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Abstract
Analytical solutions for contaminant transport are widely used for both theoretical and practical purposes. However, many existing

solutions are obtained subject to an initial condition of zero concentration, which is often unrealistic in many practical cases. This
article proposed a stepwise superposition approximation approach to solve the non-zero initial concentration problem for first-type and
third-type boundary conditions by using the existing zero initial concentration solution. Theoretical examples showed that the approach
was highly efficient if a proper superposition scheme with relative concentration increments was constructed. The key parameter that
controlled the convergence speed was the time increment (∆t) multiplied by the rate constant (λ). The approach served also as an
alternative way to make a convenient concentration calculation even if the non-zero initial concentration solution of a problem was
known.
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Introduction

Analytical solutions for contaminant transport are useful
tools for studying the mechanisms of contaminant trans-
port phenomena, estimating transport parameters from
laboratory or field experiments, verifying numerical mod-
els, and predicting concentration distributions in simple
conditions. As the significance of the issues, many re-
searchers have developed analytical solutions to suit
different conditions (Wang and Wu, 2009; Guerrero et al.,
2009; Kumar et al., 2010).

Most analytical transport solutions are subject to a
homogenous initial condition (zero initial concentration,
ZIC), i.e., C|t=0 = 0 (Wilson and Miller, 1978; Sauty and
Pierre, 1980; Batu, 1989, 1993; Leij et al., 2000; Chen et
al., 2002; Srivastava et al., 2004; Huang and Goltz, 2006;
Leij and Bradford, 2009; Wang and Wu, 2009; Zhan et
al., 2009). Only a few are subject to an inhomogeneous
initial condition, C|t=0 , 0 (van Genuchten, 1981; Leij
and Dane, 1990; Chao and Stephens, 1995; Srinivasan
and Clement, 2008; Guerrero et al., 2009). There are two
main reasons for this: (1) ZIC solutions can be applied
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easily to solve corresponding problems with a non-zero
initial concentration (NZIC), such as those of non-reactive
transport; hence, no special attention need be given, and (2)
NZIC solution is very difficult to achieve as the complexity
of the problems, if not impossible. In addition, analytical
solutions often become more complex if NZIC condition is
applied (Leij et al., 1991; Toride et al., 1999) and hence are
more inconvenient for practitioners to use. However, the
NZIC problems occur frequently in practical applications.
For instance, common geochemical components, such as
ions of calcium, magnesium, sulfate, chloride, exist univer-
sally in groundwater. Oxidants such as oxygen may have a
background distribution before they are injected into the
ground in the contaminated site remediation. Groundwater
contains many organic pollutants before new sources of
pollutants leak into the aquifers. In all these cases, the
concentrations of the objective subjects (ions, oxidants
and organic pollutants) must be considered as the initial
conditions if their transport are simulated by using the
analytical solutions. Therefore, it is significant in finding
a general method to solve the NZIC problems if their ZIC
solutions are known.

This article presents a method that can be used to calcu-
late the concentration distribution of a NZIC problem when
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its corresponding analytical solution of the ZIC problem
is known. Specifically, a stepwise superposition approx-
imation approach is proposed to solve reactive transport
problems subject to boundary conditions of the first type
(concentration distribution) and the third type (hydrody-
namic dispersion flux). For the situations in which the
NZIC solutions are known, the approach is also usable as
an alternative if the NZIC solutions are inconvenient to be
employed.

1 Theory

The most commonly used initial condition for the an-
alytical solution of contaminant transport is of a constant
concentration type expressed as C|t=0 = Ci, where Ci is the
initial concentration constant. Hence, the solutions subject
to this type of initial condition will be discussed in detail.
Let us take the one-dimensional transport problem as
an example. Two- and three-dimensional transport issues
can be similarly handled in reference to the procedure
presented for the one-dimensional transport problem, and
this is demonstrated in Section 2.

Our purpose is to obtain the analytical solution for
governing equation:

∂C
∂t
= DL

∂2C
∂x2 − v

∂C
∂x
− λC + γ

θ
(1)

subject to the NZIC of:

C(x, t)|t=0 = Ci (2)

with various boundary conditions stated below, under the
condition that the corresponding solution for Eq. (1) with
a ZIC of:

C(x, t)|t=0 = 0 (3)

is known as

C(x, t) = f (x, t) (4)

where, C (mg/L) is the contaminant concentration; Ci
(mg/L) is the initial concentration constant; γ (mg/(L·day))
is the source term; v (m/day) is the pore velocity of the
fluid; DL (m2/day) is the longitudinal dispersion coeffi-
cients; θ is the porosity for a saturated medium or the
moisture content for an unsaturated medium; λ (1/day) is
the first order rate constant; f (x, t) represents the known
ZIC solution; x (m) is the location of the calculation point;
and t (day) is the calculation time.

The source term, γ, can be divided into four categories:
(1) γ = constant, indicating a uniform source strength over
the entire domain (van Genuchten, 1981; Toride et al.,
1999; Islam and Singhal, 2002); (2) γ = Mδ, indicating
an instantaneous source at the source location (Sauty and
Pierre 1980; Leij et al., 2000; Wang and Wu, 2009), where
M is the mass instantaneously released per unit source
area, and δ is the Dirac Delta function defined as

 1, for  source and 0
δ

0,  otherwise

x t∈ =
= 


(3) γ = γcδ, indicating a continuous source at the source
location (Hunt, 1978; Wilson and Miller, 1978; Park and
Zhan, 2001; Wang and Wu, 2009), where γc is the mass
released per unit time per unit source area, and

 1, for  source
δ

0,  otherwise

x∈
= 


(4) γ = 0, indicating that there is no source inside the
domain (Domenico, 1987; Chen, 2007). Aside from term
γ, a source may also be located on the boundary and can
be expressed as a boundary condition (Sagar, 1982; Chao
and Stephens, 1995; Park and Zhan, 2001; Guerrero et al.,
2009).

1.1 Solutions for infinitive boundary conditions

Equation (1) is solved subject to NZIC (Eq. (2)) and the
boundary conditions of:

i( , ) exp( )
x

C x t C tλ
→±∞

= −  and/or 0
x

C

x
→±∞

∂
=

∂ (5)

whereas the ZIC solution to Eq. (1) with homogenous
boundary conditions of:

( , ) 0
x

C x t
→±∞

=  and/or 0
x

C

x
→±∞

∂
=

∂
 

(6)

is known as presented in Eq. (4). Many known solutions
are obtained subject to the infinitive boundary conditions
given by Eq. (6) (Wilson and Miller 1978; Leij et al., 2000;
Park and Zhan, 2001; Wang and Wu, 2009).

To obtain the solution to Eq. (1), the following substitu-
tion is made:

G(x, t) = C(x, t) −Ci exp(−λt) (7)

Differentiating G with respect to t and x, respectively, leads
to:

i exp( )
G C

C t
t t

λ λ
∂ ∂

= + −
∂ ∂

 and 
G C

x x

∂ ∂
=

∂ ∂
 

(8)

Substituting G for C in Eqs. (1), (2), and (5) yields:

 2

L 2

G G G
D v G

t x x

γ
λ

θ

∂ ∂ ∂
= − − +

∂ ∂ ∂ (9)

G(x, t)|t=0 = 0 (10)

G(x, t)|x→±∞ = 0 and/or
∂G
∂x

∣∣∣∣∣
x→±∞

= 0 (11)

This mathematical model is clearly the same as that
consisting of Eqs. (1), (3), and (6). Hence, the solution
must be identical, that is, G(x, t) = f (x, t) in reference
to Eq. (4). Thus, the solution to Eq. (1) subject to initial
condition Eq. (2) and boundary condition Eq. (5) is:

C(x, t) = f (x, t) +Ci exp(−λt) (12)
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where, f (x, t) is the corresponding ZIC solution given
by Eq. (4). Equation (12) indicates that for an infinitive
boundary condition with the source located inside the
domain, the NZIC solution is equal to the ZIC solution plus
a term Ci exp(−λt).
1.2 Solutions for a first-type boundary condition

Suppose the source is located at the upstream boundary.
The first-type boundary condition at source is:

C(x, t) |x=0 = C0 (13)

and the infinitive boundary is:

C(x, t)|x→∞ = Ci exp(−λt) or
∂C
∂x

∣∣∣∣∣
x→∞
= 0 (14)

In this case, Eq. (1) is solved subject to Eqs. (2), (13), and
(14) (Hunt, 1978; Sauty and Pierre, 1980; van Genuchten,
1981; Domenico, 1987; Sagar, 1982; Batu, 1989; Leij
and Dane, 1990; Toride et al., 1999; Leij et al., 2000;
Srivastava et al., 2004; Srinivasan and Clement, 2008; Leij
and Bradford, 2009; Zhan et al., 2009; Kumar et al., 2010).

Similarly, substituting Eq. (7) into Eqs. (1) and (2) will
produce Eqs. (9) and (10), respectively, and Eqs. (13) and
(14) become:

G(x, t) |x=0 = C0 −Ci exp(−λt) (15)

G(x, t)|x→∞ = 0 or
∂G
∂x

∣∣∣∣∣
x→∞
= 0 (16)

In the case where chemical reaction is not considered
during the transport (non-reactive transport, λ = 0), we
have G(x, t) |x=0 = C0 −Ci = constant. The ZIC solution is
clearly directly applicable. Suppose it can be expressed as:

C(x, t) = f (x, t) = C0F(x, t) (17)

then the NZIC solution is:

C(x, t) = Ci + (C0 −Ci)F(x, t) (18)

This equation indicates that for a non-reactive transport
with an upstream first-type boundary condition, the NZIC
solution is obtained by changing the ZIC solution of
C0F(x, t) to Ci + (C0 −Ci)F(x, t).

However, in the case of reactive transport, the ZIC
solution is not directly applicable any more because the
boundary concentration, as given by Eq. (15), is not a
constant but a function of time. To use the ZIC solution,
we propose a novel stepwise superposition approach to
obtain the approximate solution. Our purpose is to obtain
the solution of Eq. (1) subject to the first-type boundary
condition given by Eq. (13). After the substitution by using
Eq. (7), the problem becomes to obtain the solution of Eq.
(9) subject to boundary condition Eq. (15). If G(x, t) |x=0 =

constant, the ZIC solution can be used directly to obtain the

NZIC solution. Since the inflow concentration given by Eq.
(15) is a function of time, the ZIC solution cannot be used
directly but we can divide the inflow change into discrete
time steps. In each step, function exp(−λt) in Eq. (15) is
approximated by a constant. This constant is evaluated by
its average value over the time step length. As the inflow
function G(x, t) |x=0 is approximated as a set of stepwise
constants, the ZIC solution is applicable. Based on the
superposition principle (Zheng and Bennett, 2002), we
know that the total concentration change is equal to the
sum of concentration increments contributed in each time
step. In this way, the NZIC solution is obtained. This is
the basic idea of the stepwise superposition approximation
approach.

Based on the idea of the aforementioned approach, we
discretize 0–t into N time-steps with the step length of
∆t = t/N. For each time step, function exp(−λt) in Eq. (15)
is approximated by its average value, E, over the length
of the step, ∆t. Replacing exp(−λt) by E, we have the
approximate solution about G as:

G(x, t) ≈ (C0 −CiE)F(x, t) (19)

Define the relative concentration increment (RCI) as:

S (x, t) =
1
Ci

[C0F(x, t) −G(x, t)] = EF(x, t) (20)

For the first time step, k = 1, the RCI contribution made
by the boundary concentration change in this step lasts
continuously from the initial time (t = 0) to time t and
is expressed as:

∆S 1 = S 1(x, t) − S 0(x, t = 0) = ∆E1F(x, t) (21)

where, S 0 = 0; ∆E1 is the average value of exp(−λt) over
0 – ∆t and is estimated as:

∆E1 = E1 − E0 =
1 − exp(−λ∆t)

λ∆t
(22)

where, E0 = 0. Similarly, for the kth time step, the RCI
contribution by the boundary concentration change in this
step lasts from time (k − 1)∆t to time t. Thus, we have the
following Eq. (23):

∆S k = ∆EkF[(x, t − (k − 1)∆t)] (23)

where,

∆Ek = Ek − Ek−1 =
2 exp[−(k−1)λ∆t]−exp(−kλ∆t)−exp[−(k−2)λ∆t]

λ∆t
k = 2, 3, · · · ,N

(24)

The total increment of S is the sum of the individual RCI
contributions in each time step and is hence equal to:

S =
1 − exp(−λ∆t)

λ∆t
F(x, t) +

N∑
k=2

∆EkF(x, t − (k − 1)∆t)

(25)
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By substituting Eq. (7) into Eq. (20) for G(x,t) with S
expressed in Eq. (25), we have:

C(x, t) = C0F(x, t) +Ci
[
exp(−λt) − S

]
(26)

This is the final approximate solution for the first-type
boundary condition when Ci = constant.

1.3 Solutions for a second-type boundary condition

In the case of a second-type boundary condition, the
contaminant enters the domain by dispersion through the
upstream inlet boundary with a flux as:

−DL
∂C
∂x

∣∣∣∣∣
x=0
=

s
θ

(27)

The infinitive boundary condition is the same as in Eq.
(14), where, s (mg/(m2·day)) is the boundary dispersion
flux (Leij et al., 2000; Chen, 2007). In this case, the
solution for an NZIC problem is the same as in Eq. (12).

1.4 Solutions for a third-type boundary condition

In the case of a third-type boundary condition, Eq. (1)
is solved subject to initial condition Eq. (2), infinitive
boundary condition Eq. (14), and inlet boundary condition
of the hydrodynamic dispersion flux as:(
−DL
∂C
∂x
+ vC

)∣∣∣∣∣∣
x=0
=

g
θ

(28)

where, g (mg/(m2·day)) is the boundary hydrodynamic
dispersion flux (e.g., Leij et al., 1991, 2000; Batu, 1993;
Srivastava et al., 2004; Huang and Goltz, 2006; Srinivasan
and Clement, 2008; Guerrero et al., 2009; Kumar et al.,
2010).

Substituting G for C again, Eq. (1) becomes Eq. (9). The
initial and infinitive boundary conditions of Eqs. (2) and
(14) are homogenized to become Eqs. (10) and (16). The
flux boundary condition (28) becomes:(
−DL
∂G
∂x
+ vG

)∣∣∣∣∣∣
x=0
=

g
θ
− vCi exp(−λt) (29)

Similarly, for non-reactive transport, λ = 0, Eq. (29)
becomes:(
−DL
∂G
∂x
+ vG

)∣∣∣∣∣∣
x=0
=

g
θ
− vCi = constant (30)

Clearly, the NZIC solution for this case is identical to the
corresponding ZIC solution, but g

θ
is replaced by g

θ
− vCi,

and Ci is added to the solution. For instance, if the ZIC
solution can be expressed as:

C(x, t) =
g
θv

F(x, t) (31)

the solution for the corresponding NZIC problem is:

C(x, t) = Ci + (
g
θv
−Ci)F(x, t) (32)

In the reactive transport, the third-type boundary con-
dition (Eq. (29)) is not constant. In this case, a similar

superposition approximation approach is applied again
as discussed in Section 1.2. Suppose its ZIC solution is
Eq. (31). This time, the RCI is defined as:

S (x, t) =
1
Ci

[ g
θv

F(x, t) −G(x, t)
]
= EF(x, t) (33)

where, E is the average value of exp(−λt). For N time steps,
the total increment of S is:

S =
1 − exp(−λ∆t)

λ∆t
F(x, t) +

N∑
k=2

∆EkF(x, t − (k − 1)∆t)

(34)

where, ∆Ek is given by Eq. (24). Hence, the final approxi-
mate NZIC solution for the third-type boundary condition
is:

C(x, t) =
g
θv

F(x, t) +Ci
[
exp(−λt) − S

]
(35)

2 Test and solution examples

2.1 Test of the approach with van Genuchten solution
for first-type boundary condition

The purpose of this section is to test theoretically the
correctness of the proposed approach by using the van
Genuchten (1981) solution with a non-zero initial concen-
tration. First, the concentration distribution is calculated by
the van Genuchten solution for Ci = constant. Then, the
same parameters are used again to make the calculation
for Ci = constant by using the stepwise superposition
approximation approach based on the ZIC van Genuchten
solution (that is, Ci is set to zero in the van Genuchten
solution). Finally, the results of these two calculations are
compared. If the approach is correct, the two solutions
should produce similar results.

For an NZIC problem of:

∂C
∂t
= DL

∂2C
∂x2 − v

∂C
∂x
− λC (36)

C(x, t)|t=0 = Ci (37)
C(x, t)|x=0 = C0 (38)
∂C
∂x

∣∣∣∣∣
x→∞
= 0 (39)

van Genuchten (1981) derived an analytical solution using
the Laplace transform techniques. The solution is:

C(x, t) = C0H(x, t) + M(x, t) (40)

where,

H(x, t) = 1
2 exp

[
(v−u)x
2DL

]
erfc

(
x−ut

2
√

DLt

)
+

1
2 exp

[
(v+u)x
2DL

]
erfc

(
x+ut

2
√

DLt

) (41)
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 t (day)

2.00

1.75

1.50

1.25

1.00

0.75

0.50
0 10 20 30 40

Approximate

van Genuchten

C
 (

m
g
/L

)

Fig. 1 Comparison of the concentration distributions determined by
the stepwise superposition approximation presented in Eq. (45) and the
solution of van Genuchten (1981) in Eq. (40) for a first-type boundary
condition of Ci = 1 mg/L, C0 = 6 mg/L and λ = 0.1 day−1.

M(x, t) = Ci exp(−λt) 1 − 1
2 erfc

(
x−vt

2
√

DLt

)
−

1
2 exp

(
vx
DL

)
erfc

(
x+vt

2
√

DLt

)  (42)

in which erfc is the complementary error function, and

u =
√

v2 + 4λDL (43)

With Ci = 0 in Eq. (37), we can obtain its coresponding
ZIC solution as:

C(x, t) = C0H(x, t). (44)

In using the stepwise superposition approximation ap-
proach presented in this article for the solution of the NZIC
problem, considering F(x, t) = H(x, t) in this case, Eq. (26)
becomes:

C(x, t) = C0H(x, t) +Ci
[
exp(−λt) − S

]
(45)

where, S is given by Eq. (25) with F(x, t) replaced by H(x,
t).

Figure 1 shows the comparative curves of the calculated
results obtained by Eq. (45) and the van Genuchten solu-
tion (Eq. (40)). The calculation parameters are as follows:
C0 = 6 mg/L, Ci = 1 mg/L, λ = 0.1 day−1, DL = 0.4 m2/day,
v = 0.25 m/day, x = 4 m, and t = 1, 2, . . . , 40 day(s). For the
approximate solution, ∆t =1 day. As can be seen from Fig.
1, the results agree very well with each other, indicating
that the superposition approximation approach is correct.
The calculation error is primarily controlled by parameter
λ∆t and calculation position x. In general, a smaller λ∆t
value and a larger x value result in fewer errors. Figure
2 shows the change in the maximum relative error σmax
(defined as σmax = Max abs(Ce −Ca) × 100/Ce, where,
Ce and Ca are the exact and approximate concentrations,
respectively) with parameter λ∆t. For x > 0.1 m, σmax is
less than 1% if λ∆t < 0.25. Since the value of the reaction
rate constant λ is typically small, convergence to the exact
solution is relatively fast.

2.2 Test with the van Genuchten solution for a third-
type boundary condition

This case is the same as the previous one, except that
the first-type boundary condition (Eq. (38)) is replaced by

 λ∆t

4

3

2

1

0
0.0 0.2 0.4 0.8

σ
M

ax
  
(%

)

0.6

x = 0.1 m

x = 1.0 m

Fig. 2 Variations of the maximum relative error. σmax with parameter
λ∆t at x = 0.1 m and 1.0 m, respectively, for a first-type boundary
condition.

a third-type boundary condition:(
−DL
∂C
∂x
+ vC

)∣∣∣∣∣∣
x=0
=

g
θ

(46)

van Genuchten (1981) gave the solution for this problem
as:

C(x, t) =
g
θv

A(x, t) +Ci exp(−λt) [1 − B(x, t)] (47)

where

A(x, t) = v
v+u exp

[
(v−u)x
2DL

]
erfc

(
x−ut

2
√

DLt

)
+

v
v−u exp

[
(v+u)x
2DL

]
erfc

(
x+ut

2
√

DLt

)
+ v2

2λDL
exp

(
vx
DL
− λt

)
erfc

(
x+vt

2
√

DLt

) (48)

B(x, t) = 1
2 erfc

(
x−vt

2
√

DLt

)
+√

v2t
πDL

exp
[
− (x−vt)2

4DLt

]
− 1

2

(
1 + vx

DL
+ v2t

DL

)
exp

(
vx
DL

)
erfc

(
x+vt

2
√

DLt

) (49)

and u is the same as in Eq. (43). In this case, the
corresponding ZIC solution is:

C(x, t) =
g
θv

A(x, t). (50)

For this NZIC problem, substituting A(x, t) for F(x, t) in
Eq. (35), we have the following solution:

C(x, t) =
g
θv

A(x, t) +Ci
[
exp(−λt) − S

]
(51)

where, S is given by Eq. (34) with F(x,t) replaced by A(x,
t).

Figure 3 compares the calculation results obtained re-
spectively by Eq. (51) and the van Genuchten solution (Eq.
(47)). The parameters are g = 100 mg/(m2·day), θ = 0.2, t
= 5 day, ∆t = 0.5 day, x = 0, 0.1, . . . , 4 m, and the rest are
the same as in the previous case. Again, a good agreement
exists here. When λ∆t is set to 0.25 and 0.1,σmax is 1.528%
and 0.389%, respectively (Fig. 4).
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2.3 Solution examples

In the following part, two examples are given for the
application of the approach. The first one is the NZIC
solution of a three-dimensional transport of contaminant
released continuously from an inner patch source. The
mathematical model for this example is (Fig. 5):

∂C
∂t
= Dx

∂2C
∂x2 + Dy

∂2C
∂y2 + Dz

∂2C
∂z2 − v

∂C
∂x
− λC + γ

θ
δ (52)

C(x, y, z, t)|t=0 = Ci (53)

C(x, y, z, t)|x,y→±∞ = Ci exp(−λt) (54)

∂C
∂z

∣∣∣∣∣
z=0
=
∂C
∂z

∣∣∣∣∣
z=b
= 0 (55)

where, γ (mg/day) is the source strength (mass released
from the source per unit time); Dx, Dy and Dz are the prin-
cipal values of the hydrodynamic dispersion coefficient,
respectively; b (m) is the thickness of the aquifer; and δ
(m−3) is Delta function:

δ =

{
1, (x, y, z) ∈ source
0, otherwise

From Eq. (12), we know that the solution of the above
model is:

C(x, y, z, t) = f (x, y, z, t) +Ci exp(−λt) (56)

where, f (x, y, z, t) is the ZIC solution of the problem (Park
and Zhan, 2001; Wang and Wu, 2009).

0 1 2 3 4

Approximate

van Genuchten

x (m)

C
 (

m
g
/L

)

1.6

1.4

1.2

1.0

0.8

0.6

0.4

Fig. 3 Comparison of the concentration distributions determined by the
stepwise superposition approximation in Eq. (51) with the van Genuchten
(1981) solution in Eq. (47) for a third-type boundary condition: Ci = 1
mg/L, g = 100 mg/(m2·day) and λ = 0.1 day−1.
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(57)

where, y0 (m) is the half width of the source patch (Fig. 5),
and z0 (m) and z1 (m) are the depths of the source top and
bottom sides, respectively.

Figure 6 illustrates the concentration calculation results
10 m downstream from the center of the patch source that
releases the contaminant continuously at strength of γ =
400 mg/day with three different initial concentrations of Ci
= 0, 0.15, and 0.3 mg/L. The other parameters are Dx =

1 m2/day, Dy = Dz = 0.1 m2/day, θ = 0.2, v = 1 m/day, λ
= 0.006 day−1, b =8 m, y0= 1 m, z0= 1 m, and z1 = 2 m.
In Fig. 6, the concentration increases with the increase in
time and maintains a steady value in the ZIC case (Ci = 0).
However, in the two NZIC cases (Ci = 0.15 and 0.3 mg/L),
the concentration goes up first and then down very slowly.

The second example is similar to the previous one, but
the source patch is located on the inlet boundary of the
first-type with a constant source concentration, C0. Hence,
the governing equation is the same as Eq. (52) but without
term γδ/θ. The infinitive boundary condition Eq. (54) is
split into three parts:

C(x, y, z, t)|x=0 =

{
C0, (y, z) ∈ source
Ci exp(−λt), otherwise (58)

C(x, y, z, t)|x→∞ = Ci exp(−λt) (59)

C(x, y, z, t)|y→±∞ = Ci exp(−λt) (60)

The initial and vertical boundary conditions are the same
as in Eqs. (53) and (55).

In this example, the NZIC solution is in accordance with
Eq. (26):

C(x, y, z, t) = C0F(x, y, z, t) +Ci
[
exp(−λt) − S

]
(61)

where, S is given by Eq. (25) with F(x, t) replaced by F(x,
y, z, t), and F(x, y, z, t) is the Sagar (1982) solution without
C0:
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Fig. 5 A schematic diagram of a vertical patch source in three dimen-
sions with parallel non-penetrable upper and lower boundaries.
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Fig. 6 Theoretical concentrations measured 10 m downstream from the
center of the patch source that releases the contaminant continuously at a
strength of γ = 400 mg/day with the initial concentrations of Ci = 0, 0.15,
and 0.3 mg/L, respectively.
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Fig. 7 Theoretical concentrations measured 10 m downstream from the
center of the inlet patch source that releases the contaminant continuously
at constant concentration of C0 = 1 mg/L with the initial concentrations
of Ci = 0, 0.15, and 0.3 mg/L, respectively.
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(62)

Figure 7 shows the calculation results of the second
example with the same parameters as in the previous one,
except that the source strength γ is replaced by the constant
source concentration of C0 = 1 mg/L. Concentration varia-
tions similar to the previous one are found in this example.

3 Conclusions

Obtaining the transport solutions subject to the NZIC
condition using the existing solutions of the ZIC is feasi-
ble. The approach to determine the NZIC solutions varies
with the difference in the original governing equation and
boundary conditions. For a first-type or a third-type bound-
ary condition in reactive transport, the proposed stepwise
superposition approximation approach is convenient to use
with fast convergence speed. It also provides an alternative
way to determine the concentration distributions in cases
where the original solution is elaborate for making the con-
centration calculation if the NZIC is considered. Although
we have only discussed the transport solutions of a single
component, we predict that the approach proposed here can

be similarly applied to multi-component transport cases.
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