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Abstract

Oxidation of aniline by persulfate in aqueous solutions was investigated and the reaction kinetic rates under different temperature,
persulfate concentration and pH conditions were examined in batch experiments. The results showed that, the aniline degradation
followed pseudo first-order reaction model. Aniline degradation rate increased with increasing temperature or persulfate concentration.
In the pH range of 3 to 11, a low aniline degradation rate was obtained at strong acid system (pH 3), while a high degradation rate was
achieved at strong alkalinity (pH 11). Maximum aniline degradation occurred at pH 7 when the solution was in a weak level of acid
and alkalinity (pH 5, 7 and 9). Produced intermediates during the oxidation process were identified using liquid chromatography-mass
spectrometry technology. And nitrobenzene, 4-4’-diaminodiphenyl and 1-hydroxy-1,2-diphenylhydrazine have been identified as the

major intermediates of aniline oxidation by persulfate and the degradation mechanism of aniline was also tentatively proposed.
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DOI: 10.1016/S1001-0742(11)60844-9

Introduction

Aniline is an important industrial chemical used primarily
during the synthesis of pesticides, dyes, plastics, rubber,
and drugs. When released to the environment, aniline
is hazardous to aquatic lives as it may damage central
nervous system, cardiovascular system, liver and kidney of
animals (Ye et al., 2009). It has been listed as one of the
129 priority pollutants by U.S. Environmental Protection
Agency (Li and Xie, 2007). In China, it has been included
in the “blacklist of environmental priority pollutants”
(Zhang et al., 2007).

Several technologies such as in situ chemical oxidation
(Zhang et al., 2010), photocatalysis (Gu et al., 2003;
Kumar and Mathur, 2006; Wang et al., 2007), composite
adsorbent (An et al., 2010), electro-catalytic oxidation (Fu
et al., 2008; Li et al., 2003), reverse osmosis (Gémez et al.,
2009), catalytic wet air oxidation (Gomesa et al., 2008),
ferrate (Huang et al., 2001), Fenton and electro-Fenton
processes (Anotai et al., 2006), aerobic co-metabolism
(Li and Xie, 2007) and ultrasonic degradation (Song et
al., 2007) were used to treat aniline-containing wastew-
aters. Among of chemical oxidation methods, potassium
permanganate (KMnO,4) (Waldemer and Tratnyek, 2006),
hydrogen peroxide (H,O,) (Watts and Teel, 2005) and

* Corresponding author. E-mail: zhangyq@scut.edu.cn

ozone (O3) (Rivas, 2006) are typical oxidants, each having
its own advantages and limitations. H,O, and O3 have
the limitations of being short life spans (Watts and Teel,
2006; Huling and Pivetz, 2006) and low water solubility in
the case of O3 (Watts and Teel, 2006). Sodium persulfate
(NapS,0g) is recently used as an alternative oxidant for
in situ chemical oxidation (ISCO) of recalcitrant organic
contaminants in soil and groundwater (Anipsitakis and
Dionysiou, 2004; Liang et al., 2004, 2007). As shown
below, the standard oxidation-reduction potential (E°) for
the half-reaction is higher than other oxidants (Huang et
al., 2002).

S,05™ +2e — SO;~
O3 + 2H" + 2e = Oy + H,0 E° =207V (2
H,0; + 2H" + 2e = 2H,0 E°=178V (3)
MnO; +4H" + 2e = MnOy,) + 2H,0  E° = 770V (4)

E'=201V (1)

Another important feature is that persulfate is more
stable in the presence of impurities such as carbonates in
the aqueous phase, compared to the widely used H,O,

(Liang and Su, 2009). It can maintain reaqtive over tomger
time period when it is used to oxidize target contaminants
in groundwater systems.

When persulfate activated by heat or a fransition metal
(e.g., ferrous ion), it can be converted into §n even stronger:
oxidant, i.e., a sulfate free radical with a|redox potential
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of 2.4 V (Huie et al., 1991). Previous studies showed that
formation of SO4"~ can be induced via thermal (House,
1962), metal (Kolthoff and Miller, 1951), and photochem-
ical activation (Netal et al., 1977) as shown below:

S,05™ + heat — SO~ 5)
$,0%™ + Fe?* — SO, + Fe’* + 503~ (©6)
$,08 +e — SO +S03~ 7

Prior experimental studies showed that persulfate oxi-
dation reactions are usually less aggressive due to slow
rates of SO4"~ generation at relatively low temperatures
in groundwater systems. Meanwhile, SO,™~ can produce
hydroxyl radical -OH (E° = 2.7 V) (Huang et al., 2002)
in aqueous solution following the reactions below (Hayon
et al., 1972; Norman et al., 1970; Pennington and Haim,
1968).

SO, +H,0 — SO2™ +-OH + H*
SO; + OH™ — SO2™ +-OH

All pH ®)
Alkaline pH )

The distribution of the two free radicals is solution pH
dependent. At solution pH < 7, SO4™~ is the dominant free
radical whereas ‘OH dominates at solution pH > 9 and both
free radicals are important at pH 7-9 (Liang and Su, 2009).

Thus, the purpose of this work was to develop a
persulfate-based in situ oxidation technology for treating
aniline polluted water by measuring both the kinetics
and mechanism of the chemical oxidation of aniline by
persulfate under different aqueous pH, temperature and
oxidant concentration conditions. Intermediates of the
oxidation process were also identified based on liquid
chromatography-mass spectrometry (LC-MS) techniques.

1 Materials and methods

1.1 Chemicals

All chemicals used in the experiment were of analyt-
ical or reagent grades. Disodium hydrogen phosphate
dodecahydrate, sodium phosphate monobasic dehydrate,
concentrated sulfuric acid, sodium hydroxide, sodium
persulfate, sodium thiosulfate pentahydrate, hexane and
aniline were purchased from Tianjin Kermel Chemical
Reagent Co. Ltd. (China). Acetonitrile was obtained from
Sigma-Aldrich Chemical Company (USA).

1.2 Analysis

Concentrations of aniline in all aqueous solutions were
analyzed with a Shimadzu LC-20A high performance
liquid chromatography (Japan) equipped with Ultraviolet
(UV) detector (SPD-M20A, Shimadzu, Japan) set at 236
nm. The column used was a reversed-phase C18 column
(5 mm x 250 mm). Mobile phase was a mixture of
acetonitrile-water (55:45, V:V) and the flowrate was set
at 0.50 mL/min. The peak identification was based on the
retention time and the UV spectrum of external standards.

The intermediates were identified on an Agilent 1200
series LC (USA) equipped with Agilent 6460 triple quad
mass spectrometer with a reversed-phase C18 column (5
mm X 250 mm). The mobile phase was also the mixture of
acetonitrile-water (55:45, V:V) and the flow rate was set at
0.50 mL/min. The mass spectrometer was operated under
electrospray positive ionization at a fragmentor voltage
of 100 V with mass scan range of 50-3000 amu. The
ionization source conditions were set at the drying gas flow
of 3 mL/min at 325°C, sheath gas flow of 12 mL/min at
350°C and the nebulizer pressure at 40 psig.

1.3 Experiment

The reaction of persulfate oxidation of aniline was carried
out in a series of 250 mL Erlenmeyer flasks operated
as completely-mixed batch reactor systems. The standard
stock solution of aniline was prepared by dissolving 0.09
g pure aniline with ultrapure water in a 100 mL volumetric
flask. Buffer solution was prepared by mixing 15 mmol/L
Na,HPO,4 and 10 mmol/L. NaH,PO, in Milli-Q water and
was purged with N; for 20 min to eliminate oxygen. The
aniline stock solution (0.50 mL) was then added into the
Erlenmeyer flasks and mixed with the phosphate-buffer.
The reactor was placed in a lab shaker at 125 r/min
and the temperature of the shaker was set at a desired
temperature. After 10 min, an aliquot (0.5 mL) of the
solution was collected from the reactor to determine the
initial concentration of aniline. After sampling, sodium
persulfate solution (5 mL and 50 mmol/L) in excess was
added to the reactor. At the predesigned time intervals, an
aliquot (0.5 mL) of the solution was sampled and mixed
with 0.5 mL of Na,S,05 solution (2 mol/L) in a 2 mL vial
to quench the reaction. The solution pH was measured at
both the beginning and end of the experiment. To examine
the effects of solution pH, temperature and the Na,S,0s
concentration on the reaction rates, similar experimental
procedure was followed for operating the batch reactor
systems at different initial conditions. In all experiments,
duplicate reactor systems were run simultaneously.

2 Results and discussion

2.1 Effect of temperature on the degradation of aniline

Figure 1 presents the degradation of aniline under different
temperatures at pH 7. It indicates that the reaction rate
data fits well to the pseudo first-order reaction model (i.e.,
InC; versus t), represented by relatively high values of the
goodness of fit (R? > 0.96). The higher is the temperature,
the faster is the aniline degradation. As shown in the Fig.
1, the best fit lines of InC; versus ¢ have slopes increas-
ing as a function of temperature indicating that the rate
constant (k) of aniline degradation increased as a function

of temperature. The activation energy (f7yobtammed by
fitting the temperature dependent rate cqnstants into an
Arrhenius equation is 49.97 kJ/mol during fhe range of 10—
50°C. Such as a large temperature deperldence provides
that changing the system temperature is ¢ne of the ways
to control the generation of sulfate free radicals.
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Fig.1 Influence of temperature on the rate of aniline oxidation by . . ) )
persulfate. 200, 100 200 300 400 500
¢ (min)

2.2 Effect of persulfate concentration on the degrada-
tion of aniline

Figure 2 presents the time dependent aniline concentration
profiles for the reaction systems initiated at four different
starting concentrations (Cy) of persulfate and solution pH
7. The rates of aniline degradation were faster at higher
concentrations of initial NayS,0g. A plot of Ink against
InCy of persulfate yielded a straight line with a slope of
0.98, indicating that the rate of aniline degradation was
directly proportional to initial Na,S,Og concentration. Our
results were in agreement with a previous finding (Huang
et al., 2002) rather than another early study (Li et al., 2009)
that the degradation rate did not increase further when the
initial persulfate concentration was higher 46.88 mmol/L.

2.3 Effect of pH on the degradation of aniline

Figure 3 shows time-dependent aniline concentration pro-
files measured at room temperature under different solution
pH conditions. The aniline degradation was also fit to the
pseudo first-order reaction model. It clearly shows that
acidic conditions slowed the rate of aniline degradation.
The rate constants of aniline degradation in different pH
solutions in the following sequence: pH 11 > pH 7 >
pH 9 > pH 5 > pH 3. Within the observed pH range of
3—11, strong acid system (pH 3) resulted in a low aniline
degradation rate and strong alkalinity (pH 11) lead a high

Persulfate 4 20 mmol/L
M 50 mmol/L

A 35 mmol/L
® 100 mmol/L

InC,

2.00 1 1 1
0 50 100 150 200

¢ (min)
Fig. 2 Effect of initial persulfate concentration on the rate of aniline
oxidation.

Fig. 3 Influence of pH on persulfate oxidation of aniline.

degradation rate. However maximum aniline degradation
occurred at pH 7 when the solution was in a weak level of
acid and alkalinity (pH 5, 7 and 9).

A possible explanation is that the predominant radical
formed in acidic solution was SO~ rather than -OH,
however the latter has a higher redox potential. Liang and
Su (2009) used nitrobenzene (NB) as a chemical probe
to identify the active radical species. They found that
SO,4"" is the predominant radical at pH < 7 whereas both
S04~ and ‘OH are presented at pH 9 and ‘OH is the
predominant radical at higher solution pH. It should be
noted that both SO, and ‘OH can react rapidly with
other chemicals in the background solution. As reported by
Huang et al. (2002) and Li et al. (2009), the oxidation rates
of methyl fert-butyl ether systems (Huang et al., 2002) and
persulfate-diphenylamine (Li et al., 2009) decreased as a
function of solution pH. They explained that the results
were due to the rapid decay of sulfate radicals and hydroxyl
radicals as they react with hydroxyl ions. Meanwhile,
carbon dioxide formed from organic pollutants degradation
could speed up the formation of bicarbonate and carbonate
in alkaline solutions, resulting inhibition of the oxidation
reaction. Liang et al. (2009) showed that the maximum
rate of trichloroethylene (TCE) degradation by persulfate
occurred at pH 7, and they believed that more -OH free
radicals were generated at neutral pH condition and that
the -OH free radicals were scavenged at faster rate by
SO, in basic solutions. Thus, it appears that the presence
of various free radical scavengers in solution results in
reduction in reactivity of both SO,*~ and -OH.

2.4 Mechanism of aniline degradation

To explore the mechanism of aniline degradation, the
intermediates formed during the degradation by persul-
fate were identified by using high performance liquid

chromatography-mass spectrometry (HPLC-MS) based on
previous literature (Gai, 2003) and mas$ fragmentation
pattern. The samples collected at the differgnt times (0, 2, 4
and 6 hr) of reaction solutions were dissolyed by ultrapure
water after extracted with hexane to HPL( and HPLC-MS
analysis. Figure 4 demonstrates typical chfomatograms of
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the intermediates for the aniline solutions collected after O,
2, 4 and 6 hr. All of the peaks which had a response on
mass spectrometry were marked.

The predominant species b, ¢c and d were characterized
by m/z values of 200, 124, and 184 and the chromato-
graphic response intensity is shown in Fig. 5. The chemical
structures for the predominant degradation products were
also proposed on the basis of the results of the HPLC-MS
fragmentation analysis and the chromatographic retention
time. HPLC and HPLC-MS analysis evidenced three main
products. Along the degradation time, the chromatographic
peak areas of species with m/z 124 characterized by
nitrobenzene progressively increased to a maximum and
then decreased. On the contrary, the peak areas of the
species characterized by m/z 200 and 184 were increased

0 hr

SN I I S

Strength (mAU)

C
b

0 5 10 15 20 25 30
Retention time (min)

Fig. 4 HPLC typical chromatograms of intermediates (a—e) for the
aniline solutions collected after 0, 2, 4 and 6 hours of persulfate oxidation
in reactor.

gt ﬁ Peak a
o [*))
=6l QHHZ
X
2
z 4}
Q
i
2r 0
~
0 I
200 400 600 800 1000
m/z
~ Peak ¢
=)
X
2
g
E
800 1000

Fig. 5 Proposed intermediates and mass spectra of the degradation products.

along the degradation time. The chromatographic peak
appeared at 3 min of retention time was not detected
in mass spectrum. Some intermediates (such as phenol,
azobenzene and benzoquinone) which were identified as
major products of aniline mineralization in some previous
literature (Brillas et al., 1998; Jin et al., 2006; Sauleda and
Brillas, 2001; Canle et al., 2005; Oliviero et al., 2003)
failed detection under the experimental conditions in this
study. The specific reasons need to be further investigated.
From the above discussion, two main destruction path-
ways might be proposed for the degradation of aniline
by persulfate at pH 7.00 (Fig. 6). First, formation of
the nitrobenzene has been reported during previous study
(Liang et al., 2009, Brillas et al., 1998; Sauleda and Brillas,
2001; Canle et al., 2005) under different process. Hydroxyl
radicals attacked the aromatic ring, aniline followed elim-
inated HO- and accomplished deprotonation to form the
aniliny radical, the aniliny radical is further oxidized to
nitrobenzene. And nitrobenzene may be further oxidized to
more stable small molecules such as oxalic acid. Another
important intermediates observed in this study was 4-4’-
diaminodiphenyl. The reaction between sulfate radicals
and aromatic compounds was considered complete by
electron transfer (Chen et al., 2009). The presence of
4-4’-diaminodiphenyl indicated the bimolecular reaction
between the anilinium/aniliny radicals (Canle et al., 2005).
The second pathway implied that the degradation of aniline
in persulfate system was most likely due to its reaction
with sulfate and hydroxyl radicals. As hydroxyl and sulfate
radicals are thought to be the primary oxidizing species
produced by decomposition of persulfate (Huang et al.,
2002; Li et al., 2009). The byproduct characterized by
m/z 200 was proposed 1-hydroxy-1,2-diphenylhydrazine.
It may fit the condensation of nitrobenzene and aniline,
and this result also evidenced by that the change of
concentration of nitrobenzene and the byproducts.

) Peak b
2.0} I
) § OO
x 1.5F OH
2
2 1.0
Q
E ~
0.5F o0 K SN
0 S;r. AL li o
200 400 600 800 1000
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NH, NH,
H,N
80,7~ SO : @
)

*OH

NH,

COOH

D e

COOH

Y-

*OH

NH NO,
—HO0 HzN_Q
CREG BT S S
OH

Fig. 6 Proposed reaction pathways for mineralization of aniline.

3 Conclusions

This study investigated the degradation kinetics and mech-
anism of aniline by heat-assisted persulfate oxidation.
The affecting factors including temperature, oxidant con-
centration, and pH were examined in designed batch
experiments. The aniline degradation was found to follow
a pseudo first-order reaction model. The results indicated
that the reaction was significantly influenced by tempera-
ture, oxidant concentration and pH. Increasing the reaction
temperature or oxidant concentration can significantly
accelerate the aniline degradation in persulfate/aniline sys-
tem. In the pH range of 3 to 11, a low aniline degradation
rate was obtained at strong acid system (pH 3), while a
high degradation rate was achieved at strong alkalinity (pH
11). Maximum aniline degradation occurred at pH 7 when
the solution was in a weak level of acid and alkalinity
(pH 5, 7 and 9). Through the analysis of mass spectrum
and the studies of previous literature of aniline degra-
dation, three intermediates were detected in our work,
characterized by m/z 124, 200 and 184, and identified as
nitrobenzene, 1-hydroxy-1,2-diphenylhydrazine and 4-4’-
diaminodiphenyl, respectively.
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