Aquatic environment
Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and Hospital wastewaters in the freshwater mussel Elliptio complanata
François Gagné, Chantale André, Marilène Fortier, Michel Fournier

Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake
Yu Wang, Guibing Zhu, Lei Ye, Xiaojuan Feng, Huib J. M. Op den Camp, Chengqing Yin

Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrhiza
Risky Ayu Kristanti, Masahiro Kanbe, Tadashi Toyama, Yasuhito Tanaka, Yueqin Tang, Xiaolei Wu, Kazuhiro Mori

Sorption of 2,4-dinitroanisole (DAN) on lignin
Rabih Saad, Zorana Radovic-Hrapovic, Behzad Alvazoi, Sonia Thiboutot, Guy Ampleman, Jalal Hawai

Sewage sludge disintegration by high-pressure homogenization: A sludge disintegration model
Yuxuan Zhang, Panyue Zhang, Boqiang Ma, Tao Wu, Sheng Zhang, Xin Xu

Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation
Xiaofang Xie, Yongqing Zhang, Weilin Huang, Shaoqing Huang

Degradation of some typical pharmaceuticals and personal care products with copper-plating iron doped Cu2O under visible light irradiation
Jing An, Qixing Zhou

Preparation of high concentration polyaluminum chloride by chemical synthesis-membrane distillation method with self-made hollow fiber membrane
Changwei Zhao, Yong Yan, Dexin Hou, Zhaokun Luan, Zhiping Jia

Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency
Bing Sun, Neiun Nyein Aye, Zhiying Gao, Dan Lv, Xiaomei Zhu, Masayuki Sato

Photolysis kinetics and influencing factors of bisphenol S in aqueous solutions
Guiping Cao, Jiali Lu, Gongying Wang

Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment
Aneesh Pasricha, Sant Lal Jangra, Nahar Singh, Neeraj Dilbaghi, K. N. Sood, Kanupriya Arora, Renu Pasricha

Atmospheric environment
Size distribution and chemical composition of secondary organic aerosol formed from Cl-initiated oxidation of toluene
Mingqiang Huang, Weijun Zhang, Xuejun Gu, Changjin Hu, Weixiong Zhao, Zhenyi Wang, Li Fang

Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions
Jingnan Hu, Ye Wu, Zhihui Wang, Zhenhua Li, Yu Zhou, Haitao Wang, Xiaofeng Bao, Jiming Hao

Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling
Yongmei Yu, Minghu Zheng, Xiawei Li, Xiaolei He

Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere
Senlin Lu, Rui Zhang, Zhenkun Yao, Fei Yi, Jingjing Ren, Minghong Wu, Man Feng, Qingyue Wang

Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal
Yongli Sun, Libo Zhou, Luhong Zhang, Hong Sui

Absorption characteristics of new solvent based on a blend of AMP and 1,8-diamino-9,10-phenanthrene for CO2 absorption
Sang-Sup Lee, Seong-Man Mun, Won-Joon Choi, Byoung-Moo Min, Sang-Won Cho, Kwang-Joong Oh

Terrestrial environment
Toxicity and subcellular distribution of cadmium in wheat as affected by dissolved organic acids
Dandan Li, Dongmei Zhou

Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge on Chinese soils contaminated by mine tailings
Tatiana Garrido, Jorge Mendoza, Francisco Arriagada

Mechanism of lead immobilization by oxalic acid-activated phosphate rocks
Guanjie Jiang, Yonghong Liu, Li Huang, Qingling Fu, Youjun Deng, Hongqing Hu

Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil
Mingming Sun, Yongli Sun, Libo Zhou, Luhong Zhang, Hong Sui

Inhibitory effect of nitrobenzene on oxygen demand in lake sediments
Xiaohong Zhou, Xuying Wang, Hanchang Shi

Environmental health and toxicology
Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings
Long Zhang, Zhen Chen, Cheng Zhu

Species-dependent effects of the phenolic herbicide ioxynil with potential thyroid hormone disrupting activity: modulation of its cellular uptake and activity by interaction with serum thyroid hormone-binding proteins
Sakura Akiyoshi, Gobun Sai, Kiyoshi Yamauchi

Environmental catalysis and materials
A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples
Junfeng Dou, Fuqiang Fan, Aizhong Ding, Lirong Cheng, Raju Sekar, Hongting Wang, Shuaian Li

A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment
Himanshu Priyadarshi, Absar Alam, Girish Babu P, Rekha Das, Pankaj Kishore, Shivendra Kumar, Aparna Chaudhari

Serial parameter: CN 11-2629/X*1989*m*188*en*P*26*2012-5
Absorption characteristics of new solvent based on a blend of AMP and 1,8-diamino-p-menthane for CO₂ absorption

Sang-Sup Lee¹, Seong-Man Mun², Won-Joon Choi³, Byoung-Moo Min⁴, Sang-Won Cho⁵, Kwang-Joong Oh²,∗

1. Department of Environmental Engineering, Chungbuk National University, Cheongju 361-763, Korea
2. Department of Environmental Engineering, Pusan National University, Busan 609-735, Korea. E-mail: llosm@pusan.ac.kr
3. Corporate R&D Institute, Fuel Cell System Development Team, Doosan Heavy Industries & Construction, Daejeon 305-811, Korea
4. Greenhouse Gas Research Center, Korea Institute of Energy Research, Daejeon 305-343, Korea
5. Department of Energy and Environment, Korea Polytechnic VII College, Gyeongnam 642-020, Korea

Received 28 April 2011; revised 05 October 2011; accepted 28 October 2011

Abstract
Aqueous 1,8-diamino-p-menthane (KIER-C3) and commercially available amine solutions were tested for CO₂ absorption. A 2-amino-2-methyl-1-propanol (AMP) solution with an addition of KIER-C3 showed 9.3% and 31.6% higher absorption rate for CO₂ than the AMP solution with an addition of monoethanolamine (MEA) and ammonia (NH₃), respectively. The reaction rate constant for CO₂ absorption by the AMP/KIER-C3 solution was determined by the following equation: \(k_{2,\text{AMP/C3}} = 7.702 \times 10^6 \exp(-2248.03/T) \). A CO₂ loading ratio of the AMP/KIER-C3 solution was also 2 and 3.4-times higher than that of the AMP/NH₃ solution and the AMP/MEA solution, respectively. Based on the experimental results, KIER-C3 may be used as an excellent additive to increase CO₂ absorption capability of AMP.

Key words: carbon dioxide; absorption rate and capacity; 1,8-diamino-p-menthane; 2-amino-2-methyl-1-propanol
DOI: 10.1016/S1001-0742(11)60788-2

Introduction
Global warming has become one of the most complicated issues in the world. Carbon dioxide (CO₂) is recognized as a major greenhouse gas generated in large quantities from various emission sources including fossil-fuel electric power plants, synthetic ammonia industries, steel production works, etc. (Gadalla et al., 2005). Although a number of techniques have been tested for the separation of CO₂ from fossil fuel fired flue gas, an economically viable process is not currently available. Therefore, a more efficient CO₂ recovery process still needs to be developed.

Many studies have been conducted to develop more efficient alkanolamine absorbents for CO₂. A zwitterion mechanism was proposed for the CO₂ absorption mechanism of the alkanolamine absorbent by Caplow (1968) and Danckwerts (1979). Different from monoethanolamine (MEA), sterically hindered amines form unstable carbamates due to the bulkiness of the carbon groups attached to the amino group. The hydrolysis of carbamates then forms bicarbonate and restores the free amines which can react with additional carbon dioxide (Sartori and Savage, 1983). A representative sterically hindered amine, 2-amino-2-methyl-1-propanol (AMP) has therefore a higher CO₂ loading capacity than MEA (Dawodu and Meisen, 1994). Using a single amine can cause relatively fast corrosion and degradation reactions (Choi et al., 2009). Hence more effective and consistent absorption for CO₂ is expected by using a blend of two or more amines (Horng and Li, 2002). A number of studies related to the kinetics of CO₂ absorption into a blend of aqueous amine solutions containing AMP have been conducted (Lee et al., 2008; Aroonwilas and Veawab, 2004; Xu et al., 1991). The blended amine solutions containing showed significant enhancement in the absorption capacity and absorption rate for CO₂ maintaining the characteristics of sterically hindered amines (Li and Chang, 1994).

In this study, KIER-C3 was examined for its possibility as an additive to AMP for CO₂ absorption using a lab-scale reactor. Reactivity of KIER-C3 with CO₂ was evaluated comparing with other additives such as MEA and NH₃ in terms of CO₂ absorption rate, reaction kinetics and CO₂ loading. Its performance was also tested under various operating conditions.

1 Materials and methods

1.1 Materials
AMP, MEA, NH₃ and 1,8-diamino-p-menthane (KIER-

* Corresponding author. E-mail: kjoh@pusan.ac.kr
C3) were used in this study as CO2 absorbents. We obtained 95% AMP and 70% KIER-C3 from Sigma Aldrich (USA), 99% MEA from Yakuri Pure Chemicals (Japan), and 30% NH3 from Junsei Chemical (Japan). Each solution was diluted with distilled water to a certain concentration. The purity of CO2, N2 and N2O gases in each cylinder was 99.9%.

1.2 Apparatus and procedure

A schematic diagram of the experimental set up is presented in Fig. 1. Absorption experiments were carried out using an agitated glass reactor with an internal diameter of 7.3 cm and a height of 15.1 cm. Each solution of 150 mL was located inside the reactor at 313 K and agitated at 50 r/min. N2 and CO2 gases were premixed in the mixing chamber and then injected into the solution. The flow rates of N2 and CO2 gases were controlled using mass flow controllers (5850E, Brooks Instruments, USA, accuracy: ± 1% of full scale) to maintain the CO2 concentration of 15%. The flow rate of effluent gas from the reactor was determined using a bubble meter. The CO2 absorption rate was then determined from the difference between the flow rates of the influent and the effluent gas. Each experiment was repeated three times.

The molar flux of CO2 into each solution j (Nj kmol/(m2·sec)) was determined from the initial absorption rate, V(t1)/t1 using the following equation:

\[N_j = \frac{P_t - P_{eq}}{R T} \times \frac{V(t_1)}{t_1} \]

where, P_t (kPa) is the atmospheric pressure, P_{eq} (kPa) is the vapor pressure, S (cm2) is the gas-liquid contact area, R ((L·atm)/(mol·K)) is the gas constant, and T (K) is the temperature.

Another experimental system was constructed to test the amount of CO2 absorption into each solution at equilibrium as shown in Fig. 2. A reactor with a height of 160 mm was located in a temperature-controlled vessel. Four baffles with 5 mm width were installed inside the reactor. A two-blade impeller (70 mm × 20 mm) was also installed in the middle of the liquid level. The temperature inside the reactor was measured with a K-type thermocouple with an accuracy of ± 0.1 K. The stirring speed was limited at no more than 50 r/min to keep the gas-liquid interface planar and smooth. Each solution of 300 mL was located in the reactor, and its absorption capacity was determined with a CO2 partial pressure in the range of 0–600 kPa at 313 and 383 K, respectively. The CO2 partial pressure in the reactor was recorded using a pressure data logging system (PR2000, Madgetech, USA). The CO2 loading of each solution was calculated according to the following Eqs. (2)–(4):

\[n_{object\ gas} = \frac{[(P_{N_2+object\ gas} - P_{eq})V]}{RT} \]

\[P_{object\ gas} = (P_{eq} - P_{N_2}) \]

\[\alpha = \frac{n_{object\ gas}}{mole\ of\ amine} \]

where, n_{object\ gas} is the amount of object gas, P_{object\ gas} is the partial pressure of object gas, P_{eq} is the equilibrium pressure, P_{N_2} is initial pressure and \alpha is the CO2 loading ratio.

2 Results and discussion

2.1 Solubility

CO2 is physically soluble in an aqueous alkanolamine solution without chemical reaction. The physical solubility of CO2 was determined from the solubility of N2O in each solution because CO2 reacts with the amine solution. Each KIER-C3 solution with different concentrations of 0.05, 0.10, 0.15 and 0.20 kmol/m3 was added into a 2 kmol/m3 AMP solution. Henry’s constant (H) for N2O on each AMP solution with an addition of KIER-C3 was determined at various temperatures of 293, 303, 313 and 323 K and then converted to the constant for CO2 in the solution using Eq. (5).

\[(H_{CO_2})_{amine} = (H_{N_2O})_{amine} \times \frac{(H_{CO_2}/H_{N_2O})_{water}}{water} \]

As shown in Fig. 3, Henry’s constant decreased with...
increasing temperature and the concentration of KIER-C3 in the AMP/KIER-C3 solution. Therefore, the solubility of CO$_2$ in the AMP/KIER-C3 solution was found to increase with an increase in the concentration of KIER-C3.

2.2 Diffusivity

Diffusivity (D_A) of CO$_2$ in the AMP/KIER-C3 solution was also obtained from determining diffusivity of N$_2$O in the solution at the temperatures of 293, 303, 313 and 323 K by using Eq. (6).

$$(D_{CO_2})_{amine} = (D_{N_2O})_{amine} \times (D_{CO_2}/D_{N_2O})_{water}$$

Detailed information on the wetted wall column used to determine the diffusivity is found in our previous publication (Choi et al., 2009). As shown in Fig. 4, diffusivity of CO$_2$ in the AMP/KIER-C3 solution decreased with increasing KIER-C3 content for all tested temperatures. This may be attributed to the increase in the viscosity of the solution with increasing KIER-C3 content.

2.3 Absorption rate

The CO$_2$ absorption rate was determined for AMP, MEA, NH$_3$ and KIER-C3 with various concentrations of 0.5, 1.0, 1.5 and 2.0 kmol/m3 at the temperature of 313 K and the CO$_2$ partial pressure of 15 kPa. Figure 5a shows the absorption rate as a function of the concentration of each solution. The absorption rate increased with increasing concentration of each solution. This is caused by enhanced mass transfer in the gas-liquid interfacial area with increasing concentration. The absorption rate of CO$_2$ into 2 kmol/m3 KIER-C3 solution was found to be 84.7%, 24.6% and 15.2% higher than that into 2 kmol/m3 AMP, MEA and NH$_3$, respectively. As hydrolysis of carbamate, which is created via reaction of KIER-C3 and CO$_2$, is accelerated, and CO$_2$ within carbamate is converted to bicarbonate, the concentration of carbamate gets lower. However, since concentration of the reactant amine increases, those will be involved in absorption reaction of CO$_2$, and stimulates absorption to adjust lower concentration of carbamate and higher amine to equilibrium concentration, which leads to a higher reaction rate.

Figure 5b shows the CO$_2$ absorption rates of 2 kmol/m3 AMP with different concentrations of additives at 313 K. The absorption rates were found in the range of 5.62×10^{-6} to 8.01×10^{-6} kmol/(m2·sec). The absorption rate of the solution with an addition of KIER-C3 was 9.3%–31.6% higher than the absorption rates of other solutions with MEA and NH$_3$. Therefore, KIER-C3 showed the highest absorption rate for CO$_2$ and the best performance as an additive into AMP out of the absorbents tested in this study.
2.4 Effect of the KIER-C3 concentration on CO2 absorption

The adsorption of CO2 in AMP solution with an addition of KIER-C3 was tested at different temperatures. In addition to the total absorption rate of the AMP/KIER-C3 solution, the absorption rates of the AMP portion and the KIER-C3 portion in the AMP/KIER-C3 solution were determined respectively as presented in Fig. 6.

It was observed from Fig. 6 that the absorption rates into the KIER-C3 portion (NkIER-C3) increased from 1.28×10⁻⁶ to 4.12×10⁻⁶ kmol/(m²·sec) and 1.96×10⁻⁶ to 6.52×10⁻⁶ kmol/(m²·sec) with increasing KIER-C3 concentration at the temperature of 293 and 323 K, respectively. But the absorption rate into the AMP portion (Namp) decreased with increasing KIER-C3 concentration. As a result, NkIER-C3 was as much as 55.7% of the total absorption rate (Ntotal) at the KIER-C3 concentration of 0.2 kmol/m³.

2.5 Reaction kinetics

Reaction rate constants (k2) for the absorption of CO2 into AMP and AMP/KIER-C3 were determined by plotting overall reaction rate constant (kov, m⁴/(kmol·sec)) with the absorbent concentration at 293, 303, 313 and 323 K. By using Eq. (7), kov can be calculated as follows:

\[k_{ov} = k_{ov} = \left(N_A P_A^{1/2} / P_A^{1/2} \right) \]

where, \(N_A \) (m³/(kmol·sec)) is the overall absorption rate, \(H_A \) ((kPa·m⁴)/kmol) is the Henry’s constant, \(P_A \) (kPa) is the partial pressure, \(D_A \) (m²/sec) is the diffusivity of CO2, m is the order of reaction with respect to species A, and n is the order of reaction with respect to CO2.

The reaction of CO2 with the AMP/KIER-C3 solution can be classified as a fast pseudo first-order reaction. We confirmed the reaction order by plotting Eq. (7) with the concentration of KIER-C3 in the solution. Figure 7 shows straight lines with a slope of 1. In addition, the \(k_{ov} \) value increased linearly with increasing the temperature and the concentration of KIER-C3 in the solution. This may be attributed to the increased diffusion at the gas-liquid interface with increasing the temperature and concentration.

The reaction rate constants (k2) were then determined for the absorption of CO2 into AMP and AMP/KIER-C3 at different temperatures and shown in Table 1. The values of k2 were found to be 530.98–1323.81 m³/(kmol·sec) for AMP and 3939.53–7347.65 m³/(kmol·sec) for AMP/KIER-C3. Hence the k2 values for a blend of AMP and KIER-C3 were five to six times higher than that for AMP without KIER-C3. This result shows that the reactivity of AMP is significantly enhanced with an addition of KIER-C3. Therefore, KIER-C3 is considered to be an effective activator in the AMP solution. This may be attributed that KIER-C3 has two amine groups which have characteristic of sterically hindered amine. While primary amine forms stable carbamate, sterically hindered amine forms more instable cabarmate. The reduction in stability promotes hydrolysis of carbamate and CO2 absorption. Because KIER-C3 has two sterically hindered amine groups, KIER-C3 may act as an effective activator in the AMP solution.

Figure 8 shows the correlation between reaction rate constant (k2) and temperature using the results in Table 1. From a linear regression analysis (\(r^2 = 0.99 \)), the following equations were obtained for the relationship between k2 and temperature.

\[k_{2AMP} = 1.079 \times 10^7 \exp(-2909.16/T) \]

\[k_{2AMP/C3} = 7.702 \times 10^6 \exp(-2248.03/T) \]

From the exponents in the Arrhenius equations, activation energies for the reaction of CO2 with AMP and

![Fig. 7](image_url)

Fig. 7 Pseudo first-order overall reaction rate constant for the reaction of CO2 with AMP/KIER-C3 solution at different temperatures.

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>AMP (m³/(kmol·sec))</th>
<th>AMP + KIER-C3 (m³/(kmol·sec))</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td>530.98</td>
<td>3939.53</td>
</tr>
<tr>
<td>303</td>
<td>730.53</td>
<td>4146.09</td>
</tr>
<tr>
<td>313</td>
<td>992.78</td>
<td>5976.13</td>
</tr>
<tr>
<td>323</td>
<td>1323.81</td>
<td>7347.65</td>
</tr>
</tbody>
</table>

Table 1 The second-order reaction rate constant calculated for the reaction of CO2 into aqueous AMP and 2 kmol/m³ AMP/KIER-C3 solutions as a function of temperature.
AMP/KIER-C3 were determined to be 24.2 and 18.7 kJ/mol, respectively. The lower activation energy for AMP/KIER-C3 also indicates that the reactivity of AMP for CO$_2$ is enhanced with an addition of KIER-C3.

2.6 Absorption equilibrium

The reaction of CO$_2$ with the primary amino group can produce three possible reactions: the formation of carbamate and bicarbonate, the reversion of carbamate to bicarbonate, or the formation of the carbonate ion (Yih et al., 1988).

\[
\text{CO}_2(g) + 2\text{RNH}_2 \leftrightarrow \text{RNH}_2^+ (aq) + \text{RNHCOO}^- (aq) \tag{10}
\]

\[
\text{RNHCOO}^- + \text{H}_2\text{O} \leftrightarrow \text{RNH}_2 + \text{H}_2\text{CO}_3 \tag{11}
\]

The equilibrium loading capacities of primary and secondary amines are limited by stoichiometry (0.5 mol of CO$_2$/mol of amine) of Eq. (10). The zwitterions mechanism originally proposed by Caplow (1968) and reintroduced by Danckwerts (1979) is generally accepted as the reaction mechanism for Eq. (10) (Blauhoff et al., 1983).

\[
\text{CO}_2 + \text{RNH}_2 \leftrightarrow \text{RNH}_2^+ \text{COO}^- \tag{12}
\]

\[
\text{RNH}_2^+\text{COO}^- + \text{B}' \leftrightarrow \text{RNHCOO}^- + \text{B}'\text{H}^+ \tag{13}
\]

where, B' is amine, OH$^-$ or H$_2$O. The carbamates formed from primary and secondary amines are quite stable. If the carbamate ion is unstable, as in the case of a hindered amine, it undergoes the formation of bicarbonate ion as in Eq. (11). This reaction means that 1 mol of hindered amine allows loading of CO$_2$ up to 1 mol.

The CO$_2$ loading ratio is the most basic factor to evaluate the performance of absorbents. CO$_2$ loading in each 2 kmol/m3 solutions of AMP, MEA, NH$_3$ and KIER-C3 was determined respectively with increasing CO$_2$ partial pressure at 313 K. The highest CO$_2$ loading in the AMP, MEA, NH$_3$ and KIER-C3 solution was 0.72, 0.82, 0.93 and 2.88 mol CO$_2$/mol absorbent, respectively, in the range of CO$_2$ partial pressure as shown in Fig. 9a. Hence KIER-C3 was found to have three to four times higher CO$_2$ loading than other solutions. The higher CO$_2$ loading in KIER-C3 may be attributed that KIER-C3 has two nitrogen compounds which have characteristics of sterically hindered amine. In addition, the CO$_2$ loading of more than 2 mol CO$_2$/mol absorbent indicates that intermediate products formed during the reaction act as the absorbents for CO$_2$.

In the full-scale CO$_2$ separation process using alkanolamine solutions, CO$_2$ absorption and stripping systems may be operated at the temperature range of 310–320 K and 380–400 K, respectively. To examine CO$_2$ loadings in blended amines at the absorption and stripping temperatures, each AMP solution with different additives was tested at 313 and 383 K. As shown in Fig. 9b, AMP/KIER-C3 shows much higher CO$_2$ loading at 313 K and similar CO$_2$ loading as the other absorbents at 383 K. Hence, AMP/KIER-C3 shows 2 and 3.4-times higher difference in CO$_2$ loading compared to AMP/NH$_3$ and AMP/MEA,

![Fig. 8](image_url) Arrenius plot for the correlation between reaction rate constant and temperature.

![Fig. 9](image_url) CO$_2$ loading in AMP, MEA, NH$_3$ and KIER-C3 with increasing CO$_2$ partial pressure at 313 K (a) and in AMP with different additives at 313 and 383 K and AMP 2 kmol/m3 (b).
3 Conclusions

Absorption of CO₂ into AMP/KIER-C3 was tested using a stirred batch tank reactor with different concentrations and reaction temperatures. The absorption rate into the aqueous KIER-C3 solution were 84.7%, 24.6% and 15.2% higher than that into aqueous AMP, MEA and NH₃ solution at 313 K, respectively. Also, the CO₂ absorption rate on the addition of KIER-C3 into 2 kmol/m³ AMP solutions increased by 9.3% to 31.6% compared to the addition of MEA and NH₃ solution, respectively. This may be ascribed to the increase in diffusion and contact between the CO₂ and KIER-C3. KIER-C3 showed the best performance as an additive to increase CO₂ absorption rate of AMP. The calculated reaction rate constant for the reaction of CO₂ into aqueous AMP and AMP/KIER-C3 solution was determined to be 10.79×10⁶ exp(–2909.16/T) and 7.02×10⁶ exp(–2248.03/T), respectively. In addition, activation energies of AMP and AMP/KIER-C3 were found to be 24.16 and 18.62 kJ/mol, respectively. The reactivity of AMP was enhanced with an addition of KIER-C3. CO₂ loading in a KIER-C3 solution was three to four times higher than other solutions such as AMP, MEA and NH₃. Also, CO₂ loading in the AMP/KIER-C3 solution was 2 and 3.4-times higher than that of the AMP/NH₃ solution and the AMP/MEA solution, respectively. Therefore, KIER-C3 may be used as an excellent absorbent or additive to AMP for the separation of CO₂ from flue gases.

Acknowledgments

This research was financially supported by the Brain Korea 21 Project in 2012 and by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No. 2006CCD11P011A-21-3-010).

References

