Aquatic environment

Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and Hospital wastewaters in the freshwater mussel *Elliptio complanata*
François Gagné, Chantale André, Marlène Fortier, Michel Fournier .. 781

Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake
Yu Wang, Guibing Zhu, Lei Ye, Xiaojuan Feng, Huib J. M. Op den Camp, Chengqing Yin .. 790

Accelerated biodegradation of nitrophenols in the rhizosphere of *Spirodea polyrhiza*
Risky Ayu Kristanti, Masahiro Kande, Tadasu Toyama, Yasuhiro Tanaka, Yueqin Tang, Xiaolei Wu, Kazuhiro Mori .. 800

Sorption of 2,4-dinitroanisole (DNA) on lignin
Rabih Saad, Zorana Radovic-Hrapovic, Behzad Alhvazi, Sonia Thiboutot, Guy Ampleman, Jalal Hawai .. 808

Sewage sludge disintegration by high-pressure homogenization: A sludge disintegration model
Yuxuan Zhang, Panyue Zhang, Boqiang Ma, Hao Wu, Sheng Zhang, Xin Xu .. 814

Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation
Xiaofang Xie, Yongqing Zhang, Weilin Huang, Shaobing Huang .. 821

Degradation of some typical pharmaceuticals and personal care products with copper-plating iron doped Cu2O under visible light irradiation
Jing An, Qixing Zhou .. 827

Preparation of high concentration polyaluminium chloride by chemical synthesis-membrane distillation method with self-made hollow fiber membrane
Changwei Zhao, Yong Yan, Deyun Hou, Zhaokun Luan, Zhiping Jia .. 834

Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency
Bing Sun, Nyein Nyein Aye, Zhiying Gao, Dan Lv, Xiaomei Zhu, Masayuki Sato .. 840

Photolysis kinetics and influencing factors of bisphenol S in aqueous solutions
Guiping Cao, Jiali Lu, Gongying Wang .. 846

Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment
Anesh Pasricha, Sant Lal Jangra, Nahar Singh, Neeraj Dilbaghi, K. N. Sood, Kanupriya Arora, Renu Pasricha .. 852

Atmospheric environment

Size distribution and chemical composition of secondary organic aerosol formed from Cl-initiated oxidation of toluene
Mingqiang Huang, Weijun Zhang, Xuejun Gu, Changjin Hu, Weixiong Zhao, Zhenya Wang, Li Fang .. 860

Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions
Jingnan Hu, Ye Wu, Zhihui Wang, Zhenhua Li, Yu Zhou, Haitao Wang, Xiaofeng Bao, Jiming Hao .. 865

Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling
Yongmei Yu, Menghui Zheng, Xiazwei Li, Xiaolei He .. 875

Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere
Senlin Lu, Rui Zhang, Zhenkun Yao, Fei Yi, Jingjing Ren, Minghong Wu, Man Feng, Qingyue Wang .. 882

Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal
Yongli Sun, Libo Zhou, Luhong Zhang, Hong Sai .. 891

Absorption characteristics of new solvent based on a blend of AMP and 1,8-diamino-p-menthane for CO2 absorption
Sang-Sup Lee, Seong-Man Mun, Won-Joon Choi, Byoung-Moo Min, Sang-Won Cho, Kwang-Joong Oh .. 897

Terrestrial environment

Toxicity and subcellular distribution of cadmium in wheat as affected by dissolved organic acids
Dandan Li, Dongmei Zhou .. 903

Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge
on Chinese soils contaminated by mine tailings
Tatiana Garrido, Jorge Mendoza, Francisco Arriagada .. 912

Mechanism of lead immobilization by oxalic acid-activated phosphate rocks
Guanjie Jiang, Yonghong Liu, Li Huang, Qingling Fu, Youjun Deng, Hongqing Hu .. 926

Inhibitory effect of nitrobenzenes on oxygen demand in lake sediments
Xiaohong Zhou, Xuying Wang, Hanchang Shi .. 934

Environmental health and toxicology

Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings
Long Zhang, Zhen Chen, Cheng Zhu .. 940

Species-dependent effects of the phenolic herbicide ioxynil with potential thyroid hormone disrupting activity: modulation of its cellular uptake and activity by interaction with serum thyroid hormone-binding proteins
Sakura Akiyoshi, Gobun Sai, Kyoshiro Yamauchi .. 949

Environmental catalysis and materials

A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples
Junfeng Dou, Fuqiang Fan, Aizhong Ding, Lirong Cheng, Raju Sekar, Hongting Wang, Shuaian Li .. 956

A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment
Himanshu Priyadarshi, Absar Alam, Gireesh Babu P, Rekha Das, Pankaj Kishore, Shivendra Kumar, Aparna Chaudhari .. 963
Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere

Senlin Lü1,* , Rui Zhang1, Zhenkun Yao1, Fei Yi1, Jingjing Ren1, Minghong Wu1, Man Feng1, Qingyue Wang2,*

1. Shanghai Applied Radiation Institute, School of Environmental and Chemical engineering, Shanghai University, Shanghai 201800, China. E-mail: senlinv@shu.edu.cn
2. Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Satura-Ku, Saitama City, Saitama 338–8570, Japan

Received 15 July 2010; revised 30 September 2010; accepted October 10 2011

Abstract
Ambient coarse particles (diameter 1.8–10 μm), fine particles (diameter 0.1–1.8 μm), and ultrafine particles (diameter < 0.1 μm) in the atmosphere of the city of Shanghai were sampled during the summer of 2008 (from Aug 27 to Sep 08). Microscopic characterization of the particles was investigated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX). Mass concentrations of Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb, Sr, and Pb in the size-resolved particles were quantified by using synchrotron radiation X-ray fluorescence (SRXRF). Source apportionment of the chemical elements was analyzed by means of an enrichment factor method. Our results showed that the average mass concentrations of coarse particles, fine particles and ultrafine particles in the summer air were 9.38 ± 2.18, 8.82 ± 3.52, and 2.02 ± 0.41 μg/m³, respectively. The mass percentage of the fine particles accounted for 51.47% in the total mass of PM₁₀, indicating that fine particles are the major component in the Shanghai ambient particles. SEM/EDX results showed that the coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles. SRXRF results demonstrated that crustal elements were mainly distributed in the coarse particles, while heavy metals were in higher proportions in the fine particles. Source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. Levels of P, V, Cr, and Ni in particles might be contributed from multi-sources, and need further investigation.

Key words: airborne size-resolved particles; chemical elements distribution; source apportionment
DOI: 10.1016/S1001-0742(11)60870-X

Introduction
Epidemiological studies have shown that increasing levels of airborne particulate matter are associated not only with exacerbations of respiratory diseases but also with increased morbidity and mortality from cardiovascular conditions (Dockery et al., 1993; Dockery and Pope, 1994; Hetland et al., 2004; Künzli et al., 2000; Samet et al., 2000; Stieb et al., 2002). According to their aerodynamic diameter (d), airborne particulates can be divided into three categories: (1) coarse particles (2.5 ≤ d ≤ 10 μm); (2) fine particles (d < 2.5 μm); and (3) ultrafine particles (UPFs) (d < 0.1 μm). A number of studies of Shanghai air quality have focused on the physicochemical characterization of coarse particles and fine particles (Lu et al., 2008; Fu et al., 2008; Wang et al., 2006), but until now, relatively few works have investigated the character of ultrafine particles (Lu et al., 2011). However, surface area-to-mass ratios and deposition efficiency of UPFs in the alveoli are higher than those of either coarse particles or fine particles (Duffin et al., 2007), and the size and chemical composition of ambient particles are important determinants of their potential impacts on human health. These findings have motivated researchers to investigate the physicochemical characterization of ultrafine particles in the urban atmosphere. For example, Wu et al. (2008) conducted a two-year study of particle numbers and size distribution (3 nm–10 μm) of airborne particulates in Beijing, China. They reported annual average particle number concentrations in several ways: the nucleation mode (3–20 nm), the Aitken mode (20–100 nm), and the accumulation mode (0.1–1 μm), giving values of 9000, 15900, and 7800 cm⁻³, respectively. Allen et al. (2001) measured the size distributions of Ba, Cd, Co, Cu, Hg, Mn, Ni, Pb, Sn, Se, Sr, Zn and Fe in atmospheric aerosols at three background sites in central England and southern Scotland. They concluded that the size distributions obtained in Scotland, which were typically trimodal, significantly differed from those...
in central England, where modes were more variable. Lin et al. (2005) reported on the size distribution of chemical elements in size-resolved ambient particles near a highway in Taiwan. Their results showed that anthropogenic elements, such as Zn, Ni, and Pb, were mainly distributed in the size range of 1.0–0.56 μm. As the largest commercial city in China, ambient inhalable particles (PM10, PM2.5) in the Shanghai atmosphere have been investigated recently (Ye et al., 2000; Wang et al., 2006; Fu et al., 2008; Zhang et al., 2009). We have also reported the physico-chemical character and potential toxicity of Shanghai ambient coarse/fine/ultrafine particles, and have concluded that fine particles have a higher toxicity than either coarse particles or UPFs, and in particular that the crustal element calcium can be enriched in the ultrafine particles (Lu et al., 2011). Nevertheless, relatively few studies have focused on the physicochemical characterization of differently sized airborne particles and their source apportionment. Hence this study has focused on the size distribution of individual elements in size-resolved airborne ambient particles in Shanghai, and interpretation of their source apportionment.

1 Experiments

1.1 Field sampling

The sampling site was located in Xujiuhui (XJH), one of commercial centers of Shanghai (Fig. 1). A 13-stage MOUDI125 B (Micro-Orifice Uniform Deposit Impactor, MSP, Co., Minneapolis, USA) with the flow rate of 10 L/min was employed to collect the size-resolved ambient particles. The particles were collected on polycarbonate filters (Millipore, 47 mm diameter, 0.6 μm pore size). The MOUDI impactor effectively separated the particulate matter into 13 ranges (at 50% efficiency) with the following equivalent cutoff diameters (μm): 10–5.6, 5.6–3.2, 3.2–1.8, 1.8–1.0, 1.0–0.56, 0.56–0.32, 0.32–0.18, 0.18–0.1, 0.1–0.056, 0.056–0.032, 0.032–0.018, and 0.018–0.010 μm. The sampler was mounted on the roof of a building at the Shanghai Environmental Monitoring Center (31°11’20.42”N; 121°26’09.99”S). The sampling site was about 15 m high above the ground. The sampling campaigns were performed from Aug 27 to Sep 10, 2008.

A total of five groups (65 samples) of size-segregated ambient particle samples were collected. The sampling period for each group was set at 48 hr. If it was rainy day during the sampling times, the sampling campaign would be stopped; therefore, the sampling dates were on Aug 27, Aug 30, Sep 02, Sep 04 and Sep 08. Meteorological data during the sampling times were also recorded (Table 1). The sampled filters were kept in desiccators (with room temperature and around 50% RH) until analysis. The filters were weighed before and after sampling, under the same conditions at constant temperature (20 ± 1)°C and humidity (40% ± 5%) with a microbalance (Model CP225D, Sartorius, Germany), then, mass concentrations of the size-resolved ambient particles were obtained by the following equation:

\[C = \frac{(W_2 - W_1)}{L \times t} \] (1)

where, \(C \) (μg/m³) is mass concentration; \(W_1 \) (μg) and \(W_2 \) (μg) are weight of the filters before and after sampling, respectively; \(L \) (m³/min) is sampling flow of air; \(t \) (min) is sampling time.

Table 1 Meteorological data during sampling times

<table>
<thead>
<tr>
<th>Dates</th>
<th>Aug 27</th>
<th>Aug 30</th>
<th>Sep 02</th>
<th>Sep 04</th>
<th>Sep 08</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C) (ave.)</td>
<td>32</td>
<td>26</td>
<td>24</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Humidity (%) (ave.)</td>
<td>67</td>
<td>80</td>
<td>62</td>
<td>60</td>
<td>71</td>
</tr>
<tr>
<td>Wind Speed (km/hr) (ave.)</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Wind direction</td>
<td>ESE</td>
<td>ES</td>
<td>W</td>
<td>ES</td>
<td>EN</td>
</tr>
</tbody>
</table>

Ave. means average value of 48 hr.

1.2 Analysis methods

1.2.1 Scanning electronic microscopy

Sample preparation for SEM observation was as described by Lu et al. (2007). Briefly, for each sample, approximately 1.5 × 2 cm² of the polycarbonate filter was cut off using resin scissors and was attached to conductive metal pads using double-sided adhesive. The samples were examined using scanning electron microscopy (SEM) (JSM-6700F, JEOL, Japan), equipped with an energy dispersive X-ray system (EDX) which was used for the chemical elemental analysis. The EDX spectrometer was a Link ISIS spectrometer with a Si(Li) detector which allows X-ray detection from elements higher than carbon (atomic number, Z > 6). The system was equipped with software, and elemental weight percents were calculated using standard ZAF (atomic number, absorption, fluorescence) corrections. Operating conditions of the SEM were 10 KeV accelerating voltage and 10 μA beam current, with spectral acquisition times of 100 sec. The diameter of the spot of the electron beam was 1 μm. The instrument allowed observation of the diameter of particles down to 0.5 μm.
1.2.2 Synchrotron radiation X-ray fluorescence analysis

The synchrotron radiation technique has been used in other studies of the elemental composition and species of atmospheric particulate matter (Li et al., 2007, 2009; Lin et al., 2009; Wang et al., 2007). The chemical composition analysis of the size-segregated particles was carried out in Tsukuba, Japan, at the synchrotron radiation X-ray fluorescence analysis end station (BL-4A) of the Photon Factory’s high energy accelerator research organization. The electron beam energy and ring current of the synchrotron radiation were 2.5 GeV and 300–450 mA, respectively, and the X-ray energy ranged from 1 to 20 keV. A double crystal monochromator was employed, and the monochromatic excitation energy was 19.5 keV. The electronic slot was adjusted to make the beam spot sizes 5 μm × 5 μm. Measurement time for each sample was set for 100 sec. The fluorescence signals were acquired by a Si(Li) semiconductor detector and sent into a 1024 channel pulse height analyzer to record the XRF spectrum. Recordings of the intensity of the fluorescent signal from each filter were repeated 3 times. The spectra were analyzed and processed by the software AXIL. The advantage of this method is that the analyzer recorded the intensity of fluorescence emitted by the measured particles, and the X-rays cannot damage to the filter, therefore, the filter is kept in good condition during the experiment.

1.2.3 Source apportionment

Source apportionment of chemical elements in the size-resolved particles was studied by using an enrichment factor method. The enrichment factor (EF) is used to identify whether the measured chemical elements are emitted from natural sources (EF < 100), or from anthropogenic sources. The EF value is calculated by using the following equation:

\[
 \text{EF}_i = \frac{(M_i/M_r)_{\text{aerosol}}}{(M_i/M_r)_{\text{crust}}} \quad (2)
\]

where, \(M_i\) is the concentration of the element in aerosol and \(M_r\) is the abundance of titanium in the crust. The titanium is selected as the reference element, which is relatively stable in the crust, and its distribution is not affected by human activities (Chen et al., 2008).

2 Results and discussion

2.1 Mass concentrations

Mass levels of the different size airborne particles are shown in Fig. 2. The total mass concentration of the ambient variously size-resolved particles was 74.63 μg/m³.

The average mass concentration of Shanghai coarse particles (PM₁₀–₅.₆, PM₅.₆–₃.₂, PM₃.₂–₁.₈) from Aug 27 to Sep 9, 2008 ranged from 7.3 to 12.47 μg/m³ with an average mean of 9.38 ± 2.18 μg/m³. The average mass level of the fine particles (PM₁.₈–₁.₀, PM₁.₀–₀.₅₆, PM₀.₅₆–₀.₁₈, PM₀.₁₈–₀.₃) ranged from 5.3 to 12.57 μg/m³ with an average mean of 8.82 ± 3.52 μg/m³, with higher mass concentration of fine particles found on Aug 30 and Sep 2; relatively high humidity (80%) might contribute to the high mass levels. Mass concentrations of the ultrafine particles (PM₀.₁–₀.₅₆, PM₀.₅₆–₀.₀₃₂, PM₀.₀₃₂–₀.₀₁₈, PM₀.₀₁₈–₀.₀₁) ranged from 1.39 to 2.43 μg/m³ with an average mean of 2.02 ± 0.41 μg/m³. After the size-resolved particles were divided into coarse particles (size diameter, 1.₈–₁₀ μm), fine particles (size diameter, 0.₁–₁.₈ μm) and ultrafine particles (size diameter < 0.₁ μm), the mass percentage of the fine particles accounted for 51.47% in the total mass of PM₁₀, while the coarse particles and ultrafine particles accounted for 37.69% and 10.84%, respectively (Fig. 3).

The fine-to-coarse mass concentration ratios ranged from 54% to 68% with an average of 62%, indicating that Shanghai ambient particles were dominated by the fine particles. Zhao and Gao (2008) showed that PM₁.₈ accounted for about 68% of the mass concentrations of PM₁₀ in the New Jersey urban atmosphere from July to December 2006. Ntzia-christos et al. (2007) demonstrated that mass levels of coarse, fine and ultrafine particles near the I-710 freeway in Los Angeles were 6.3 ± 0.88, 5.₈ ± 0.₉₅ and 1.₇ ± 0.₆₇ μg/m³, respectively. Additionally, we have previously reported average mass levels of coarse particles, fine particles, and UFPs, which were collected in winter at the same sampling site as used in this study, to be 6.₂ ± 3.₈, 1₂.₉ ± 8.₄, 2.₇ ± 1.₄ μg/m³, respectively.

![Fig 2](image_url) Mass concentrations of size-segregated particles collected in the Shanghai atmosphere. Data are presented as means with standard deviations.

![Fig 3](image_url) Mass ratios of size-resolved particles in Shanghai summer atmosphere.
(Lu et al., 2011), Therefore, compared with the above mentioned results, particulate pollution in the center of Shanghai (XJH) is serious, and their mass levels show no significant variation from winter to summer.

2.2 Microscopic characterization of the size-resolved particles

The SEM results demonstrated that microscopic characterization of Shanghai particulates revealed that different size particles had visibly different attributes. Based on SEM morphological character (Fig. 4) and EDX spectrum (Fig. 5), individual particle types in the Shanghai atmosphere could be identified as irregular mineral particles (with main chemical elements, Si, Al, K, Na, Ca); regular mineral particles (S, O, Cl, Na); fly ash (Si, Al, O); soot particles (carbon); and unidentified particles. The coarse particles were mainly composed of mineral particles (Fig. 4a); fine particles were dominated by mineral particles, soot aggregates, fly ashes and unidentified particles (Fig. 4b); and ultrafine particles consisted of soot aggregates (Fig. 4c). The clustered soot aggregates (Fig. 4d), that had originated from combustion, were commonly found in all the size ranges.

Fly ash particles with a spherical shape (Fig. 4e) could be observed; they were largely derived from coal combustion and metallurgical emissions (Lu et al., 2008). The cubic particles (Fig. 4f) were composed of sodium chloride, its chemical elements being identified as Na and Cl by EDX (Fig. 5a). Regular mineral particles with quadrate shape (Fig. 2g), of which the chemical elements were Ca, S, O (Fig. 5b), were mainly generated by atmospheric reactions, similar to particles identified in a case study in Phoenix, Arizona reported by Katrinak et al. (1995). It is noted that there were numerous particles which were dominated by sulfur; their micrographs are shown in Fig. 4h (with EDX spectrum, Fig. 5c) and Fig. 4i (with EDX spectrum, Fig. 5d). This phenomenon of S being deposited on particles could be used to demonstrate that S pollution exists in Shanghai air. Shi et al. (2003) and Li and Shao (2009) have also reported that sulfur could be readily observed in Beijing ambient particles.

2.3 Chemical elements analysis

The mass concentrations of a total of 20 elements in Shanghai size-segregated particles were investigated by SRXRF (Table 2). The chemical elemental analysis results showed that the value for the mass concentration of Si was the highest both in the coarse particles (1385.84 ± 143.87 ng/m³) and in the ultrafine particles (111.75 ± 26.77 ng/m³). Being the most abundant element in the

Fig. 4 SEM micrographs of size-segregated particles. (a) coarse particles; (b) fine particles; (c) ultrafine particles; (d) soot aggregates; (e) fly ash; (f), (g) mineral particles; (h), (i) irregular particles.
crust, it is to be expected that high mass concentrations of Si could be found in ambient coarse particles (Lu et al., 2007). However, Lin et al. (2005) claimed that emissions from diesel engines could also contribute to concentrations of Si found in ambient nano particles. Therefore, the high concentrations of Si found here in the Shanghai ultrafine particles might be at least in part explained by the many vehicles (30,000/day) driving around our sampling site.

Sulfur (1124.29 ± 142.23 ng/m³) was the most abundant chemical element in Shanghai fine particles. Sulfur in ambient particles is a typical anthropogenic element, mainly contributed by coal combustion (Tang, 1990). The high mass level of sulfur in the Shanghai atmosphere suggested that coal combustion was one of the pollutant sources.

The mass concentrations of Ca in coarse, fine and ultrafine particles were 488.13 ± 88.83, 224.72 ± 41.04, and 6.23 ± 1.10 ng/m³, respectively. The corresponding mass level of Fe in coarse, fine, and ultrafine particles was 475.84 ± 63.92, 447.69 ± 40.24, and 14.38 ± 2.39 ng/m³, while that for K was 167.64 ± 23.40, 139.5 ± 16.04, and 2.17 ± 0.77 ng/m³. These three elements were mainly distributed in the coarse particles.

The mass levels of Zn and Pb in fine particles were 159.86 ± 20.83 and 103.24 ± 10.06 ng/m³, respectively. Elevated mass concentrations of Zn in ambient particles have also been reported in the air of Cardiff (Moreno et al., 2004), Beijing (Lu et al., 2006) and Shanghai (Fu et al., 2008). We once reported that a high mass level of Pb (325 ng/m³) could be found in Shanghai winter PM2.5 (Lu et al., 2008); compared with our previous results, the mass level of Pb in fine particles reported here has decreased greatly. Because Pb in airborne particles is related with leaded gasoline combustion (Fu et al., 2008), leaded gasoline prohibition and air quality control measures might well have contributed to the Pb decrease.

The mass levels of other metal elements in the fine particles ranked in the following order: Cu (36.31 ± 3.33 ng/m³) > Mn (9.56 ± 1.23 ng/m³) > Ni (3.84 ± 0.84 ng/m³) > Cr (2.49 ± 0.61 ng/m³).

Figure 6 shows that all of the mass ratios of Si, Ca, Ti, Sr, Fe, K in the coarse particles were more than 50%, suggesting these abundant elements were mainly distributed in the coarse particles, while the mass ratios of S, Zn, Pb, Ni, Se in the fine particles were more than 50%, implying these elements were concentrated in the fine particles.

2.4 Size distribution of individual chemical elements

Figures 7 and 8 present the size distributions of the individual chemical elements in the Shanghai size-resolved...
particles.

Figure 7 shows the size distribution of the crustal elements Si, Fe, Ca, K (major chemical elements) in Shanghai airborne size-resolved particles. Si and Ca exhibited a single modal size distribution, and their highest mass peaks appeared in the 3.2–5.6 µm range. Fe and K exhibited approximately bimodal size distributions, with primary peaks in the 3.2–5.6 µm range and secondary peaks in the 0.56–1.0 µm range. However, Lin et al. (2005) reported that the four elements in particles which were sampled near a highway, showed different size distributions, with K exhibiting a trimodal size distribution, Ca and Si showing a bimodal size distribution, and Fe which was single modal. Therefore, it appears that the size distributions of chemical elements reflect their different emission sources.

Figure 8 shows that the size distributions of S, Pb, Sr and Se were single modal, their primary peak being at 0.56–1.0 µm. Although Zn, Cl, Ti, As, Sr also exhibited single modality, their peak values were different; the peak of Zn was in the range 0.56–1.8 µm, but the peak of Cl, Ti, As, and Sr was in the 3.2–5.6 µm fraction. The elements Pb, Cu, P, Mn and Rb exhibited bimodal size distributions. Pb, Cu, P, and Mn displayed the two peaks at 0.56–1.0 and 3.2–5.6 µm, but those of Rb were at 0.56–1.0 and 5.6–10 µm. The size distributions of V, Ni, and Cr were trimodal. The peaks of V were in the ranges 0.018–0.032, 0.18–0.32 and 1.8–3.2 µm; of Ni in 0.18–0.32, 1.0–1.8 and 3.2–5.6 µm ranges; and of Cr in 0.018–0.032, 0.18–0.32 and 3.2–5.6 µm ranges. The size distribution of trace elements in Shanghai urban airborne particles revealed that Zn, Pb, S, Cl, As, Sr, and Mn were mainly embodied in the fine particles, while V, Ni, Cr had a wide range of distribution. Therefore, it can be deduced that the complexity of size distribution of trace metals in Shanghai airborne particles brings challenges for the control of pollution caused by these elements.

2.5 Source apportionment

Table 3 shows that the enrichment factors of different chemical elements in coarse, fine, and ultrafine particles were different. The EFs of Si, K, Ca, Fe, Mn, Rb, and Sr in the coarse, fine and ultrafine particles were less than 10, implying these elements were emitted from natural sources. However, the EFs of S, Cl, Cu, Zn, As, Se, Br, and Pb in the three size ranges of particles were all much higher than 10, indicating these elements come from anthropogenic resources. It was noted that the EFs of P, V,
Cr, Ni in coarse particles was less than 10, but their values in fine particles and in ultrafine particles were extremely high (> 10) implying that the four elements could be attracted to fine particles and ultrafine particles.

It can be seen (Fig. 9) that significant differences in the EFs of an individual element in different size categories reflect variations in their abundance in the different size particles. EF values of crustal elements (Si, K, Ca, Mn, Fe and Sr), and of anthropogenically-derived elements (S, Cl, Cu, Zn, As, Br, Pb), all had two peaks, with the primary peak in the 3.2–5.6 µm and secondary peak in the 0.56–1.0 µm range. However, the EF values of another anthropogenic element group (P, V, Cr, Ni) exhibited 3 peaks, in 3.2–5.6, 0.56–1.0 and 0.018–0.032 µm ranges respectively. It is noted that the pattern of abundance variation of the measured individual chemical elements was very similar to that of their size distribution, therefore the size distribution of chemical elements and their EFs could be used to evaluate particulate matter pollution in the urban atmosphere.

3 Conclusions

Size-resolved ambient particles were sampled in the center of Shanghai in the summer of 2008, and their physico-chemical characterization and source apportionment were investigated. The results from this work yield the following conclusions.

(1) The average mass concentrations of coarse particles, fine particles and ultrafine particles in summer in Shanghai atmosphere were 9.38 ± 2.18, 8.82 ± 3.52, and 2.02 ± 0.41 µg/m³ respectively. The mass percentage of the fine particles accounted for up to 51.47% of the total mass of PM$_{10}$, indicating that fine particles were the major component in Shanghai ambient particles; (2) Shanghai size-segregated particles can be divided into regular and irregular particles.
No. 5 Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in the Shanghai atmosphere

<table>
<thead>
<tr>
<th>Chemical Element</th>
<th>Coarse particles</th>
<th>Fine particles</th>
<th>Ultrafine particles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>0.80</td>
<td>0.90</td>
<td>4.13</td>
</tr>
<tr>
<td>P</td>
<td>1.59</td>
<td>18.70</td>
<td>43.85</td>
</tr>
<tr>
<td>S</td>
<td>54.76</td>
<td>4502.24</td>
<td>1546.69</td>
</tr>
<tr>
<td>Cl</td>
<td>183.36</td>
<td>785.37</td>
<td>1434.92</td>
</tr>
<tr>
<td>K</td>
<td>1.04</td>
<td>5.61</td>
<td>0.86</td>
</tr>
<tr>
<td>Ca</td>
<td>2.16</td>
<td>6.45</td>
<td>1.76</td>
</tr>
<tr>
<td>V</td>
<td>4.60</td>
<td>35.24</td>
<td>303.04</td>
</tr>
<tr>
<td>Cr</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>V</td>
<td>4.60</td>
<td>35.24</td>
<td>303.04</td>
</tr>
<tr>
<td>Cr</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>CR</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>Si</td>
<td>0.80</td>
<td>0.90</td>
<td>4.13</td>
</tr>
<tr>
<td>K</td>
<td>1.04</td>
<td>5.61</td>
<td>0.86</td>
</tr>
<tr>
<td>Ca</td>
<td>2.16</td>
<td>6.45</td>
<td>1.76</td>
</tr>
<tr>
<td>V</td>
<td>4.60</td>
<td>35.24</td>
<td>303.04</td>
</tr>
<tr>
<td>Cr</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>CR</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>Si</td>
<td>0.80</td>
<td>0.90</td>
<td>4.13</td>
</tr>
<tr>
<td>K</td>
<td>1.04</td>
<td>5.61</td>
<td>0.86</td>
</tr>
<tr>
<td>Ca</td>
<td>2.16</td>
<td>6.45</td>
<td>1.76</td>
</tr>
<tr>
<td>V</td>
<td>4.60</td>
<td>35.24</td>
<td>303.04</td>
</tr>
<tr>
<td>Cr</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>CR</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>Si</td>
<td>0.80</td>
<td>0.90</td>
<td>4.13</td>
</tr>
<tr>
<td>K</td>
<td>1.04</td>
<td>5.61</td>
<td>0.86</td>
</tr>
<tr>
<td>Ca</td>
<td>2.16</td>
<td>6.45</td>
<td>1.76</td>
</tr>
<tr>
<td>V</td>
<td>4.60</td>
<td>35.24</td>
<td>303.04</td>
</tr>
<tr>
<td>Cr</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>CR</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>Si</td>
<td>0.80</td>
<td>0.90</td>
<td>4.13</td>
</tr>
<tr>
<td>K</td>
<td>1.04</td>
<td>5.61</td>
<td>0.86</td>
</tr>
<tr>
<td>Ca</td>
<td>2.16</td>
<td>6.45</td>
<td>1.76</td>
</tr>
<tr>
<td>V</td>
<td>4.60</td>
<td>35.24</td>
<td>303.04</td>
</tr>
<tr>
<td>Cr</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
<tr>
<td>CR</td>
<td>2.78</td>
<td>25.91</td>
<td>70.09</td>
</tr>
<tr>
<td>Mn</td>
<td>1.17</td>
<td>10.48</td>
<td>5.16</td>
</tr>
<tr>
<td>Fe</td>
<td>1.53</td>
<td>9.32</td>
<td>2.94</td>
</tr>
</tbody>
</table>

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 10775094, 40973072, 41073073), the Shanghai Pujiang Talent Program, the Shanghai Committee of Science and Technology (No. 10JC1405500), the Innovation Program of Shanghai Municipal Education Commission (No. 11ZZ80), and the Shanghai Leading Academic Discipline Project (No. S30109). We thank stringent but constructive comments from the anonymous reviewer, and thank Prof. Margaret Burchett for her revision.

References

Künzli N, Kaiser R, Medina S, Studnicka M, Chanel O, Filliger P et al., 2000. Public-health impact of outdoor and traffic-related air pollution: a European assessment. *The Lancet*. From the point of view of their microscopic character. The coarse particles were dominated by minerals, fine particles by soot aggregates and fly ashes, and ultrafine particles by soot particles and unidentified particles; (3) SRXRF results demonstrated that crustal elements such as Si, Ca and Fe were mainly distributed in coarse particles, and a higher mass level of S could be found in size-resolved particles. Heavy metals, including Cr, Mn, Ni, Cu, Zn, and Pb, were mainly distributed in the fine particle fraction; (4) source apportionment revealed that Si, K, Ca, Fe, Mn, Rb, and Sr were from crustal sources, and S, Cl, Cu, Zn, As, Se, Br, and Pb from anthropogenic sources. P, V, Cr, and Ni in particles might be contributed by multi-sources, and need further investigation.

