Since the 1970s, a few researchers have studied the
depuration of PCBs in aquatic organisms. It has been
generally accepted that equilibrium partitioning is the
major factor determining the uptake and release rates of
lipophilic pollutants like PCBs in gill-breathing aquatic
animals (Drouillard et al., 2007; Van der Linde et al.,
2001). Among these animals, bivalves, as surrogates for
biomonitoring, have attracted great attention. Although
biotransformation in bivalves is much less extensive than
in higher invertebrates or vertebrates (Livingstone et al.,
1992), less chlorinated congeners (6 3Cl atoms) are re-
ported to be oxidized by cytochrome P450 isozymes to
quinones, that may undergo redox cycling (Mclean et al.,
2000). Highly chlorinated PCBs are relatively resistant
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to biotransformation, but have been found to under-
go transference among different biological compartments
(Rodrı́guez-Ariza et al., 2003; Antunes et al., 2007). In
addition, the degree of chlorination and the position of
chlorine substituents have been found to qualitatively and
quantitatively affect the toxicological properties of PCBs.
For example, in flounders and rats, PCBs with free meta-
(m-) and para-(p-) positions seem to favor elimination
(Goerke and Weber, 2001; Kato et al., 1980). Nevertheless,
the exact bio-depuration mechanism for PCBs is still
unclear.

Given the special position of mussels as biomonitors in
monitoring contaminant cycling in aquatic ecosystems, it
is desirable to determine the depuration rate coefficients
(kd) of PCBs to enhance the range of their use. Prior to
their use, it is essential to know the time for the organism
to reach equilibrium with surrounding environment. The
time to achieve the equilibrium may just be calculated from
the depuration rate constants of chemicals in reference
organisms. Even the deployment period as a biomonitor
is shorter than the time required for equilibrium, kd values
may be used in conjunction with the toxic exposure time
to adjust time-dependent residue concentrations to equilib-
rium values (O’Rourke et al., 2004). Accordingly, it is of
great importance to explore the depuration rate constants
of hazardous PCBs.

In order to expediently interpret the depuration in
bivalves with minimal expenses, the QSAR model is con-
sidered an effective tool. The main concept of the QSAR is
to formulate a model that can express chemical/biological
activities of compounds in terms of molecular descriptors.
With a good QSAR model, the important aspect of the
molecular structure may be screened out which significant-
ly affects molecular activity, and the activities of chemicals
can also be predicted in the absence of experimental
data. The model has been applied broadly in chemical
research areas, such as toxicity, reaction rate constant and
estrogen activity level determinations (Liu et al., 2003;
Long and Niu, 2007; Lv et al., 2008; OECD, 2009a, 2010).
However, previous QSAR models of the depuration rate
constants have been only constructed using octanol/water
partitioning coefficients (Kow) (Drouillard et al., 2007;
O’Rourke et al., 2004). And Kow values allow accurate
description of the liquid-liquid partitioning process but
are insufficient to describe partitioning process or other
complicated processes in organisms (Liu et al., 2003).
In comparison, the electrotopological state indices (ESI)
encode the intrinsic electronic state of the atom perturbed
by the electronic influence of all atoms in the molecule
within the context of topological character of the molecule.
Thus, ESI makes it possible to consider submolecular
influences which may contribute toward intermolecular
phenomena among biologically important molecules in
processes as bio-depuration. Models employing ESI facil-
itate visualization of reaction mechanisms at both atomic
and fragment levels (Hall and Kier, 1995). Using ESI,
many robust QSAR models have been developed (Liu et
al., 2006; Wang et al., 2007; Kar and Roy, 2010), however
as yet none has been developed for the estimation of

depuration rates of PCB congeners in bivalves.
Among various QSAR model-developing techniques,

Partial Least Squares (PLS) regression has been adopted
in the present study due to its strength to analyze data
with noisy, collinear and even incomplete variables in both
the independent and dependent variables. In addition, PLS
has the desirable quality of improving parameter precision
with increases in the number of relevant observations
(Svante et al., 2001).

In this article, a QSAR model for the depuration rates
of PCB congeners in the freshwater mussel, Elliptio com-
planata, was developed using ESI and PLS regression.
The speculations as to the mechanism of depuration in E.
complanata were also made and discussed.

1 Materials and methods

1.1 Data set

The depuration rate constants (kd) of 34 PCBs in
freshwater mussels (E. complanata) were cited from the
literature (Drouillard et al., 2007; O’Rourke et al., 2004)
and then converted into the form of logkd. The set of
34 PCB congeners considered in this study was divided
into two groups, called the training set (Table 1) and
the validation set (Table 2). PCB congeners included in
the validation set were randomly chosen, and at least
one PCB congener from each level of chlorination was
included in the validation set to ensure that sampling was
representative.

1.2 Descriptor generation

The E-state indices of all atoms in the compound molec-
ular skeleton were calculated following the method given
by Hall and Kier (1995). Besides, all atoms of the same

Table 1 Experimental and predictive logkd values of PCBs for the
training set

PCB congeners Observed logkd Predicted logkd Residuals

PCB 22 –1.15 –1.18 0.03
PCB 23 –1.38 –1.26 –0.12
PCB 42 –1.35 –1.34 –0.01
PCB 66 –1.51 –1.48 –0.03
PCB 74 –1.55 –1.63 0.08
PCB 87 –1.60 –1.76 0.16
PCB 91 –1.55 –1.51 –0.04
PCB 92 –1.68 –1.70 0.02
PCB 95 –1.54 –1.58 0.04
PCB 97 –1.64 –1.70 0.06
PCB 99 –1.66 –1.80 0.14
PCB 109 –1.59 –1.63 0.04
PCB 110 –1.60 –1.51 –0.09
PCB 118 –1.85 –1.80 –0.05
PCB 128 –1.72 –1.93 0.20
PCB 136 –1.75 –1.66 –0.09
PCB 138 –2.16 –2.07 –0.09
PCB 141 –2.16 –2.13 –0.02
PCB 146 –2.00 –2.01 0.01
PCB 151 –2.00 –1.94 –0.06
PCB 156 –2.05 –2.06 0.02
PCB 157 –2.30 –2.08 –0.22
PCB 173 –2.22 –2.27 0.05
PCB 178 –2.22 –2.17 –0.05
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Table 2 Experimental and predictive logkd values of PCBs for the
validation set

PCB congeners Observed logkd Predicted logkd Residuals

PCB 7 –0.96 –1.13 0.17
PCB 19 –1.08 –1.09 0.01
PCB 61 –1.50 –1.67 0.17
PCB 85 –1.72 –1.70 –0.03
PCB 105 –1.82 –1.70 –0.13
PCB 130 –1.16 –1.53 0.37
PCB 134 –1.10 –1.30 0.21
PCB 137 –2.22 –2.06 –0.16
PCB 149 –1.32 –1.89 0.57
PCB 179 –2.30 –2.04 –0.26

type were grouped and their ESI values were summed
to give the atom-type ESI. Likewise, the ESI values of
all atoms in a functional group were summed to give the
group-type E-state indices. The ESI descriptors considered
in this article consisted of the 12 numbered atom ESI,
named S n (n = 1, 2, 3, 4, 5, 6, 1′, 2′, 3′, 5′, 6′, according to
the primary structure of PCB molecule in Fig. 1), 3 atom-
type ESI and 2 group-type ESI. In addition, as an important
character of PCBs, the number of chlorine atoms (NCl) was
also included. The molecular skeleton and ESI of IUPAC
PCB-13 is exemplified in Tables 3 and 4.

1.3 Statistical analysis

The QSAR model with quantum chemical descriptors
was developed using PLS regression, as implemented
in the Simca-S package (Umetrics AB, Sweden). Model

Fig. 1 Primary structure for PCBs. o, m, p denote ortho, meta and para
positions, respectively.

Table 3 E-state indices for the molecular skeleton atoms of 3,4′-PCB*

Atom Atom Atom E-state Intrinsic E-state
ID structure type symbol state value

1 aaaC aaaC S 1 1.667 1.106
2 aCHa aaCH S 2 2.000 1.935
3 aCHa aaCH S 3 2.000 0.748
4 aCa- aasC S4 1.667 1.862
5 aCHa aaCH S5 2.000 1.937
6 aCHa aaCH S6 2.000 2.023
1′ aaaC aaaC S 1′ 1.667 1.123
2′ aCHa aaCH S2′ 2.000 1.980
3′ aCHa aaCH S 3′ 2.000 1.873
4′ aCHa aaCH S4′ 2.000 0.747
5′ aCa- aasC S5′ 1.667 1.873
6′ aCHa aaCH S 6′ 2.000 1.980

* Structure of 3, 4′-PCB (IUPAC No.13):

Table 4 Atom-type E-state indices and grouped ones of 3,4’-PCB

E-state indices E-state symbol E-state value

Atom-type E-state indices S aasC 3.724
S aaCH 15.46
S sCl 11.70

Grouped E-state indice S M 19.19
S SUM 30.89

dimensionality was determined by cross-validation. The
robustness and predictive power of the model were as-
sessed using Q2

cum (cumulative Q2). When Q2
cum is larger

than 0.5, the model is considered to have a good predictive
ability. Q2

cum can be calculated as Eq. (1)

Q2 = 1.0 −

∑

i

∑

m

(
Yim,obs − Yim,pred

)2

/
SS (1)

Q2
cum = 1.0 −


∏

∑

i

∑

m

(
Yim,obs − Yim,pred

) 2

/
SS


a

(2)

where, Yim,obs and Yim,pred denote the observed and pre-
dicted logkd values, respectively. i stands for different
observations in the training set, m stands for different
dependent variables (m = 1 for this study), SS is the
residual sum of squares of the previous component, and a
= 1, 2, ..., A (the number of PLS principle components). In
addition, the standard deviation (SD) was also adopted to
assess prediction precision of model. SD can be calculated
by Eq. (3):

SD =

√√
1

n − A − 1

n∑

i=1

(
Yim,obs − Yim,pred

)2
(3)

Model adequacy was mainly measured by the number
of PLS principal components (A), Q2

cum, the correlation
coefficient (R) between observed values and predicted
values, and the significance level (p). The best PLS model
was selected with respect to the statistics Q2

cum, R, p and
SD.

2 Results and discussion

2.1 Results

Based on the unscaled regression coefficients of the
independent variables and a constant transformed from
PLS regression, a QSAR regression model for the training
set was obtained for E. complanata as follows.

logkd = −2.17 − 1.26 × 10−1NCl+

1.58 × 10−1SaasC + 1.41 × 10−1S5′+

1.48 × 10−1S4 + 1.12 × 10−1S5−
8.30 × 10−4S2′ + 9.22 × 10−2S4′−
9.74 × 10−3S6

(4)

The concrete results of the model are listed in Table 5.
R2

X,adj,cum and R2
Y,adj,cum stand for the cumulative variance of

all the independent and dependent variables, respectively,
explained by the extracted components. Eigenvalue is
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Table 5 Model fitting results

A Eigenvalue R2
X,adj,cum R2

Y,adj,cum Q2
cum SD R p

1st 2.869 0.234 0.769 0.728 0.098 0.954 5.518 × 10−13

2nd 1.547 0.346 0.901 0.845

Fig. 2 Observed versus predicted logkd values for the model.

the eigenvalue that denotes the importance of the PLS
principal components. It can be concluded that two PLS
principle components were selected in the QSAR model,
which explain 34.6% and 90.1% of the variance for the
independent and dependent variables, respectively. The
higher eigenvalue of the first principle component in-
dicates its greater contribution to the model comparing
to the second one. Q2

cum value of 0.845 is much higher
than 0.5, indicating the inherent stability of the model.
A plot between the observed and the predicted logkd
values (Fig. 2) gives a correlation coefficient of 0.954.
The standard deviation for the model is 0.098, which is
about 5.51% of the average logkd (observed) for the PCB
congeners included in the training set. All the residuals for
PCB congeners in the training set are below 3SD. The high
correlation coefficient and the low standard deviation show
that the QSAR model is reliable and it can be used for
prediction.

Based on the QSAR model, logkd for the PCB congeners
in the validation set were predicted, as shown in Table 2.
the external prediction capability of the model was quan-
tified using the predictive squared correlation coefficient
(q2), average relative error (RE) and the root mean square
error of prediction (RMSEP) which measures the average
difference between predicted and experimental values at
the prediction stage. They were obtained by the following
equations.

RE =
1
n

n∑

j=1

[(
Y j,obs − Y j,pred

)/
Y j,obs

]
× 100% (5)

RMSEP =

√√
1
n

n∑

j=1

(
Y j,obs − Y j,pred

)2
(6)

q2 = 1 −

N∑
j=1

(
Y j,obs − Y j,obs

)2

N∑
j=1

(
Y j,obs − Y test

mean

)2
(7)

where, Y j,obs and Y j,pred represent the observed and pre-
dicted logkd values, respectively for the PCB congeners in
the validation set. Y text

mean represents the average of observed
logkd values in the whole test set and j stands for different
observations in the validation set. The q2 for the validation
was calculated to be 0.718, and the values of RE and
RMSEP set are 0.058% and 0.248, respectively. As shown
in Fig. 2, all residuals for PCB congeners in the validation
set are below 3SD except two compounds (PCB 130
and PCB 149). The same deviation appearing in other
modeling process of these data suggests that excessive
prediction residuals of the two compounds may be derived
from the original experiment (Xu et al., 2009). According
to the guidance document of the validation of the model
(OECD, 2009b; Schuurmann et al., 2008), QSAR model is
proved to be reliable.

2.2 Discussion

In the QSAR model, variable importance in the pro-
jection (VIP) is a parameter showing the importance of
a variable in a PLS model. Independent variables with
large values of VIP, larger than 1, are the most relevant
for explaining the dependent variable. In the developed
model, logkd is correlated to eight predictor variables NCl,
S aasC, S5′ , S4, S5, S2′ , S4′ and S6. Their corresponding VIP
values are 1.624, 1.122, 1.000, 0.917, 0.902, 0.806, 0.645
and 0.619, respectively. The VIP value for S4 and S5 are
very close to 1, thus descriptors of NCl, S aasC, S5′ , S4 and
S5 made great contributions to logkd. The increase in the
values of S aasC, S5′ , S4, S5 and S4′ leads to increased logkd,
while the decrease in the values of NCl, S2′ and S6 results in
increased logkd. The values of the ESI descriptors for PCB
congeners are listed in Table 6.

Previous publications have demonstrated that PCBs in
organisms may act in at least three ways (McKinney and
Waller, 1994). (1) Through the accumulation of high-
ly lipid-soluble, metabolically stable PCBs in lipid-rich
tissues or tissue compartments, which can be seen as
an equilibrium partitioning gradient, ranging from lipid-
rich compartments to water-rich compartments. (2) A
reversibly binding interaction of the PCB with specific
molecular sites of action such as receptors, enzymes. (3)
An irreversibly covalent binding interaction between the
PCB (probably a reactive metabolite) and target molecules
(particularly macromolecules such as DNA and proteins).
Different mechanisms involved in these actions would in
turn govern the depuration property of PCBs. Moreover,
because metabolic biotransformation in bivalves is much
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Table 6 E-state indices values for the descriptors entered in the model

PCB congeners S4 S5 S6 S2′ S4′ S5′ S aasC NCl

PCB 7 0.662 1.843 1.930 2.023 1.979 1.986 3.465 2
PCB 19 1.810 1.798 0.608 0.647 1.872 1.904 3.503 3
PCB 22 1.767 1.873 1.928 1.916 0.706 1.827 3.763 3
PCB 23 1.637 0.587 1.810 1.966 1.948 1.945 3.462 3
PCB 42 1.733 1.828 1.864 0.553 0.590 1.764 3.765 4
PCB 61 0.286 0.399 1.715 1.932 1.927 1.919 3.124 4
PCB 66 0.606 1.783 1.851 1.777 0.524 1.740 4.019 4
PCB 74 0.449 0.483 1.745 1.883 0.681 1.801 3.974 4
PCB 85 0.409 1.676 1.769 0.513 0.565 1.738 3.672 5
PCB 87 0.402 1.669 1.758 0.551 1.707 0.576 3.631 5
PCB 91 1.638 1.676 0.490 0.476 0.550 1.718 3.641 5
PCB 92 1.577 0.492 1.701 0.537 1.702 0.567 3.748 5
PCB 95 1.633 1.669 0.476 0.515 1.694 0.553 3.584 5
PCB 97 1.707 1.794 1.819 0.476 0.402 0.419 3.631 5
PCB 99 0.409 0.429 1.682 0.513 0.565 1.738 3.895 5
PCB 105 0.418 1.688 1.788 1.731 0.493 1.706 3.709 5
PCB 109 0.327 1.563 0.437 1.763 1.768 1.812 3.403 5
PCB 110 1.646 1.688 0.513 1.701 0.477 1.687 3.704 5
PCB 118 0.418 0.442 1.700 1.731 0.493 1.706 3.932 5
PCB 128 0.377 1.643 1.724 0.324 0.377 1.643 3.253 6
PCB 130 0.371 1.635 1.712 0.363 1.556 0.460 3.357 6
PCB 134 1.482 0.304 0.288 0.349 1.668 1.741 2.996 6
PCB 136 1.599 1.623 0.399 0.288 1.599 1.623 3.056 6
PCB 137 0.220 0.313 1.618 0.458 0.534 1.704 3.325 6
PCB 138 0.377 1.643 1.724 0.436 0.377 0.388 3.476 6
PCB 141 0.214 0.304 1.606 0.497 1.681 0.536 3.266 6
PCB 146 1.556 0.460 1.668 0.422 0.371 0.379 3.579 6
PCB 149 1.612 1.643 0.436 0.399 0.362 0.365 3.398 6
PCB 151 1.482 0.304 0.288 0.460 1.668 0.512 3.219 6
PCB 156 0.229 0.327 1.636 1.686 0.462 1.672 3.390 6
PCB 157 0.386 1.654 1.742 1.668 0.305 0.349 3.435 6
PCB 173 0.098 0.115 0.172 0.308 1.647 1.715 2.283 7
PCB 178 1.455 0.263 0.233 0.272 1.517 0.397 2.817 7
PCB 179 1.448 0.249 0.211 0.233 1.573 1.590 2.581 7

less extensive than in higher invertebrates or vertebrates
(Livingstone et al., 1992), it has been generally accepted
that equilibrium partitioning is the major factor in deter-
mining the uptake and release rates of lipophilic PCBs
in bivalves (Drouillard et al., 2007; Van der Linde et
al., 2001). Thus, via three sub-processes ways might the
structural properties of PCBs influence the depuration
rates, which can be interpreted by the QSAR model as
follows.

According to the model, the chlorine-atom number (NCl)
plays a significant role in PCBs depuration. This parameter
possesses the largest VIP value (1.624) among all of the
molecular descriptors. One negative aspect of NCl shows
that as the number of Cl-atom substitutes increases, the
rate of depuration decreases. This may be attributed to
restricted partitioning from lipid-rich tissues to water or
water-rich compartments, caused by the greater steric
hindrance effect and polarization brought on by Cl-atom
increases. On one hand, greater steric hindrance would pre-
vent the transfer of bulky PCB molecules from lipid-rich
tissues to water or water-rich compartments; on the other
hand, increases in polarization due to Cl-atom increases
would probably impart a preferred vector of polarization
to entire PCB molecule (Harper et al., 1993). This could
strengthen PCB-liquid binding considering that the vector
of polarization of water molecules is lower compared with
that of lipid molecules (McKinney and Waller, 1994). As a

result, highly lipid-soluble PCBs with greater chlorination
degree are more difficult to enter the water-soluble phase
to be eliminated.

With a great VIP value of 1.122, SaasC contributes sig-
nificantly to the model possibly representing the reactivity
of the PCB molecule with metabolic enzymes. As shown
in Fig. 3, the average SaasC value increases with enhanced
chlorination until the chlorine degree reaches 3–4 atoms,
and then decreases consistently with further increase of
substituted chlorines. With the positive influence of S aasC
indicated by the model, it might be deduced that the depu-
ration rate rises with an increase of chlorine degree when
NCl 6 3–4, while the trend reverses when NCl > 4. This
agrees with the previous hypothesis that highly chlorinated
PCBs are relatively resistant to biotransformation, while
less chlorinated congeners (6 3Cl atoms) are oxidized by
cytochrome P450 isozymes to quinones, that may undergo
redox cycling (Mclean et al., 2000).

In addition, S5′ , S4 and S5 are also of great importance
to the model. Given the primary structure of two phenyl
rings in the skeleton construction of the PCB molecule,
S5′ and S5 represent the ESI of meta-carbon, while S4
represents the ESI of para-carbon (Fig. 1). Due to the
strength of the Cl-polarization vector, the density of the
electron cloud among the C–Cl bond is greater in the
vicinity in the chlorine atom, leading to a decrease in the
ESI value of the carbon atom. Therefore, the introduction

http://www.jesc.ac.cn


jes
c.a

c.c
n

No. 10 Using electrotopological state indices to model the depuration rates of polychlorinated biphenyls······ 1549

Fig. 3 Average value of S aasC for PCBs with different chlorination
degree.

of further chlorines would result in a decrease in the ESI
of the binding carbon. Take S5′ for example, of all three
chlorinated PCBs (PCB16–PCB 39), the S5′ value of the
PCB with Cl-substitution at the 5′ position (PCB 34, S5′

= 0.609) is much less than that of others (S5′ is in the
range of 1.766–1.964). Accordingly, the Cl− influences
of S5′ , S4 and S5 on the depuration rates of PCBs are
shown in the negative effects of lateral (meta-, para-) Cl−

substitution. This correlates with the previously recognized
role of lateral chlorination in PCB binding interactions
and toxicity (McKinney et al., 1985, 1987; Rickenbacher
et al., 1986). This might be attributed to three factors.
First, bulky chlorine atoms in ortho-positions would hinder
the free rotation of the phenyl rings, creating potential
barriers to coplanar conformality which are higher for
ortho-substituted PCBs than lateral-substituted PCBs (E et
al., 2006; McKinney and Waller, 1994; Safe et al., 1985).
Therefore, lateral-substituted PCBs are more likely to be
found in coplanar form, which facilitates them “sticking
together” with other planar aromatic ring systems, such
as the heme system in hemoproteins or other planar
metabolic intermediates (McKinney and Waller, 1994).
These types of interactions would tend to prevent lateral-
substituted PCBs from partitioning into water or water-rich
compartments to be eliminated. Second, halogen atoms
like chlorine contain many electrons and are thus high-
ly polarizable. In PCB molecules, the most polarizable
chlorines are those contained in the lateral positions (McK-
inney and Waller, 1994). This is, no doubt, to facilitate
stacking interactions between halogen substituants and
hydrophobic macromolecules, making the PCB molecule
difficult to partition into the hydrophilic compartments.
Third, lateral-substituted PCBs possess weak oxidative
potential, displaying poor hydrophilicity and difficulties
in compartmental partitions, due to limited availability of
vacant meta-, para- positions that can provide sites for
oxidative metabolism (Kato et al., 1980). The disruptive
effects influences of S2′ and S6 (ortho-substitutions) as well
as the facilitating influences of S4′ (lateral-substitutions) in
this model are also in accord with this hypothesis.

3 Conclusions

A robust QSAR model for analysis of the depuration
rates of PCBs in Elliptio complanata was developed using
an approach employing ESI and PLS regression. It is clear
that the depuration of PCB congeners may be mainly
attributed to a compartmentalized equilibrium partitioning
process, possibly an isomeric gradient of varying hydro-
lipophilicity. In addition, the reactivity of PCB molecules
with enzymes or other molecules may play a subordi-
nate role in depuration. Using this model, the depuration
rate constants of PCB congeners in E. complanata were
predicted accurately and conveniently using literature ref-
erences. This optimal model enables an estimation of the
time required for the fresh water mussel E. complanata to
achieve self-depuration and facilitates to establish appro-
priate biomonitoring deployment periods. By this way, the
optimal model can allow effective depletion of xenobiotics
in aquaculture products, and improve food safety and
aquaculture sustainability.
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