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Abstract
The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA
genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling. Here we found high spatial
heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites. The bacterial amoA gene was
numerically dominant in most of the surface soil but decreased dramatically in deep layers. Higher nitrification potentials were
detected in two sites near the land/water interface at 4.4–6.1 µg NO2

−-N/(g dry weight soil·hr), while only 1.0–1.7 µg NO2
−-N/(g

dry weight soil·hr) was measured at other sites. The potential nitrification rates were proportional to the amoA gene abundance for
AOB, but with no significant correlation with AOA. The NH4

+ concentration was the most determinative parameter for the abundance
of AOB and potential nitrification rates in this study. Higher richness in the surface layer was found in the analysis of biodiversity.
Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira
while the archaeal sequences were almost equally affiliated with Candidatus ‘Nitrososphaera gargensis’ and Candidatus ‘Nitrosocaldus
yellowstonii’. The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the
littoral buffer zone of a N-rich lake.

Key words: littoral zone; ammonia oxidation; archaea; bacteria; heterogeneity; abundance
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Introduction

Littoral buffer zones, which are located at the transition
between terrestrial and aquatic ecosystems, are considered
as biogeochemical hot spots (McClain et al., 2003). En-
hanced fluxes of nitrogen (N) in littoral buffer zones, such
as disproportionately high nitrous oxide (N2O) emission
coupled with nitrate (NO3

−) removal, has been recognized
for decades (Verhoeven et al., 2006; Wang et al., 2006; Van
den Heuvel et al., 2009; Vidon et al., 2010). The rate of N
transformation in littoral buffer zones is affected by many
factors, including soil moisture, temperature and carbon
availability (Tiedje, 1988). However, the availability of
NO3

−, which is driven by microbial nitrification, is always
the most important one (Groffman and Tiedje, 1989;
Morris, 1991; Merrill and Zak, 1992).

Nitrification is the microbial oxidation of ammonia, first
to nitrite and subsequently to nitrate. It is a key process
in the N cycle and until recently was attributed to the
Bacteria encoding α subunit of ammonia monooxyge-

* Corresponding author. E-mail: gbzhu@rcees.ac.cn

nase (amoA), specifically members of β-Proteobacteria
and γ-Proteobacteria (Peng and Zhu 2006; Zhu et al.,
2008). However, previous metagenomic studies revealed
that some Crenarchaeota within the domain Archaea also
express genes related to bacterial amoA (Könneke et
al., 2005; Treusch et al., 2005). Subsequently, they were
detected and shown to be widespread in nature, e.g. in soil
(Leininger et al., 2006), marine environments (Wuchter et
al., 2006), bioreactors (Park et al., 2006), and hot springs
(Hatzenpichler et al., 2008).

The compositions and relative abundance of ammonia
oxidizing archaea (AOA) and ammonia oxidizing bacteria
(AOB) vary widely in many environments (Leininger et
al., 2006; Wuchter et al., 2006; Di et al., 2009; Höfferle
et al., 2010; Wang et al., 2011), but a consensus is that
AOA may be important actors in the N cycle under un-
favorable environmental conditions, e.g., limited nutrient
availability, extreme pH/salinity or sulfide-containing envi-
ronments (Erguder et al., 2009). However, the contribution
to nitrification of AOA versus AOB remains less certain.
Divergent conclusions have been drawn in territorial and
aquatic ecosystems (Wuchter et al., 2006; Di et al., 2009;
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Jia and Conrad, 2009).
The littoral buffer zone harbors a changing environ-

ment between land and water, which suggests a complex
microbial nitrification (Zhu et al., 2010, 2011). However,
knowledge about the ammonia oxidizing communities in
the littoral buffer zone remains unclear, but is essential
for us to understand the N cycle. In the present study, we
attempted to elaborate on the spatial distribution and roles
of AOA and AOB in a N-rich littoral buffer zone. Quanti-
tative PCR combined with clone library approaches based
on amoA genes were used to characterize the abundance
and community compositions of AOA and AOB.

1 Materials and methods

1.1 Site description and sample collection

The field experimental site was located at the Baiyangdian
Lake (38◦54′16.8′′N, 115◦55′26.3′′E), the largest freshwa-
ter body in North China. Baiyangdian Lake is a N-rich
(in the form of NH4

+-N) lake. The contents of NH4
+-N,

NO2
−-N, NO3

−-N, total nitrogen (TN), and total organic
carbon (TOC) in the lake water of the sampling site were
1.43, 0.03, 0.01, 1.64 and 0.67 mmol/L, respectively. The
water depth was 1.7 m with dissolved oxygen in the
surface and deep water of 2.7 and 1.3 mg/L respectively.
A local reed (Phragmites australis var. Baiyangdiansis) is
the dominant hydrophyte.

Samples were collected in a land to water gradient
area at a littoral buffer zone. Five samples were taken in
September of 2009 as shown in Fig. 1. Samples on land
(sites C, D and E) were collected at distances of 0.5, 2 and
5 m from the land/water interface and sliced every 10 cm
with depths of 40, 80 and 80 cm, respectively. Samples in
the water area (site A and B) were collected at distances of
1.5 and 6 m from the land/water interface. Samples in site
A were collected as a surface sample (0–10 cm) while at a
depth of 40 cm at site B.

1.2 Soil chemical analysis

NH4
+-N and NOx−-N were determined by a Continuous

Flow Analyzer (SAN++, Skalar Analytical, the Nether-
lands) with extracted samples (2 mol/L KCl as the
extraction buffer). Fe2+ was measured from extracted so-
lutions with Ferrozine reagent and the total iron (Fe2+ plus
Fe3+) was determined using reducing Ferrozine (Ferrozine
reagent with 1% hydroxylamine-hydrochloride) by reading
the absorbance at 562 nm after a minimum of three hours
(Canfield et al., 1993). Briefly, a 0.3 g fresh sample was
extracted with 5 mL oxalate (0.2 mol/L ammonium ox-
alate/oxalic acid, at pH 3 (Phillips and Lovley, 1987)) for 6
hr. The oxalate extraction was shaken at room temperature
anaerobically, in the dark (Canfield et al.,1993).

The potential nitrification rate (PNR) was measured
according to the chlorate inhibition method (Kurola et al.,
2005). Briefly, 5.0 g of fresh sample was added into a 50-
mL centrifuge tube containing 20 mL phosphate buffer
solution (in g/L, NaCl, 8.0; KCl, 0.2; Na2HPO4, 0.2;
NaH2PO4, 0.2; and pH 7.4) with 1 mmol/L (NH4)2SO4.
Potassium chlorate with a final concentration of 10
mmol/L was added to inhibit the nitrite oxidation. The
suspension was incubated in the dark at 25°C for 24 hr,
and nitrite was extracted with 5 mL of 2 mol/L KCl and
determined by a spectrophotometer at a wavelength of 540
nm with N-(1-naphthyl) ethylenediamine dihydrochloride.
Apparent potential nitrification rates were calculated from
the linear increase in concentrations of NO2

− during the
first 12 hr. The actual nitrification rates might be slightly
higher owing to the possibility of denitrification, so the loss
of NO2

− cannot be fully excluded even in oxic incubations.

1.3 DNA extraction

DNA was extracted using a MoBio UltraClean soil DNA
Isolation Kit (MoBio, Carlsbad, USA) from a 0.25 g
fresh sample. DNA was eluted with 50 µL of solution S5
(MoBio Laboratories, cat. No. 12800-100). Water DNA
was extracted with the PowerWater DNA Isolation Kit with
0.22 µm filter (MoBio, Carlsbad, USA) from 800 mL water
according to manufacturer instructions. Water DNA was

A 

Reed bed soil

6 m 2 m

Littoral zoneLake Supralittoral

Water sample

1.5 m

B 

0.5 m 3 m

80 cm

C D E

40 cm

40 cm

Fig. 1 Diagrammatic sketch of the sampling sites in a littoral buffer zone. Five samples were taken in the water area (sites A and B) and on land
(sites C, D and E).
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eluted with 50 µL PW6 solution (MoBio Laboratories, cat.
No. 14900-100). DNA was stored at –20°C before use.

1.4 PCR, cloning and sequence analysis

Primer pairs amoA1F (GGGGTTTCTACTGGTG-
GT)/amoA2R (CCCCTCKGSAAAGCCTTCTTC)
(Rotthauwe et al., 1997) and Arch-amoAF
(STAATGGTCTGGCTTAGACG)/Arch-amoAR
(GCGGCCATCCATCTGTATGT) (Francis et al., 2005)
were used for the amplification of bacterial and archaeal
amoA genes, respectively. PCR reactions (50 µL)
contained 5 µL 10 × PCR buffer (Mg2+ plus), 4 µL
dNTPs (2.5 mmol/L), 0.5 µL Ex Taq polymerase (5
U/µL, TAKARA, Dalian, China), 1 µL of each primer (20
mmol/l), and 2 µL DNA template (1–10 ng).

The PCR product was gel-purified and ligated into
the pGEM-T Easy Vector (Promega, Madison, USA).
The resulting ligation products were used to transform
Escherichia coli JM109 competent cells following the
instructions of the manufacturer. PCR screened directly for
the presence of inserts by the use of T7 and SP6 vector
primers, and the amplicons were analyzed with restriction
endonuclease HhaI (TAKARA, Dalian, China). Restriction
digestion was carried out in a total volume of 20 µL
including 5 U of restriction enzymes and 4 µL of PCR
products, and the system was incubated for 2 hr at 37°C.
Digested DNA fragments were analyzed by separation of
fragments on a 2% (W/V) agarose gel and visualized with
a GBOX/HR-E-M (Syngene, UK). Representative clones
from each digestion pattern were selected for sequenc-
ing using an ABI 3730XL (Applied Biosystems, USA)
automated sequencer. Positive clones were selected to
isolate plasmid DNA using a GeneJet Plasmid Miniprep
Kit (Fermentas MBI, Lithuania) as amoA gene standards.
The plasmid DNA concentration was determined on a Nan-
odrops ND-1000 UV-Vis Spectrophotometer (NanoDrop
Technologies, USA) for calculation of amoA gene copy
number. Phylogenetic analysis based on nucleotide se-
quences was performed using MEGA version 4.0 (Tamura
et al., 2007) and a neighbor-joining tree was constructed
using Kimura two-parameter distance with 1000 replicates
to produce bootstrap values. The archaeal and bacterial
amoA gene sequences obtained in this study are available
in the GenBank nucleotide sequence database under the
accession Nos. HQ202364–HQ202535.

1.5 Quantitative PCR

The same primer pairs were subjected to quantitative PCR
assay as described above. Amplification and detection
were carried out with an ABI Prism 7300 Sequence
Detection System (Applied Biosystems, USA) as follows:
50°C for 2 min, 95°C for 30 sec, followed by 40 cycles
of 10 sec at 95°C, 30 sec at 53°C for AOA or 55°C for
AOB, and 1 min at 72°C. The 25 µL reaction volume
contained 12.5 µL SYBRs Premix Ex Taq (TAKARA,
Dalian, China), 1 µL of AOA or AOB primer sets (20
mmol/L) and 2 µL of 10-fold diluted DNA as a template.
Three replicates were analyzed for each sample. Tenfold
serial dilutions with known copy numbers of the plasmid

DNA were subjected to quantitative PCR in triplicate to
generate an external standard curve.

1.6 Statistical analysis

To obtain information on the richness and diversity of
archaeal and bacterial amoA genes, operational taxonomic
units (OTUs) for community analysis were defined by
3% differences in nucleotide sequences, as determined by
using the furthest neighbor algorithm in DOTUR (Schloss
and Handelsman, 2005). Shannon and Simpson indices for
each clone library were also generated by DOTUR. The
statistical analyses were conducted by Pearson correla-
tion analysis with the program of Statistical Product and
Service Solutions (SPSS). Graphing was achieved using
Origin 7.5 software.

2 Results

2.1 Spatial distribution of AOA, AOB and potential
nitrification rate in surface samples

The abundance of AOA and AOB were investigated by
quantitative PCR targeting their amoA genes. A relatively
higher abundance of AOB was detected in the sites near
the land/water interface. The highest AOB abundance was
observed in site B at 2.1×109 copies/g dry weight soil
(dws). Samples at site C also showed a high abundance at
1.2×108 copies/g dws. In the sites D and E which were
relatively far from the interface, the abundance of AOB
was much lower at 7.6×106 and 6.7×105 copies/g dws,
respectively. The AOA showed minor variations ranging
from 4.8×106 to 1.7×108 copies/g dws, but the average
was much higher on land than that in the water area. In
sites D and E, the ammonium oxidizer communities were
dominated by AOA with the ratio of AOA/AOB at 2.59
and 246, respectively. On the contrary, the AOB were more
dominant in sites A and B and the transition site C with
AOA/AOB ratios of 0.46, 0.002 and 0.274, respectively.

To investigate the nitrification activity along the littoral
buffer zone, the potential nitrification rate (PNR) was
measured. The results showed that PNRs varied a lot
and showed a high heterogeneity in the surface samples
(Fig. 2). High PNRs were observed in the sites B and C
which were close to the land/water interface. The highest
PNR showed up in the site B at 6.2 µg NO2

−-N/(g dws·hr).
By comparison, in the sites on land (sites D and E), the
PNR were 6 times lower than that of site B at 0.9 and 1.0 µg
NO2

−-N/(g dws·hr), respectively. These results indicated
that the area of 0.5–2 m around the land/water interface
was a hot zone of nitrification in the littoral buffer zone.
In general, the abundance of AOB varied greatly along the
littoral buffer zone and was consistent with the variation
of PNR. However, the AOA abundance was relative steady
and little heterogeneity was observed.

2.2 Vertical distribution of AOA, AOB and PNR

The variety and heterogeneity of AOA, AOB and PNR
in surface samples prompted our investigation into their
vertical distributions. Sites B, C and D, which were close
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to the land/water interface and showed higher PNRs in
surface samples, were studied to investigate the vertical
profiles. Samples in sites B and C were taken from 0–40
cm representing the littoral soil. The soil core in site D
was taken down to a depth of 80 cm to cover most of
the biogeochemically active layers in soil, according to
previous studies (Jia and Conrad, 2009; Höfferle et al.,
2010). Still, heterogeneity was observed for the abundance
of AOB and PNR in the vertical distributions.

In the sites B and C near the interface, although high
abundance of the bacterial amoA gene was observed in
surface samples, it decreased dramatically in deep samples
as shown in Fig. 3. Especially at site B, the abundance of
the bacterial amoA gene decreased from 2.1×109 in the
surface layer to 4.9×107 at 10–20 cm. On the contrary, the
abundance of the archaeal amoA gene remained relatively
invariant. Subsequently, the AOB (4.9×105 copies/g dws)
were no longer dominant over AOA (6.2×106 copies/g
dws) below 20–30 cm depth. A similar variety in site C was
observed and samples in all deep soils were dominated by
AOA due to the lower abundance of AOB. The decrease
of PNRs in deep soil was observed again between two
tested layers (0–10 and 30–40 cm) in sites B and C, which
was consistent with the variation of AOB. In the soil core
of site D, which was relatively far from the interface, the
abundance of AOB decreased along the depth as in sites B
and C and could only be detected from 0 to 50 cm depth.
However, the abundance of archaeal amoA gene was still
as high as 7.0×106 copies/g dws in the layer at 70–80
cm. Similar to the PNRs in surface samples, the vertical
distribution of PNRs correlated well with the abundance of
AOB.

2.3 Richness and phylogeny of AOA and AOB

To analyze the richness and phylogeny of AOA and AOB,
water samples, surface soil from site B and soil samples
from cores (sites C, D and E), which were divided into
surface and bottom layers (40 or 80 cm), were amplified
targeting the amoA genes. 105 archaeal and 91 bacterial
amoA clones were sequenced and grouped into 40 and 34
operational taxonomic units (OTUs) for AOA and AOB,
respectively (Table 1). The highest AOA richness occurred

Table 1 Diversity characteristics of each clone library of archaeal and
bacterial amoA genes in different sample position

amoA Sampling Number of OTU Shannon Simpson
gene position screened number index index

clones

AOA Water 12 5 1.33 0.27
B (surface) 14 1 0.39 0.75
C (surface) 12 5 1.29 0.29
C (bottom) 13 3 0.63 0.64
D (surface) 15 10 2.21 0.06
D (bottom) 13 9 2.04 0.09
E (surface) 12 3 1.06 0.31
E (bottom) 14 4 1.25 0.25

AOB Water 13 6 1.73 0.12
B (surface) 15 6 1.45 0.24
C (surface) 14 4 1.23 0.29
C (bottom) NDa NDa NDa NDa

D (surface) 14 6 1.66 0.15
D (bottom) 12 1 NDb NDb

E (surface) 12 5 1.41 0.22
E (bottom) 11 6 1.48 0.23

a AOB were not detected with PCR; b indices were absent at 0.03 level
difference.
OTU: operational taxonomic unit.
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at site D both in the surface and bottom layers. The lowest
value occurred in site B in which only one OTU was
defined, which was in agreement with the results of the
Shannon and Simpson indices. The highest AOB richness
occurred in the water sample, and the surface soil in site D
still showed a higher richness among all the soil samples
evaluated. In addition, AOA showed a higher richness
than AOB, and the surface layer showed a relative higher
richness compared with the bottom layer either for AOA or
AOB judging from the richness indices and OTU numbers.

Phylogenetic analysis showed that 40 archaeal amoA
OTUs were divided into two branches (Fig. 4). One branch
fell into a phylogenetic group comprising 21 OTUs and
some published sequences recovered from soils in various
ecosystems. Most of the OTUs in this branch were close-
ly related to the putative AOA sequence of Candidatus
‘Nitrososphaera gargensis’ (EU281319). The other branch
consisted of 19 OTUs and was divided into two groups.
The first group clearly related to some amoA sequences
from soil or sediment, whereas the second one only
consisted of 4 OTUs from bottom layer soil and affiliated
with amoA sequences from water or sediment. Moreover,
they were closely related to the putative AOA sequence of
Candidatus ‘Nitrosocaldus yellowstonii’ (EU239961).

The 34 bacterial amoA OTUs were divided into three
groups (Fig. 5). One of the groups consisted of 18 OTUs
and some published Nitrosospira-like amoA sequences.
The exceptions in this group were the four OTUs closely
related to Nitrosolobus multiformis (X90822) which has
shown a close phylogenic relationship with Nitrosospira
(Koops and Pommerening Röser, 2001). Most of the OTUs
from the surface layer (12 out of 15 OTUs) were observed

in this group. The second group consisted of 7 OTUs which
were mostly retrieved from sediment and water samples
(6 OTUs) and closely related to Nitrosomonas oligotropha
(AF272406). Another Nitrosomonas group consisted of 9
OTUs and was closely related to Nitrosomonas nitrosa
(AJ238495).

2.4 Correlations of ammonia-oxidizer community
structures with environmental factors

Pearson’s moment correlation analysis was performed to
find out whether there were environmental factors affecting
the distributions of AOA and AOB (Table 2). Results
showed that the PNRs were significantly correlated with
the abundance of AOB, and the AOB abundance was
correlated well with NH4

+-N. Meanwhile, no significant
correlation was observed between the abundance of AOA
and environmental factors. In addition, a significantly
negative correlation was found between the Simpson index
of AOA and NH4

+ which indicated that the high concen-
tration of NH4

+ may depress the biodiversity of AOA in
the littoral buffer zone.

2.5 Cell-specific ammonia oxidation rates

Cell-specific ammonia oxidation rates in the littoral buffer
zone were inferred from the observed PNRs and the
amoA gene copy numbers (Table 3). For AOB, cell-
specific rates of ammonia oxidation in surface samples
ranged from 0.02 to 10.90 fmol NH3 oxidized/(cell·hr),
mostly within those reported in the literature (Belser, 1979;
Ward et al., 1989; Wagner et al., 1995; Okano et al.,
2004; Könneke et al., 2005; Treusch et al., 2005; Jia and
Conrad, 2009). One exception was the low cell-specific
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Fig. 4 Phylogenetic tree of archaeal amoA genes from water, site B and surface and bottom soil of C, D, E sites. Bootstrap values (> 50%) are indicated
at branch points. Branch lengths correspond to sequence differences as indicated by the scale bar. Nitrosospira Briensis (U76553) was used as outgroup.
The accession number of each sequence in this study is indicated in parentheses.

rates of AOB in the surface sample of site B indicating
that the detected AOB community was not likely to be
fully actively involved in nitrification. For AOA, on the
other hand, some extraordinarily high cell-specific rates
(0.93–9.28 versus 0.08–0.59 fmol NH3 oxidized/(cell·hr)
in pure culture), especially in site A and B, were observed,
suggesting that the AOA community could not account for
the nitrification solely and that AOB were indispensable
in ammonia oxidation. Note that the cell-specific rates
did not reflect the actual activity because the rates were

inferred assuming solely AOA or AOB was functionally
involved in ammonia oxidation. Moreover, the rates of
AOA are roughly estimated, because presently only two
reports allowed calculation of such rates.

3 Discussion

The littoral buffer zones as the hot spots of N cycling
has been well recognized for decades (Wang et al., 2006;
Vidon et al., 2010). However, nitrification as the rate
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Table 2 Correlation coefficients between chemical properties and community structures of AOA and AOB

PNR Abundance OTU number Shannon index Simpson index
AOA AOB AOA/AOB AOA AOB AOA AOB AOA AOB

PNR – 0.069 0.821a –0.059 –0.719 0.439 –0.793 0.391 0.863 0.707
NH4

+-N 0.871a –0.136 0.475b –0.159 –0.608 0.307 –0.686 0.202 0.809a 0.330
NOx−-N –0.144 0.418 –0.021 0.461 –0.467 0.411 –0.295 0.366 0.036 0.341
TOC 0.209 0.301 0.294 0.269 –0.381 0.064 –0.315 0.032 0.282 0.048
pH –0.288 –0.211 –0.152 –0.140 0.546 0.251 0.560 0.149 –0.513 –0.343
Fe2+ 0.090 –0.251 0.206 –0.241 –0.336 –0.241 –0.375 –0.394 0.484 –0.394
Fe3+ –0.253 0.186 0.095 0.250 –0.539 0.007 –0.418 –0.134 0.249 –0.134
Fe2+/3+ 0.376 –0.315 0.147 –0.335 0.032 –0.256 –0.090 –0.315 0.320 –0.221

a Correlation is significant at the 0.01 level (2-tailed); b correlation is significant at the 0.05 level (2-tailed).
The values of significant correlation coefficients are labeled in bold and underlined.
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Table 3 Estimated cell specific ammonia oxidation rates of AOA and AOB, and a comparison with relevant studies

Organism and environment Cell specific ammonia oxidation rate References
(fmol NH3 oxidized/(cell·hr))

AOBa AOAa

Pure culture AOB 0.9–83 Belser, 1979; Ward et al., 1989
AOA 0.08–0.59 Könneke et al., 2005; Treusch et al., 2005

Environment Agricultural soil 0.20–15.6 Okano et al., 2004
Others, e.g. sludge waste 0.22–12.4 Wagner et al., 1995

Environment Agricultural soil (0–20 cm) 0.25 0.002 Jia and Conrad, 2009
Agricultural soil (40–50 cm) 1.78 0.005

A surface Sediment 0.57 1.25 This study
B surface Sediment/soil 0.02 9.28
C surface Soil 0.26 0.93
D surface Soil 0.91 0.35
E surface Soil 10.90 0.04
D (0–30 cm) Soil 0.91–27.00 0.02–0.04
D (30–50 cm) Soil 160.0–166.6 0.12–0.15
D (50–80 cm) Soil ND 0.14–0.26
a The rate of ammonia oxidized per ammonia-oxidizing bacteria (AOB) or ammonia-oxidizing archaea (AOA) cell was calculated by dividing the
potential nitrification rates mentioned before, assuming each cell has equal activity and soil nitrate produced is solely from either AOB or AOA alone,
and each genome of AOB and AOA contains 2.5 and 1.0 amoA gene copies, respectively.

limiting step was seldom investigated. In this study, we
confirmed that the sites near the land/water interface (0.5–
2 m) showed higher potential nitrification rates (4.4 and
6.1 µg NO2

−-N/(g dws·hr) in sites C and B, respectively
compared with 1.0–1.7 µg NO2

−-N/(g dws·hr) in other
sites, Fig. 2) which were within the range of field data
in other wetlands (1.0–11.3 µg NO2

−-N/(g dws·hr)) (Her-
rmann et al., 2008; Wang et al., 2011). In transition areas,
substantial increase of enzyme activity, microbe numbers
and oxygen consumption have been observed where the
subsurface flow paths and roots encountered each other
(McClain et al., 2003). Therefore, the roots of the reed
(Phragmites australis var. Baiyangdiansis), which is the
dominant hydrophyte in this area, may play a key role in
the formation of nitrification hot spots in the littoral buffer
zone.

The variety of AOB was found well correlated with the
corresponding PNRs. Furthermore, a consistently higher
abundance of AOB than AOA was detected in the sites with
higher PNRs. All the results strongly suggested that the
AOB may functionally dominate nitrification in the littoral
buffer zone. It has been reported that AOA predominated
among ammonia-oxidizing prokaryotes in soil and marine
environments (Leininger et al., 2006; Wuchter et al., 2006).
However, it also has been observed that AOB outnumbered
AOA in certain environments (Di et al., 2009; Jia and Con-
rad 2009; Wang et al., 2011). Some environmental factors
like pH, salinity, and fertilization have been identified as
affecting their distribution (Erguder et al., 2009). However,
the key influencing factor is still not well understood and
is difficult to assess (Erguder et al., 2009). In this study
the ammonia concentration seemed to be one of the most
decisive factors as shown in Fig. 2. When the ammonia is
limited, the half-saturation constant KS for NH3 oxidation
(133 nmol/L for AOA) provides substantial evidence for
the predominance from the biochemical kinetics (Martens-
Habbena et al., 2009). The KS for NH3 oxidation of
AOB (0.14 and 1.9 mmol/L) in soil for Nitrosospira sp.
AV and Nitrosomonas europaea (Taylor and Bottomley,
2006)) is much higher than that of archaea, therefore the

AOA would outcompete when facing a limited substrate
of ammonia. Moreover, a high concentration of ammonia
(3.08 mmol/L) would inhibit the ability of thermophilic
ammonia-oxidizing Crenarchaeote to oxidize ammonia
(Hatzenpichler et al., 2008). In this case, with polluted lake
water as the main source of ammonium (1.43 mmol/L),
a better condition was provided for the growth and com-
petition of AOB in the transition sites. However, higher
abundance of AOA was detected in deep samples where the
dissolved oxygen (DO) was low and difficult to measure
in this study. DO might be among the most determinative
parameters for nitrification (Dong et al., 2011) and the
distribution of AOA and AOB (Erguder et al., 2009), and
AOA were found to tolerate a wide range and low oxygen
levels in water (Francis et al., 2005; Könneke et al., 2005).
The higher abundance of AOA in deep samples indicates
that the AOA may be more important than AOB in some
environments with limited oxygen available, which was
further implied by the analysis of estimated cell-specific
rates (Table 3). The distribution of AOA and AOB may
be affected by multiple factors including DO (Erguder
et al., 2009), pH (Wang et al., 2011), Eh (Höfferle et
al., 2010) or nitrogen substrate (Jia and Conrad, 2009).
Combining all the results in previous work and this study,
it can be concluded that the AOA are more adapted to the
low-nutrient, -oxygen, -pH environment.

The richness predicted by Shannon (0.39–2.21 for AOA,
1.23–1.73 for AOB) and Simpson (0.06–0.75 for AOA,
0.12–0.29 for AOB) index were mostly within the ranges
of the reported Shannon (0.44–2.12 for AOA, 0.33–2.02
for AOB) and Simpson (0.10–0.84 for AOA, 0.11–0.84
for AOB) index in wetlands (Beman and Francis, 2006;
Mosier and Francis 2008; Wang et al., 2011). Higher
richness was observed in the surface layer compared with
deep layers, which was consistent with a previous study in
a wetland (Li et al., 2011). The majority of the archaeal
sequences were assigned into two branches without a clear
difference between surface and bottom samples, but most
of the bacterial sequences in surface samples were closely
related to the Nitrosopira sequences, which is in agreement
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with a previous study (Höfferle et al., 2010). However,
little difference can be inferred from the phylogeny in the
five sites for both AOA and AOB, suggesting a blending
condition of land and water environments in the littoral
buffer zone.

4 Conclusions

In the present study, potential nitrification rate measure-
ment, amoA-encoding ammonia oxidizers abundance and
diversity analyses were carried out along the gradient
of a littoral buffer zone. The study area showed high
spatial heterogeneity in nitrification rates and abundance
of bacterial ammonia oxidizers. The potential nitrification
rates were proportional to the amoA gene abundance of
bacterial ammonia oxidizers, but had no significant cor-
relation with archaeal ammonia oxidizers. Bacterial versus
archaeal amoA gene copy numbers showed bacterial amoA
to be numerically dominant in most of the surface samples.
However, in deep soils, the archaeal ammonia oxidizers
appeared to play a more important role in this littoral buffer
zone.
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Mulec I, 2010. Ammonium supply rate influences archaeal
and bacterial ammonia oxidizers in a wetland soil vertical
profile. FEMS Microbiology Ecology, 74(2): 302–315.

Jia Z J, Conrad R, 2009. Bacteria rather than Archaea dominate
microbial ammonia oxidation in an agricultural soil. Envi-
ronmental Microbiology, 11(7): 1658–1671.

Könneke M, Bernhard A E, de la Torre J R, Walker C B,
Waterbury J B, Stahl D A, 2005. Isolation of an autotrophic
ammonia-oxidizing marine archaeon. Nature, 437(7058):
543–546.
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