

ISSN 1001-0742 CN 11-2629/X

JOURNAL OF ENVIRONMENTAL SCIENCES

Sponsored by Research Center for Eco-Environmental Sciences Chinese Academy of Sciences

CONTENTS

Aquatic environment

Immunotoxic potential of aeration lagoon effluents for the treatment of domestic and Hospital wastewaters in the freshwater mussel Elliptio complanata	
Francçis Gagné, Chantale André, Marlène Fortier, Michel Fournier	· 781
Spatial distribution of archaeal and bacterial ammonia oxidizers in the littoral buffer zone of a nitrogen-rich lake	
Yu Wang, Guibing Zhu, Lei Ye, Xiaojuan Feng, Huub J. M. Op den Camp, Chengqing Yin	· 790
Accelerated biodegradation of nitrophenols in the rhizosphere of Spirodela polyrrhiza	
Risky Ayu Kristanti, Masahiro Kanbe, Tadashi Toyama, Yasuhiro Tanaka, Yueqin Tang, Xiaolei Wu, Kazuhiro Mori	· 800
Sorption of 2,4-dinitroanisole (DNAN) on lignin	
Rabih Saad, Zorana Radovic-Hrapovic, Behzad Ahvazi, Sonia Thiboutot, Guy Ampleman, Jalal Hawari	· 808
Sewage sludge disintegration by high-pressure homogenization: A sludge disintegration model	
Yuxuan Zhang, Panyue Zhang, Boqiang Ma, Hao Wu, Sheng Zhang, Xin Xu	· 814
Degradation kinetics and mechanism of aniline by heat-assisted persulfate oxidation	921
Xiaofang Xie, Yongqing Zhang, Weilin Huang, Shaobing Huang	· 821
Degradation of some typical pharmaceuticals and personal care products with copper-plating iron doped Cu ₂ O under visible light irradiation Jing An, Qixing Zhou	۶ <u>۰</u> ۶
	• 827
Preparation of high concentration polyaluminum chloride by chemical synthesis-membrane distillation method with self-made hollow fiber membrane Changwei Zhao, Yong Yan, Deyin Hou, Zhaokun Luan, Zhiping Jia	824
Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency	. 834
Bing Sun, Nyein Nyein Aye, Zhiying Gao, Dan Lv, Xiaomei Zhu, Masayuki Sato	. 840
Photolysis kinetics and influencing factors of bisphenol S in aqueous solutions	040
Guiping Cao, Jilai Lu, Gongying Wang	. 846
Comparative study of leaching of silver nanoparticles from fabric and effective effluent treatment	010
Aneesh Pasricha, Sant Lal Jangra, Nahar Singh, Neeraj Dilbaghi, K. N. Sood, Kanupriya Arora, Renu Pasricha	. 852
Atmospheric environment	052
Size distribution and chemical composition of secondary organic aerosol formed from Cl-initiated oxidation of toluene	
Mingqiang Huang, Weijun Zhang, Xuejun Gu, Changjin Hu, Weixiong Zhao, Zhenya Wang, Li Fang	· 860
Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions	
Jingnan Hu, Ye Wu, Zhishi Wang, Zhenhua Li, Yu Zhou, Haitao Wang, Xiaofeng Bao, Jiming Hao	· 865
Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling	
Yongmei Yu, Minghui Zheng, Xianwei Li, Xiaolei He ·····	· 875
Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere	
Senlin Lü, Rui Zhang, Zhenkun Yao, Fei Yi, Jingjing Ren, Minghong Wu, Man Feng, Qingyue Wang	· 882
Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal	
Yongli Sun, Libo Zhou, Luhong Zhang, Hong Sui	· 891
Absorption characteristics of new solvent based on a blend of AMP and 1,8-diamino-p-menthane for CO ₂ absorption	
Sang-Sup Lee, Seong-Man Mun, Won-Joon Choi, Byoung-Moo Min, Sang-Won Cho, Kwang-Joong Oh	· 897
Terrestrial environment	
Toxicity and subcellular distribution of cadmium in wheat as affected by dissolved organic acids	
Dandan Li, Dongmei Zhou ·····	· 903
Changes in the sorption, desorption, distribution, and availability of copper, induced by application of sewage sludge	
on Chilean soils contaminated by mine tailings	
Tatiana Garrido, Jorge Mendoza, Francisco Arriagada ·····	· 912
Mechanism of lead immobilization by oxalic acid-activated phosphate rocks	
Guanjie Jiang, Yonghong Liu, Li Huang, Qingling Fu, Youjun Deng, Hongqing Hu	· 919
Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil	
Mingming Sun, Yongming Luo, Peter Christie, Zhongjun Jia, Zhengao Li, Ying Teng	· 926
Inhibitory effect of nitrobenzene on oxygen demand in lake sediments	
Xiaohong Zhou, Xuying Wang, Hanchang Shi	· 934
Environmental health and toxicology	
Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings	
Long Zhang, Zhen Chen, Cheng Zhu ·····	· 940
Species-dependent effects of the phenolic herbicide ioxynil with potential thyroid hormone disrupting activity: modulation of its cellular	
uptake and activity by interaction with serum thyroid hormone-binding proteins	
Sakura Akiyoshi, Gobun Sai, Kiyoshi Yamauchi	· 949
Environmental catalysis and materials	
A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples	0.57
Junfeng Dou, Fuqiang Fan, Aizhong Ding, Lirong Cheng, Raju Sekar, Hongting Wang, Shuairan Li	
A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment	Cille
Hımanshu Prıyadarshi, Absar Alam, Gireesh-Babu P, Rekha Das, Pankaj Kishore, Shivendra Kumar, Aparna Chaudhari	. 963
Serial parameter: CN 11-2629/X*1989*m*188*en*P*26*2012-5	and and a
A GFP-based bacterial biosensor with chromosomally integrated sensing cassette for quantitative detection of Hg(II) in environment Himanshu Priyadarshi, Absar Alam, Gireesh-Babu P, Rekha Das, Pankaj Kishore, Shivendra Kumar, Aparna Chaudhari Serial parameter: CN 11-2629/X*1989*m*188*en*P*26*2012-5	
	0
e de la construcción de la constru La construcción de la construcción d	

Available online at www.sciencedirect.com

JOURNAL OF ENVIRONMENTAL SCIENCES ISSN 1001-0742 CN 11-2629/X

Journal of Environmental Sciences 2012, 24(5) 956-962

www.jesc.ac.cn

A screen-printed, amperometric biosensor for the determination of organophosphorus pesticides in water samples

Junfeng Dou^{1,*}, Fuqiang Fan¹, Aizhong Ding¹, Lirong Cheng¹, Raju Sekar², Hongting Wang¹, Shuairan Li¹

1. College of Water Sciences, Beijing Normal University, Beijing 100875, China 2. Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China

Received 12 July 2011; revised 23 September 2011; accepted 27 September 2011

Abstract

An amperometric biosensor based on screen-printed electrodes (SPEs) was developed for the determination of organophosphorus pesticides in water samples. The extent of acetylcholinesterase (AChE) deactivation was determined and quantified for pesticide concentrations in water samples. An enzyme immobilization adsorption procedure and polyacrylamide gel matrix polymerization were used for fabrication of the biosensor, with minimal losses in enzyme activity. The optimal conditions for enzyme catalytic reaction on the SPEs surfaces were acetylthiocholine chloride (ATChCl) concentration of 5 mmol/L, pH 7 and reaction time of 4 min. The detection limits for three organophosphorus pesticides (dichlorvos, monocrotophs and parathion) were in the range of 4 to 7 μ g/L when an AChE amount of 0.1 U was used for immobilization.

Key words: organophosphorus pesticides; acetylcholinesterase; enzyme immobilization; screen-printed electrodes; biosensor **DOI**: 10.1016/S1001-0742(11)60864-4

Introduction

Organophosphorus (OP) pesticides have been widely used for decades in agriculture, medicine and industries due to their high efficiency as insecticides or for enzyme inhibition (Gogol et al., 2000; Mulchandani et al., 2001). These pesticides comprise a diverse group of chemicals and the majority have been shown to result in high levels of acute neurotoxicity and carcinogenicity (Kamanyire and Karalliedde, 2004; Alavanja et al., 2004). The OP pesticides are one of the more abundant environmental and food chain pollutants, and have attracted increased global attention with respect to human, animal and insect health (Kamanyire and Karalliedde, 2004). Determining the sources of pollutants and magnitude of the threat is important as a protective measure. Therefore, the detection methods for OP pesticides have become a top concern (Diehl-Faxon et al., 1996).

Currently, most pesticide residues are measured by gas or liquid chromatographic methods (Molina et al., 1994; Pérez-Ruiz et al., 2005; Yao et al., 1991), usually coupled with mass spectrometric detection (Jeannot and Sauvard, 1999). The determination of individual analyte species by these standard reference methods are accurate and of high sensitivity (Jeannot and Sauvard, 1999; Hooijschuur et al., 2002). However, the analyses must be performed by highly trained technicians and cannot be carried out in the

* Corresponding author. E-mail: doujf@bnu.edu.cn

field. Moreover, the above methods require a long time and extensive sample preparation, and no information about the toxicity of pesticides can be obtained (Duttaa et al., 2008).

Biological compounds, typically enzymes or other biological ligands, can be used as specific recognition agents in analytical techniques. Immunoassays have been reported as alternative biological methods for determination of OP pesticides (Sherma, 1993). Immunoassay detection methods such as the enzyme-linked immunosorbent assay (ELISA) have been tested for the detection of pesticides in soil and water matrices (Walker et al., 2000). However, the long analysis time (1–2 hr) and extensive sample handling procedures required for this method are not particularly suitable for field-based analysis.

On the other hand, use of enzymes like acetylcholinesterase (AChE) or organophosphate hydrolase (OPH) has been previously reported for the measurement of OP pesticides (Velasco-Garcia et al., 2003, Deo et al., 2005). With high sensitivity, simple sample treatment, and easy operational procedure, electrochemical detection is an ideal analytical technique for *in situ* analysis. The screen-printed, amperometric AChE biosensor based on the inhibition of AChE shows a great application prospect among the enzyme-based biosensors developed.

AChE, employed as an indicator for quantitative measurement of OP pesticides, is essential for terminating the action of the neurotransmitter acetylcholine (Khayyami et al., 1998; Laschi et al., 2007). The hydrolysis of acetylthe iocholine chloride (ATChCl) can be catalyzed by AChE, while cholines generated by the reaction can be oxidized in the presence of hexacyanoferrate. The catalytic reaction of AChE and the oxidation of its products are described in Eqs. (1) and (2) (Ciucu et al., 2003; Neufeld et al., 2000; Shi et al., 2006).

$$CH_{3}COS(CH_{2})_{2}N^{+}(CH_{3})_{3}Cl^{-} + H_{2}O \xrightarrow{AChE} CH_{3}COOH + HS(CH_{2})N^{+}(CH_{3})_{3}Cl^{-}$$
(1)

$$2 [Fe(CN)_6]^{3-} + 2HS(CH_2)N^+(CH_3)_3Cl^- \longrightarrow 2 [Fe(CN)_6]^{4-} + 2S(CH_2)N^+(CH_3)_3Cl^-$$
(2)

The inhibition of AchE activity by OP pesticides can be characterized by the anodic oxidation current on the surface of SPEs. With various mediators optimizing the performance, similar amperometric AChE biosensors using SPEs have shown satisfactory results for the analysis of environmental samples (Andreescu et al., 2002; Schulze et al., 2004; Li et al., 1999; Petrov et al., 2002; Bucur et al., 2005).

The use of the mediators can undoubtedly increase the selectivity and sensitivity for OP pesticides in environmental samples; however, interference can be caused by the added chemicals. To maintain the bioactivity of the enzyme in the films, methods involving less chemicals or a harmless matrix for enzyme activity are preferred choices for enzyme immobilization on the electrode.

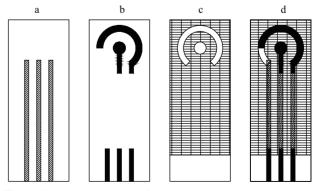
In recent years, sol-gel encapsulation of enzyme species has provided encouraging results and has shown potential advantages for enzyme immobilization on electrochemical biosensors (Albareda-Sirvent and Hart, 2002; Andreescu et al., 2002; Anitha et al., 2004). Sol-gel polymerization can be performed at low temperatures without any kinds of modifications and the resulting thin films exhibit a tunable pore size, allowing small molecules and ions to diffuse into the matrix (Anitha et al., 2004; Waibel et al., 2006). This immobilization method provides better enzyme activity and stability in contrast to covalent binding or crosslinking.

In this study, we report an amperometric biosensor based on simple, low cost and self-made SPEs for OP pesticides detection. Two immobilization methods, adsorption and sol-gel polymerization, were used for fabrication of the screen-printed AChE biosensor. A relatively simple preparation for the biosensor, optimized conditions of enzyme reaction and inhibition studies are presented and discussed based on three OP pesticides (dichlorvos, monocrotophs and parathion). The cost of the total detection process, suitability for on-site application and complexity of operational procedures were prior considerations in developing these sensors for the determination of neurotoxic pesticide residues in water samples.

1 Experimental

1.1 Apparatus and reagents

Electrochemical measurements were performed with a model CHI440A electrochemical workstation (Chenhua


Instrumental Co., Shanghai, China). A semiautomatic screen-printer (Tingxuan Co., Shanghai, China) was used for fabricating the SPEs. Ultraviolet (UV) light was generated with an UVP gel imaging system (UVP Co., USA).

Purified AChE (500 U) and ATChCl were purchased from Sigma-Aldrich Corporation and stored at -20°C. Parathion, dichlorvos (2,2-dichlorovinyl dimethyl phosphate) and monocrotophs standards (100 mg/L) were obtained from Environmental Research and Monitoring of the Ministry of Agriculture, Tianjin, China. Acrylamide and N'-N'-methylene-bis-acrylamide was supplied by Dingguochangsheng Biotechnology Co., Beijing, China. Carbon inks (SC-1010), silver inks (EA-1854), insulating inks (UG-360) and polyethylene terephthalate (PET) were purchased from Advanced Electronic Materials Inc., Tainan, China. All reagents used in this study were of analytical or higher grade. The pH was adjusted with buffer solution (0.1 mol/L phosphate buffer and 0.2 mol/L KCl), and double distilled (dd) H₂O was used for all the experiments.

1.2 Fabrication of the screen-printed AChE biosensors

A series of PET chips (width 1.5 cm, length 4 cm and height 0.125 mm) were prepared before screen printing. The SPEs with three integrated electrodes were fabricated as follows: first, silver ink was printed through mesh to form three conducting channels, followed by drying at 130°C for 35 min. Second, carbon ink was printed to form circular working electrodes and annular auxiliary electrodes. The conducting layer for wire connection was printed as shown in Fig. 1, and then the chips were dried at 120°C for 30 min. Lastly, insulating ink was printed to cover the non-working and non-conducting region of the SPEs. Then, the chip was exposed under the UV lamp for 4 hr followed by a heat treatment for 30 min at 120°C for stabilization. The schematic design of the fabrication procedure for the integrated three-electrode screen-printed sensor is shown in Fig. 1. The diameter of the working electrode and the counter electrode were 4 and 10 mm, respectively (Fig. 1).

The AChE was immobilized directly by bulk copolymerization of acrylamide and N'-N'-methylene-bisacrylamide on the screen-printed carbon working electrode surface. A small amount of AChCl substrate was also

Fig. 1 Fabrication procedure of the integrated three-electrode screenprinted sensor. (a) silver ink layer; (b) carbon ink layer; (c) insulating ink layer; (d) schematic of three-electrode screen-printed sensor.

added to protect enzyme activity. The polymerization was initiated by UV light at a wavelength of 365 nm for 30 min, and the enzymatic membrane was gelatinized completely in the refrigerator at 4° C for 3 hr.

A solution mixture of 100 μ L (10 mg/L) acrylamide monomer, 40 μ L (10 mg/L) of N'-N'-methylene-bisacrylamide and 20 μ L (5 mmol/L) of AChCl was prepared. Subsequently, 10 μ L of solution mixture and 10 μ L of enzyme solution were added onto the screen-printed AChE sensor and mixed for polymerization. Then, 20 mL of enzyme solution was directly added to the screen-printed AChE sensor and dried at 4°C for 3 hr. The screen-printed AChE sensors were stored in the freezer at –20°C.

1.3 Optimization of AChE reaction conditions

A series of experiments was performed to optimize the enzyme catalytic reaction conditions. Standard solution 40 µL of potassium ferricyanide and 40 µL of ATChCl substrate solution were added to the surface of the SPEs, and mixed with 30 µL AChE solutionscontaining various concentrations (0.08, 0.1 and 0.15 U). Consecutive monitoring was carried out for 15 min. The optimum amount of ATChCl was determined by keeping a fixed amount of AChE and an unchanged pH with varying amounts of ATChCl (0.5, 1, 2, 5, 8 and 10 mmol/L solutions) and the response current was recorded every minute. AChE inhibition by pH and effects on the reaction were examined for various pH values ranging from 5.5 to 8.5. Based on this, the best reaction time was defined, which showed significant current response under optimal enzyme concentration, pH and substrate concentration. Based on AChE inhibitory activity, quantitative analysis of dichlorvos, monocrotophos and parathion was performed.

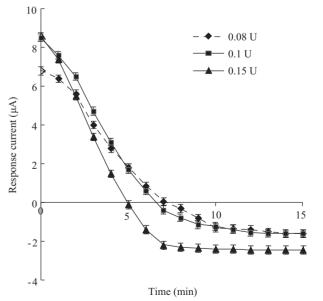
1.4 Amperometric measurements

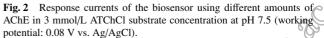
All amperometric measurements were carried out by the electrochemical workstation at room temperature. Phosphate buffer (0.1 mol/L) and KCl (0.1 mol/L) supporting electrolyte were used during the whole detection process. Cyclic voltammetry tests were performed to assess the consistency of the SPEs, while stable current responses of the biosensors were measured by chronoamperometry at 0.08 V. Each sample was stirred to ensure uniform distribution during the measurement process.

To measure the inhibition of AChE under the same conditions, $30 \,\mu\text{L}$ pesticide solution (0.6 to $3000 \,\mu\text{g/L}$) was added to the surface of the biosensors with immobilized AChE. After an incubation time of 8 min, $40 \,\mu\text{L}$ potassium ferricyanide standard solution and $40 \,\mu\text{L}$ ATChCl substrate solution were added and mixed. As the stationary state current is related to activity of the enzyme, the current intensity was recorded at every 1 min. Phosphate buffer solution 30 $\,\mu\text{L}$ was used as a control to replace the pesticide solution. The percentage inhibition (*I*, %), which corresponds to a fixed concentration of water sample, was calculated as follows:

$$I = \frac{I_{\rm ss} - I_{\rm p}}{I_{\rm ss}} \times 100\% \tag{3}$$

where, I_{ss} and I_p represent the response current intensity of the control sample and the water sample, respectively.


2 Results and discussion


2.1 Electrochemical behavior of the enzyme catalytic reaction

The electrochemical behavior of the enzyme reaction was characterized through chronoamperometry in pH 7.5 buffer solution on the surface of the SPEs. Figure 2 shows the relevant current intensity of the enzymes. It is clear that the electrochemical signals decreased with time, and stabilized after 10 min. The currents changed dramatically with evident first-order reaction kinetics in the first few minutes, which indicate that the enzyme could effectively catalyze the hydrolysis reaction of ATChCl. A similar phenomenon was also observed in our previous work for different amounts of AChE, but more rapid catalytic reaction was seen for 0.15 U enzyme. With the magnitude of the error bars shown in Fig. 2, the standard solution of potassium ferricyanide and SPEs used here were sufficient for generation of suitable and reliable data.

2.2 Optimization of detection conditions

Figure 3a shows the response of enzyme reaction currents on SPEs for different pH ranging from 5.5 to 8.5. Clearly, AChE has a broad optimal pH in the range of 7.0 to 8.5 with maximum response at pH 8.0. As reported by Liu et al. (1985), the reagents and measuring systerm used in this study were suitable for enzyme activity and evaluation of OP pesticides concentrations. Varying detection time (4, 5 and 6 min) showed a similar trend, but more time meant higher current intensity. Concerning that OP pesticides could be decomposed under alkaline conditions, pH 7.0 and 7.5 was chosen for further reaction analysis in the presence of OP pesticides. Corresponding changes were

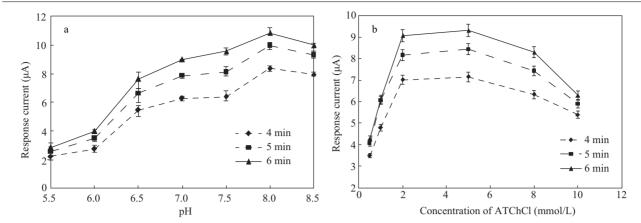


Fig. 3 Response currents of the biosensor at different pH for 3 mmol/L ATChCl substrate concentration (a) and different ATChCl substrate concentrations at pH 7.0 (b) (working potential: 0.08 V vs. Ag/AgCl).

obtained for different concentrations of pesticides at pH 7 and this value was used in the following experiments.

The response of SPEs in the absence of pesticide analytes was determined with ATChCl concentrations ranging from 0 to 10 mmol/L. As shown in Fig. 3b, it was clear that the best sensitivity and accuracy of measurements were achieved when the ATChCl concentration was 5.0 mmol/L. With a similar trend as a function of detection time, response currents increased sharply when the substrate concentrations were less than 2.0 mmol/L, whilst a small decline in sensor output was observed at concentrations in excess of 5.0 mmol/L. This may be due to enzyme inhibition at higher concentrations of the enzyme substrate. Taking into account economic factors, the substrate concentration of 5.0 mmol/L was chosen in the subsequent experimental study. Meanwhile, to achieve significant reaction results, a shorter time of 4 min was chosen as the optimal reaction time for further analysis.

Given the acceptable performance of SPEs towards ATChCl within the non-inhibited system, the performance of the sensor in the presence of dichlorvos was examined. With various concentrations of AChE (0.08, 0.1 and 0.15 U) and dichlorvos added, the results obtained from the reaction was evaluated. From Fig. 4, it could be found that dichlorvos inhibited the activity of enzyme in a distinct way. It was difficult to detect low concentrations of dichlorvos with 0.15 U AChE, due to weak inhibition of the enzyme. An amount of 0.08-0.1 U was therefore used, because less enzyme could be inhibited more easily, which would result in achieving a lower detection limit. Enzyme activity was reduced during the process of immobilization and a relatively higher amount of enzyme resulted in shorter response times, thus a AChE concentration of 0.1U was found to besuitable for immobilization.

2.3 Detection of OP pesticides

In order to measure the inhibition rate of AChE, different concentrations within the range of 0.6 to 3000 μ g/L of pesticides were tested under the optimum conditions mentioned above. Dichlorvos, monocrotophs and parathion are typical pesticides that were evaluated in this study. The entire calibration curves (Fig. 5) revealed that all the OP pesticides used in this study resulted in measurable

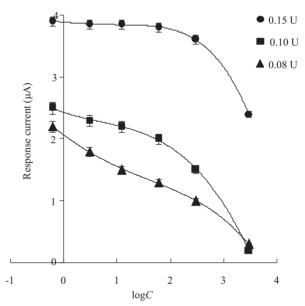


Fig. 4 Response currents of different AChE concentrations for dichlorvos at pH 7.0 (working potential: 0.08 V vs. Ag/AgCl).

inhibition within the range of 0.6 to $3000 \mu g/L$. Response currents and the logarithm of the inhibitor concentrations showed an approximate first-order correlation for all the OP pesticides tested. The current intensity for enzyme immobilized by adsorption was higher than that immobilized by sol-gel polymerization, while the same approximate current span was achieved. This was possibly attributed to the negative impact on hexacyanoferrate in the presence of sol-gel substances. These calibrations were used to calculate *I* and construct the inhibition plots. The corresponding inhibitor concentration giving a 10% inhibition rate was defined as the theoretical detection limit (Fig. 5).

Detection limits of dichlorvos, monocrotophs and parathion with enzyme immobilized by adsorption were 4.0, 5.9 and 4.2 μ g/L, respectively, while the values for solgel polymerization were 4.7, 5.8 and 6.5 μ g/L, respectively. The enzyme AChE, essential for the functioning of the central nervous system, plays an important role in the human body (Musilek et al., 2008). The presence of any pesticide species in water samples has a potential toxic effect on the environment and human life. Thus, the inhibition series observed in this study could serve as a method

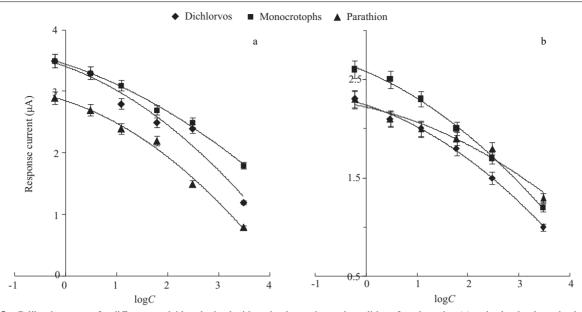


Fig. 5 Calibration curves for different pesticides obtained with optimal experimental conditions for adsorption (a) and sol-gel polymerization (b).

to measure the relative OP toxicity and potential health threat. As a simple, convenient, low-cost and repeatable screening tool, the biosensors developed in this study will be suitable for analysis of pesticides in the field. Duttaa et al. (2008) fabricated a biosensor based on SPEs of a twoelectrode system with a similar enzyme immobilization procedure to detect four kinds of organophosphate and carbamate pesticides. A range of 0 to 10 μ g/L pesticides was obtained for various inhibition rates, and the highly sensitive biosensor was targeted for low-cost, field-based determination of pesticides. Compared to a conventional three-electrode system, the potentiometric detector based on a two-electrode system provided reliable data.

A mediator-free amperometric biosensor for screening OP pesticides in a flow-injection analysis (FIA) system has been reported by Shi et al. (2006). The enzyme biosensor was prepared by entrapping AChE in a Al₂O₃ sol-gel matrix screen-printed on an integrated 3-electrode polyethylene terephthalate (PET) chip. A linear inhibition response at the range of $0.1-80 \,\mu\text{mol/L}$ (22 to 1768 $\mu\text{g/L}$), corresponding to 7.91% to 84.94% inhibition for AchE, was observed for dichlorvos. With 15 min of inhibition time, a 10 nmol/L (2.2 µg/L) detection limit was achieved for dichlorvos in simulated seawater. The Al2O3 solgel matrix with embedded enzyme provided a friendly microenvironment for immobilization and promoted electron transfer between the thiocholine and the electrode. This feature is similar to our polyacrylamide gel matrix polymerization, with potassium ferricyanide as mediator for electron transfer. Good stability and reproducibility were achieved for high salinity sea water and it has also been proven that a long inhibiting time led to a lower detection limit. We believe that the simple and broad-range detection SPEs biosensor developed in this study would be more suitable for field testing .

Waibel et al. (2006) developed a highly sensitive screen-printed bienzymatic sensor for the detection of phosphorothionates in food. These compounds evolve their inhibitory activity towards AChE only after oxidation (by P450 monooxygenases), thus a triple mutant of cytochrome P450 BM-3 (CYP 102-A1) and Nippostrongylus brasiliensis AChE (NbAChE) were immobilized on the sensor using a fluoride-catalyzed sol-gel process. Different sol-gel types were fabricated and characterized regarding enzyme loading capacity and enzyme activity containment. Specifically, 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a modified particle was employed for the sol-gel technique. The detection limits achieved were 1 µg/L for paraoxon and 10 µg/L for parathion while the incubation time was varied from 30 to 90 min. Transducers with cobalt(II) phthalocyanine (CoPC)-modified screen-printed carbon electrodes (SPCEs) were used by Laschi et al. (2007). The AChE was immobilized by crosslinking with glutaraldehyde, bovine serum albumin (BSA) and Nafion onto the surface of the modified SPCE. A dynamic range for carbofuran detection was 10^{-10} to 10^{-7} mol/L (0.02 to 22.1 µg/L) under optimized conditions, with a detection limit of 4.9×10^{-10} mol/L (0.1 µg/L) and an analysis time of 15 min (potential 0.1 V versus pseudo-Ag/AgCl reference electrode). The limits of detection obtained were small enough to detect trace amounts of pesticides but at the cost of a large amount of enzyme (1.4 U). Recently, Istamboulie et al. (2010) obtained a new electrochemical mediator for acetylcholinesterase-based biosensors directly by screen-printing a poly(3,4-ethylenedioxythiophene) suspension on the surface of thick film carbon electrodes. The high conductivity polymer was shown to be suitable for thiocholine oxidation, allowing the measurement of AChE activity at 0.1 V vs. Ag/AgCl on SPCEs. An accurate detection of the OP insecticide chlorpyrifos-oxon at a concentration of 1.3 µg/L was achieved at inhibition rates as low as 5%. However, with a low construction cost Jesc. R. . Ch and a simple operation procedure, our biosensor provides a detection threshold suitable for routine testing of OP pesticides.

No. 5

3 Conclusions

A low-cost screen-printed amperometric biosensor was developed in this study as a simple strategy to quantitatively screen for OP pesticides in water samples. Changes in the degree of enzyme inhibition were related to the amount of pesticides. Two enzyme immobilization procedures, adsorption and polyacrylamide gel matrix polymerization, coupled with electrochemical detection methods, proved to be feasible for OP pesticide determination. It was observed from the experiments that an ATChCl concentration of 5 mmol/L at pH 7 and 4 min reaction time were optimal conditions for the enzyme catalytic reaction on SPEs surfaces. An AChE amount of 0.1 U was used for immobilization, making the detection limits for three OP pesticides in the range of 4 to 7 μ g/L. With a relatively wide detection range and short detection time, this technique allowed the immobilization of different amounts of enzyme and incubation time depending on specific requirements. Future studies will focus on the development of a biosensor for rapid and direct determination of pesticides in soil extracts, potable water and other environmental samples.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 51008026, 40873076 and 41011130204).

References

- Alavanja M C R, Hoppin J A, Kamel F, 2004. Health effects of chronic pesticide exposure: cancer and neurotoxicity. *Annual Review of Public Health*, 25: 155–197.
- Albareda-Sirvent M, Hart A L, 2002. Preliminary estimates of lactic and malic acid in wine using electrodes printed from inks containing sol-gel precursors. *Sensors and Actuators B: Chemical*, 87(1): 73–81.
- Andreescu S, Barthelmebs L, Marty J L, 2002. Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods applications to the detection of organophosphorus insecticides. *Analytica Chimica Acta*, 464(2): 171–180.
- Anitha K, Mohan S V, Reddy S J, 2004. Development of acetylcholinesterase silica sol-gel immobilized biosensoran application towards oxydemeton methyl detection. *Biosensors and Bioelectronics*, 20(4): 848–856.
- Bucur B, Danet A F, Marty J L, 2005. Cholinesterase immobilisation on the surface of screen-printed electrodes based on concanavalin A affinity. *Analytica Chimica Acta*, 530(1): 1– 6.
- Ciucu A A, Negulescu C, Baldwin R P, 2003. Detection of pesticides using an amperometric biosensor based on ferophthalocyanine chemically modified carbon paste electrode and immobilized bienzymatic system. *Biosensors and Bioelectronics*, 18(2-3): 303–310.
- Deo R P, Wang J, Block I, Mulchandani A, Joshi K A, Trojanowicz M et al., 2005. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. *Analytica Chimica Acta*, 530(2): 185–189.
- Diehl-Faxon J, Ghindilis A L, Atanasov P, Wilkins E, 1996.

Direct electron transfer based tri-enzyme electrode for monitoring of organophosphorus pesticides. *Sensors and Actuators B: Chemical*, 35-36(1-3): 448–457.

- Duttaa K, Bhattacharyaya D, Mukherjee A, Setfordc S J, Turnerc A P F, Sarkara P, 2008. Detection of pesticide by polymeric enzyme electrodes. *Ecotoxicology and Environmental Safety*, 69(3): 556–561.
- Gogol E V, Evtugyn G A, Marty J L, Budnikov H C, Winter V G, 2000. Amperometric biosensors based on nation coated screen-printed electrodes for the determination of cholinesterase inhibitors. *Talanta*, 53(2): 379–389.
- Hooijschuur E W J, Hulst A G, de Jong A L, de Reuver L P, van Krimpen S H, van Baar B L M et al., 2002. Identification of chemicals related to the chemical weapons convention during an interlaboratory proficiency test. *Trends in Analytical Chemistry*, 21(2): 116–130.
- Istambouliea G, Sikorab T, Jubeteb E, Ochoteco E, Marty J L, Noguer T, 2010. Screen-printed poly(3,4ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. *Talanta*, 82(3): 957–961.
- Jeannot R, Sauvard E, 1999. High-performance liquid chromatography coupled with mass spectrometry applied to analyses of pesticides in water. Results obtained in HPLC/MS/APCI in positive mode. *Analusis*, 27(3): 271– 280.
- Kamanyire R, Karalliedde L, 2004. Organophosphate toxicity and occupational exposure. *Occupational Medicine*, 54(2): 69–75.
- Khayyami M, Pita M T P, Garcia N P, Johansson G, Danielsson B, Larsson P O, 1998. Development of an amperometric biosensor based on acetylcholine esterase covalently bound to a new support material. *Talanta*, 45(3): 557–563.
- Laschi S, Ogoczyk D, Palchetti I, Mascini M, 2007. Evaluation of pesticide-induced acetylcholinesterase inhibition by means of disposable carbon-modified electrochemical biosensors. *Enzyme and Microbial Technology*, 40(3): 485–489.
- Li Y G, Zhou Y X, Feng J L, Jiang Z H, Ma L R, 1999. Immobilization of enzyme on screen-printed electrode by exposure to glutaraldehyde vapour for the construction of amperometric acetylcholinesterase electrodes. *Analytica Chimica Acta*, 382(3): 277–282.
- Liu W, Zhao K Y, Tsou C L, 1985. Reactivation kinetics of diethylphosphoryl acetylcholine esterase. *European Journal of Biochemistry*, 151(3): 525–529.
- Molina C, Honing M, Barcelo D, 1994. Determination of organophosphorus pesticides in water by solid-phase extraction followed by liquid chromatography/high-Xow pneumatically assisted electrospray mass spectrometry. *Analytical Chemistry*, 66(24): 4444–4449.
- Mulchandani A, Chen W, Mulchandani P, Wang J, Rogers K R, 2001. Biosensors for direct determination of organophosphate pesticides. *Biosensors and Bioelectronics*, 16(4-5): 225–230.
- Musilek K, Holas O, Kuca K, Jun D, Dohnal V, Opletalova V et al., 2008. Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (*E*)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase. *Journal of Enzyme Inhibition and Medicinal Chemistry*, 23(1): 70–76.
- Neufeld T, Eshkenazi I, Cohen E, Rishpon J, 2000. A micro flow injection electrochemical biosensor for organophosphorus pesticides. *Biosensors and Bioelectronics*, 15(5-6): 323-329.

Jose Reconst

- Pérez-Ruiz T, Martínez-Lozano C, Tomás V, Martín J, 2005. High-performance liquid chromatographic assay of phosphate and organophosphorus pesticides using a post-column photochemical reaction and fluorimetric detection. *Analytica Chimica Acta*, 540(2): 383–391.
- Petrov A I, Khalil D N, Kazaryan R L, Savintsev I V, Sukhorukov B I, 2002. Structural and thermodynamic features of complexes formed by DNA and synthetic polynucleotides with dodecylamine and dodecyltrimethylammonium bromide. *Bioelectrochemistry*, 58(1): 75–85.
- Schulze H, Schmid R D, Bachmann T T, 2004. Activation of phosphorothionate pesticides based on a cytochrome P450 BM-3 (CYP102 A1) mutant for expanded neurotoxin detection in food using acetylcholinesterase biosensors. *Analytical Chemistry*, 76(6): 1720–1725.
- Sherma J, 1993. Pesticides. *Analytical Chemistry*, 65(12): 40–54.
- Shi M H, Xu J J, Zhang S, Liu B H, Kong J L, 2006. A mediator-

free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system. *Talanta*, 68(4): 1089–1095.

- Velasco-Garcia M N, Mottram T, 2003. Biosensor technology addressing agricultural problems. *Biosystems Engineering*, 84(1): 1–12.
- Waibel M, Schulze H, Huber N, Bachmann T T, 2006. Screenprinted bienzymatic sensor based on sol-gel immobilized *Nippostrongylus brasiliensis* acetylcholinesterase and a cytochrome P450 BM-3 (CYP102-A1) mutant. *Biosensors* and Bioelectronics, 21(7): 1132–1140.
- Walker A E, Holman R E, Leidy R B, 2000. ELISA and GC/MS analysis of pesticide residues in North Carolina. *American Water Resources Association*, 36(1): 67–74.
- Yao S, Meyer A, Henze G, 1991. Comparison of amperometric and UV-spectrophotometric monitoring in the HPLC analysis of pesticides. *Fresenius' Journal of Analytical Chemistry*, 339(4): 207–211.

JOURNAL OF ENVIRONMENTAL SCIENCES

Editors-in-chief

Hongxiao Tang

Associate Editors-in-chief Nigel Bell Jiuhui Qu Sh	u Tao Po-Keung Wong	Yahui Zhuang	
Editorial board			
R. M. Atlas	Alan Baker	Nigel Bell	Tongbin Chen
University of Louisville	The University of Melbourne	Imperial College London	Chinese Academy of Sciences
USA	Australia	United Kingdom	China
Maohong Fan	Jingyun Fang	Lam Kin-Che	Pinjing He
University of Wyoming	Peking University	The Chinese University of	Tongji University
Wyoming, USA	China	Hong Kong, China	China
Chihpin Huang	Jan Japenga	David Jenkins	Guibin Jiang
"National" Chiao Tung University	Alterra Green World Research	University of California Berkeley	Chinese Academy of Sciences
Taiwan, China	The Netherlands	USA	China
K. W. Kim	Clark C. K. Liu	Anton Moser	Alex L. Murray
Gwangju Institute of Science and	University of Hawaii	Technical University Graz	University of York
Technology, Korea	USA	Austria	Canada
Yi Qian	Jiuhui Qu	Sheikh Raisuddin	Ian Singleton
Tsinghua University	Chinese Academy of Sciences	Hamdard University	University of Newcastle upon Tyne
China	China	India	United Kingdom
Hongxiao Tang	Shu Tao	Yasutake Teraoka	Chunxia Wang
Chinese Academy of Sciences	Peking University	Kyushu University	Chinese Academy of Sciences
China	China	Japan	China
Rusong Wang	Xuejun Wang	Brian A. Whitton	Po-Keung Wong
Chinese Academy of Sciences	Peking University	University of Durham	The Chinese University of
China	China	United Kingdom	Hong Kong, China
Min Yang	Zhifeng Yang	Hanqing Yu	Zhongtang Yu
Chinese Academy of Sciences	Beijing Normal University	University of Science and	Ohio State University
China	China	Technology of China	USA
Yongping Zeng	Qixing Zhou	Lizhong Zhu	Yahui Zhuang
Chinese Academy of Sciences	Chinese Academy of Sciences	Zhejiang University	Chinese Academy of Sciences
China	China	China	China
Editorial office Qingcai Feng (Executive Editor) Christine J Watts (English Editor)	E .	Suqin Liu (Editor) Zhengang	Mao (Editor)

Journal of Environmental Sciences (Established in 1989) Vol. 24 No. 5 2012

CN 11-2629/X	Domestic postcode: 2-580		Domestic price per issue RMB ¥ 110.00
Editor-in-chief	Hongxiao Tang	Printed by	Beijing Beilin Printing House, 100083, China
	E-mail: jesc@263.net, jesc@rcees.ac.cn		http://www.elsevier.com/locate/jes
	Tel: 86-10-62920553; http://www.jesc.ac.cn	Foreign	Elsevier Limited
	P. O. Box 2871, Beijing 100085, China		Local Post Offices through China
	Environmental Sciences (JES)		North Street, Beijing 100717, China
Edited by	Editorial Office of Journal of	Domestic	Science Press, 16 Donghuangchenggen
	Sciences, Chinese Academy of Sciences	Distributed by	
Sponsored by	Research Center for Eco-Environmental		Elsevier Limited, The Netherlands
Supervised by	Chinese Academy of Sciences	Published by	Science Press, Beijing, China

