Improved method for analyzing the degradation of estrogens in water by solid-phase extraction coupled with ultra performance liquid chromatography-ultraviolet detection

Minggang Zheng², Ling Wang¹,*, Yuandui Bi¹, Feng Liu²
1. College of Chemistry and Chemical Engineering and Environment, Qingdao University, Qingdao 266071, China
2. The First Institute of Oceanography, Qingdao 266101, China. E-mail: zmg@fio.org.cn

Received 27 March 2010; revised 29 June 2010; accepted 02 July 2010

Abstract

We established an improved method for the determination of four estrogens including estriol (E3), 17β-estradiol (E2), 17α-ethynyl-estrodiol (EE2) and estrone (E1) in water. The method consisted of solid-phase extraction (0.5 L water) and subsequent analysis of analytes by ultra-performance liquid chromatography (UPLC) with an ultraviolet detector (UVD). Base-line separation was achieved for all studied estrogens using a column (50 mm × 2.1 mm) packed with 1.7 µm particle size stationary phase. Recovery was higher than 88% and detection limits ranged between 12.5–23.7 ng/L for the four estrogens, with the RSD ranging from 7% to 11%. The method was successfully applied to determine E2 and EE2 in simulated natural water, which found that about 70% of E2 was degraded (with a half-life of about 30 hr) within 48 hr and about 55% of EE2 was degraded (with a half-life of about 36 hr). Low levels of E1 were found, however E3 was undetectable during the process.

Key words: estrogens; base-lined separation; half-life; degradation
DOI: 10.1016/S1001-0742(10)60439-1

Introduction

Large amounts of natural and synthetic reproductive hormones are released into surface waters, which cause adverse biological effects on fish and other wildlife. Estrogenic pollution is worse in developing countries due to ineffective wastewater treatment. The presence of natural and synthetic estrogens in surface water (Kolpin et al., 2002; López de Alda and Barceló, 2000) has attracted great interest from both professional researchers and the concerned public. Exposure to environmental estrogens has been shown to decrease sperm counts, increase rates of testicular, prostate, and breast cancers, and increase reproductive disorders in human males (Liu et al., 2004). A recent study demonstrated that estrogens at levels of 5–6 ng/L killed the entire fish population in a whole lake experiment in northwestern Ontario within three years due to the feminization of male fish (Pelly et al., 2003). Vitellogenin inducted by estrogenic compounds in aquatic environments has also been reported (Korsgaard and Pedersen, 1998; Gillespie and Peyster, 2004; Christensen et al., 1999; Verslycke et al., 2002; Patyna et al., 1999; Lv et al., 2006).

Sewage treatment plant (STP) effluent outfalls and animal waste or biosolids applied to agricultural fields can flow into nearby water bodies and infiltrate ground water (Maria and Barceló, 2001). Cattle and poultry manure has been reported as a source of 17β-estradiol loadings in the environment (Kolpin et al., 2002), with 17α-ethynyl-estrodiol (EE2) also synthesized from 17β-estradiol to form a stable oral contraceptive compound (Turan, 1996).

Generally, popular methods for analyzing estrogens include gas chromatography (GC) (Zuo et al., 2007; Zhang and Zuo, 2005) or high performance liquid chromatography (HPLC) (Wang et al., 2008). But complex derivative procedures have to be applied when analyzing compounds by GC, which can decrease recovery of the experiment and consume longer operation time. Over the last several decades, HPLC separation efficiency has progressed through improvement in silica-based particle manufacturing. In its scope of application, HPLC is dynamic from the capillary to preparative scale and versatile in detection techniques such as ultraviolet detector, fluorescence detector, electron capture detector and mass spectrometry, which provides analytical capabilities over a broad spectrum of compounds. Despite the impressive capabilities

* Corresponding author. E-mail: qdl_wling@sohu.com
of modern HPLC systems, however, there are increasing requirements for higher throughput, sensitivity, and better chromatographic resolution.

Ultra-performance liquid chromatography (UPLC) is a new prospective development in liquid chromatography, and possibly able to meet the above requirements. From the van Deemter equations, we know that decreased particle size increases the separation efficiency of UPLC (Neue and Mazzeo, 2002; Wilson et al., 2005)

With UPLC™ technology and particle sizes of 1.7 μm, the HETP (Height equivalent to the theoretical plate) can be maintained, even at higher linear velocities. The UPLC takes full advantage of the flat section of the van Deemter plot for sub 2 μm stationary phase to generate higher chromatographic performance. When a 1.7-μm particle size was used, sensitivity increased 3–5 folds compared to conventional HPLC with a 5-μm particle size.

Theoretically, 17β-estradiol (E2) and EE2 are hydrophobic organic compounds, which are unstable in the environment with low volatility (Ying et al., 2002). In natural water, E2 can be oxidized to estone (E1) by microorganisms at 20°C with half-lives of 0.2–9 days, and E1 can be further degraded at a similar rate (Jürgens et al., 2002). Compared to E2, EE2 is much more resistant to biodegradation in natural water (Jürgens et al., 2002).

While research has been focused on the degradation of estrogens, including the photochemical and microbial degradation (Coleman et al., 2005; Feng et al., 2005), no toxicology studies have been conducted on the exact concentration of estrogens during the exposure cycle. Therefore, a fast, high throughput, and highly sensitive method was established to separate and detect four estrogens by SPE-UPLC-UV. It was applied to examine E2 and EE2 changes in simulated natural water to determine the kinetic processes and decomposition products.

1 Materials and methods

1.1 Chemicals

Steroids were purchased from Sigma/Aldrich (USA). Individual stock solutions of estriol (E3), E2, EE2, and E1 were prepared by dissolving an appropriate amount of these compounds in methanol. Acetonitrile (HPLC grade) were purchased from JT Baker (USA), and distilled water was purified “in-house” using a MilliQ system. All samples were filtered through a 0.25-μm pore-size membrane filter to remove the suspended particular matter.

1.2 Instrumentation

Chromatographic separation was performed on a 50 mm × 2.1 mm ACQUITY 1.7 μm column (Milford, Waters Corp., USA) using an ACQUITY Ultra Performance Liquid Chromatograph system. The column was maintained at 40°C and the sample was maintained at 5°C. The flow rate was 0.5 mL/min and was eluted with an isocratic elution of A = water, B = acetonitrile (A:B = 60:40, V/V). The absorbance wavelength was 200 nm and the injection volume was 10 μL.

Conventional chromatographic separations were performed on a Waters 2487 with Dual λ absorbance detector. The separations were performed on an Xbridge™C18 column (150 × 4.6 mm, particle size, 5 μm, Waters, Ireland). The column was maintained at ambient temperature, the flow rate was 1 mL/min and an isocratic elution of A = water, B = acetonitrile (A:B = 55:45, V/V) was used. The absorbance wavelength was 200 nm. A 20-μL injection was made into the column.

1.3 Collection of exposure water samples

The exposure of E2 and EE2 to water containing amphioxus (density < 1 g/L), which simulated natural water, was conducted. The beginning nominal levels were set at 1 and 5 μg/L for E2 and EE2, respectively. Water quality parameters included pH (6.9–7.9), oxygen concentration (5–7 mg/L), and temperature (22.5–25.5°C). Sampling was performed during 48 hr exposure. A total of 13 sampling points for E2 and 12 for EE2 were set. At each sampling points, four parallel water samples were collected.

1.4 Sample preparation

Five hundred milliliter exposure water was filtered through a 0.45-μm pore-size membrane filter to remove the suspended particular matter. The C18 cartridges were conditioned with 7 mL acetonitrile, 5 mL methanol, and 5 mL distilled water. Then, 500 mL water samples were extracted at a flow rate of 5–10 mL/min. After the cartridges were washed with 10 mL distilled water, they were dried under a flow of nitrogen for 30 min with the heater at 38°C. The analytes were eluted with 10 mL acetonitrile. The solution was evaporated to dryness under a gentle stream of nitrogen, and redissolved with 0.5 mL acetonitrile, before detection. Then 0.5 mL water was added and the solution was shaken to homogenize, and filtered again with a 0.25-μm pore-size membrane.

2 Results and discussion

2.1 Van Deemter analysis of column efficiency of UPLC

When the four estrogens were separated by UPLC with increased linear velocity, the trends correspond to the van Deemter curves, except for E3 (Fig. 1). In the case of E3, the retention time was very short, with the stationary phase contributing little to E3 when it passed through the chromatogram column. This indicated that the higher the linear velocity, the shorter the retention time. Correspondingly, the smaller the contribution of the stationary phase, the smaller are theoretical plate number (N) and number of effective theoretical plates (Neff).

2.2 Comparison of HPLC and UPLC for the analysis of the four estrogens

Resolution (R) is a quantitative measure of the degree of separation between two chromatographic peaks. As shown in Fig. 2, similar resolutions (2.55 for HPLC and 2.65 for UPLC) were obtained for estrogens separated by both HPLC and UPLC.
The UPLC methodology provides high sensitivity, with a 1.7-fold increase predicted by chromatographic theory when compared to traditional HPLC (Neue, 1997; Farré et al., 2007; Kong et al., 2010; Jin et al., 2008; Dongre et al., 2008). Table 1 shows the detection limits of the four estrogens generated from HPLC and UPLC under optimum conditions. Obviously, the limit of detection of the UPLC method was two times lower than our HPLC method.

The most attractive advantage of UPLC is the high separation rate due to the increase in optimal linear velocity. As shown in Fig. 2, it takes less than 2 min to separate the four estrogens using UPLC, compared with 7 min by HPLC. This trend is also seen for balance time, with 1 min needed for UPLC and 5–10 min for HPLC. Using the UPLC method shortens analysis time by up to 10 min compared to our HPLC method and previous literature (Wang et al., 2008).

2.3 Optimization of the separation condition

During the analysis of the environmental water samples after solid phase extraction (SPE), E3 can be interfered by other impurities co-eluted from the SPE cartridges, which leads to inaccurate quantitative analysis. Gradient elution was thus used to let E3 (the first peak in Fig. 3) elute after one minute. Figure 3 shows the optimized chromatogram for the four estrogens when using the following separation programs: 0 min, 0.4 mL/min, 95:5 (water:acetonitrile, V/V); 3 min, 0.4 mL/min, 60:40 (water:acetonitrile, V/V), curve: 3; 4 min, 0.4 mL/min, 100% acetonitrile, curve: 1; 5 min, 0.4 mL/min, 95:5 (water:acetonitrile, V/V), curve: 1. It was clear that successful separation was obtained for the four estrogens without significant interference by impurities under the given conditions.

2.4 Method performance

All standards and samples were injected in triplicate. They were determined by serial dilution of sample solution using the described UPLC conditions. Table 2 shows the

Table 1 Limits of detection of the instrument

<table>
<thead>
<tr>
<th>Estrogens</th>
<th>Limit of detection (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPLC</td>
</tr>
<tr>
<td>E3</td>
<td>6.42</td>
</tr>
<tr>
<td>E2</td>
<td>7.01</td>
</tr>
<tr>
<td>EE2</td>
<td>9.52</td>
</tr>
<tr>
<td>E1</td>
<td>7.53</td>
</tr>
</tbody>
</table>

Fig. 2 Chromatograms obtained by analyzing the same estrogens with HPLC (a) and UPLC (b).
4.2 Kinetic process of E2/EE2 degradation

Both E2 and EE2 have high potential estrogenic activity. Although their degradation has been reported in many studies (Hashimoto and Murakami, 2009; Suri et al., 2010; Zuo et al., 2006), the degradation process is different due to different backgrounds and conditions, especially for laboratory exposure experiments.

To study their degradation in simulated natural water, E2 and EE2 were dissolved in the water to 1 and 5 ng/mL in different glass tanks, and were irradiated under natural sunlight. Kinetic experiments on the E2 and EE2 degradation processes within 48 hr were completed. First-order kinetics was confirmed by plotting \(\ln(C/C_0) \) (\(C \): real-time concentration; \(C_0 \): initial concentration) as a function of time to yield a straight line (Fig. 4). The \(R^2 \) of first-order fit was in the range of 0.91–0.97, which demonstrated that the degradation was a first-order kinetic process. Moreover, there was a slight difference in the first-order degradation rate between the two different concentration levels. We concluded, therefore, that the first-order degradation rate of E2 and EE2 was irrelevant for initial concentration of estrogens.

Our results differed to previous research (Jürgens et al., 2002), with low levels of E1 found after only several hours and E3 undetected during the entire process. As shown in Fig. 4a, E2 decreased as time passed. After 24 hr about 30% was degraded, with 1 ng/mL E2 decreasing to 0.7 ng/mL and 5 ng/mL E2 decreasing to 3.45 ng/mL. After 48 hr about 70% was degraded and the half-life was about 30 hr, with 1 ng/mL E2 decreasing to 0.28 ng/mL and 5 ng/mL E2 decreasing to 1.53 ng/mL. According to Fig. 4b, as EE2 is somewhat resistant to biodegradation, it decreased less slowly than E2 in the exposure water, which is consistent with other research (Jürgens et al., 2002; Zuo et al., 2006). After 24 hr about 20% was degraded, with 1 ng/mL EE2 decreasing to 0.81 ng/mL and 5 ng/mL EE2 decreasing to 3.38 ng/mL. After 48 hr about 55% EE2 was degraded and the half-life was 46 hr, with 1 ng/mL EE2 decreasing to 0.45 ng/mL and 5 ng/mL EE2 decreasing to 2.45 ng/mL.

Including balance time, the total analytical time using UPLC for one sample was less than 5 min, while HPLC needs more than 10 min. The chromatogram obtained by HPLC was not symmetrical, while the chromatogram obtained by UPLC was relatively symmetrical, which is of benefit for accurate quantitative detection.

3 Conclusions

The UPLC-UV method for the analysis of four estrogens in natural water demonstrated improved performance compared to HPLC-UV. Base-line separation was achieved for all estrogens using a column (50 mm × 2.1 mm) packed with 1.7 µm particle size stationary phase in 1.7 min.
Recovery was higher than 88% and detection limits were between 12.5–23.7 ng/L for the four estrogens with the RSD ranging from 7% to 11%. The proposed method was successfully applied to determine changes in E2 and EE2 in simulated natural water with fish in glass tanks. Within 48 hr about 70% E2 had degraded (with a half-life of about 30 hr), whereas about 55% EE2 had degraded (with a half-life of about 36 hr). Low levels of E1 were found, however E3 was undetected during the entire process.

This newly developed UPLC method for all estrogens in natural water gave shorter retention time and maintained better resolution than conventional HPLC. The UPLC method was suitable for rapid analysis of estrogen degradation and was successfully applied to test many samples in a shorter time.

Acknowledgements

This work was supported by the Shandong Natural Science Foundation (No. ZR2010BQ025), the National High Technology Research and Development Program (863) of China (No. 200905019-3), and the Open Fund of State Oceanic Administration (No. MBSMAT-2009.06).

References

Fig. 4 First kinetic plot for the degradation process for different concentrations of E2 (a, b) and EE2 (c, d) in glass tanks with fish.
viviparus: Purification by ELISA and induction by estradiol-17β and 4-nonylphenol. *Comparative Biochemistry and Physiology – Part C*, 120: 159–166.

