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Abstract
A lab-scale continuously-stirred tank reactor (CSTR), used for anaerobic co-digestion of fruit and vegetable waste (FVW) and food
waste (FW) at different mixture ratios, was operated for 178 days at the organic loading rate of 3 kg VS (volatile solids)/(m3·day). The
dynamics of the Archaeal community and the correlations between environmental variables and methanogenic community structure
were analyzed by polymerase chain reactions – denaturing gradient gel electrophoresis (PCR-DGGE) and redundancy analysis (RDA),
respectively. PCR-DGGE results demonstrated that the mixture ratio of FVW to FW altered the community composition of Archaea.
As the FVW/FW ratio increased, Methanoculleus, Methanosaeta and Methanosarcina became the predominant methanogens in the
community. Redundancy analysis results indicated that the shift of the methanogenic community was significantly correlated with the
composition of acidogenic products and methane production yield. Different mixture ratios of substrates led to different compositions
of intermediate metabolites, which may affect the methanogenic community. These results suggested that the analysis of microbial
communities could be used to diagnose anaerobic processes.

Key words: high-solid organic waste; anaerobic co-digestion; methanogenic community structure; denaturing gradient gel elec-
trophoresis (DGGE); redundancy analysis (RDA)
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Introduction

Anaerobic digestion is an efficient method to treat high-
solid organic waste to generate renewable energy such as
biogas. It is a biological process that can be divided into
four main phases: hydrolysis, acidogenesis, acetogenesis
and methanogenesis. These reactions are mediated by
many microbial species, which could be classified into
two categories, acidogenic bacteria and methanogenic Ar-
chaea. Characterization of microbial community structure
in anaerobic digesters has attracted engineers’ interests
since understanding the microbial behaviors is essential for
improving the performance of digestion processes (Shin
et al., 2010). However, the diversity of microbes involved
in anaerobic digestion and their responses to changes
of management practices and environmental conditions
are often overlooked because of the complex microbial
ecology involved. As a result, the anaerobic digestion
process is often treated as a “black box” (Supaphol et al.,
2011). Recently, the development of culture-independent
molecular technologies such as 16S rDNA gene analysis
has greatly promoted the studies of microbial communi-
ties (Demirel and Scherer, 2008). The use of advanced
molecular biology techniques is of critical importance for

* Corresponding author. E-mail: jiane.zuo@tsinghua.edu.cn

understanding and clarifying the sophisticated reactions
which take place in biogas digesters. Particularly, the re-
sponse of Archaea to the operating conditions of digesters
should be clearly understood to achieve stable, efficient
reactor management. Therefore, new molecular techniques
have been developed in the last decade to support the
microbial ecology research. A lot of studies have been
carried out on the behavior and activity of methanogens
in digesters treating some complex types of industrial
wastewaters and simple types of soluble, mostly synthetic
substrates (Demirel and Scherer, 2008), but studies of
microbial community structure in anaerobic treatment of
particulate solid substrates are relatively scarce in litera-
ture.

Recently, anaerobic co-digestion, which mixes different
wastes (solid or liquid organic wastes) with complemen-
tary characteristics in a single digester, has been widely
used for production of biogas from various substrates
(Bouallagui et al., 2009; Lin et al., 2011). The main
advantages of anaerobic co-digestion are as follows: (1)
improved methane production yield due to the mixed
supply of additional nutrients from co-substrates; (2) more
efficient utilization of equipment; and (3) shared costs
by processing multiple waste streams in a single facility
(Alatriste-Mondragon et al., 2006).

http://www.jesc.ac.cn
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Fruit and vegetable waste (FVW) and food waste (FW)
are two major types of municipal organic solid wastes
in China. The low cellulose content and C/N ratio of
the wastes may accelerate ammonia release, resulting in
inhibition of methanogenesis in digesters and low biogas
production. To resolve this problem, it has been observed
that implementing co-digestion of different waste streams
in single-stage anaerobic digestion systems could improve
biogas production (Bouallagui et al., 2009; Habiba et
al., 2009; Lin et al., 2011). Therefore, it is interesting
to investigate the molecular microbial mechanism of co-
digestion.

Previous studies have reported that intermediate
metabolites produced by acetogens may be important for
the growth and community structure of the methanogens
in sequential batch systems conducting co-digestion of
food waste and biosolids anaerobically (Dearman et al.,
2006). Inoculum and loading rates seemed not to af-
fect the diversity of methanogens; instead they affected
the concentration of ammonia and volatile fatty acids
(VFA). Methanosarcinaceae was dominant at high levels
of NH3 and VFA, while Methanosaetaceae dominated
with low levels of NH3 and VFA (Karakashev et al.,
2005). Another study showed that both resource availabil-
ity and environmental factors are key driving forces in
microbial community dynamics of mesophilic anaerobic
co-digestion of mixed wastes (Supaphol et al., 2011).
Nevertheless, few studies have monitored the community
dynamics in the anaerobic co-digestion process at different
mixture ratios or analyzed the relationship between micro-
bial diversity and environmental variables.

In this study, the molecular technology PCR-DGGE
(denaturing gradient gel electrophoresis) was used to
investigate the Archaeal community structural dynam-
ics in the process of anaerobic co-digestion of FVW
and FW at different mixture ratios. Redundancy analy-
sis (RDA), a multivariate analysis method based on an
iterative process of reciprocal averaging/correspondence
analysis ordination and multiple regressions, was used
to identify correlations between environmental variables
and methanogenic community dynamics in an anaero-
bic digester. Recently, multivariate statistical techniques
have been successfully applied in wastewater treatment
systems to study the environmental effects on microbial
community structure and the dynamics of microbial pop-
ulations (Kennedy et al., 2004; Macdonald et al., 2009).
For example, the results indicated that Methanobacteriales
and Methanosarcinales populations were closely related to
chemical properties such as VFAs in anaerobic batch di-
gesters treating swine wastewater, whereas the correlation
between Methanomicrobiales and propionate was shown
to be different through RDA analysis (Kim et al., 2010).

1 Materials and methods

1.1 Reactor operating conditions

A lab-scale continuously-stirred tank reactor (CSTR)
equipped with temperature controller, with a working
volume of 4 L, was operated for 178 days at the or-
ganic loading rate of 3 kg VS/(m3·day). The operating
temperature was kept at (35 ± 1)°C by the temperature
controller. Anaerobic granular sludge with good methano-
genesis activity was used as inoculum to the digester,
which was taken from a full-scale UASB reactor treating
starch-processing wastewater at 35°C in Qinhuangdao
City, Hebei, China. Raw FVW were collected from a
fruit and vegetable market in Beijing, China in different
seasons of 2009; the raw FVW mainly contained residues
of vegetables such as Chinese cabbage, carrot, lettuce,
and different fruits, such as apple, banana, pear, and
watermelon. Raw FW were daily collected for one week
from a dining hall at Tsinghua University, Beijing, China.
The raw FW mainly contained leftovers of cooked foods,
such as meat, fish, rice, bread, noodles and vegetables. The
characteristics of FVW and FW are shown in Table 1. The
digester was operated with a draw and fill method – the
mixed digesting residue was discharged out of the digester
and the raw materials were fed into the digester daily with
a peristaltic pump. The test mixture ratios of FVW to FW
based on volatile solid (VS) contents were 100:0, 67:33,
50:50, 33:67 and 0:100 (m/m), respectively.

1.2 DNA extraction

The broth in the CSTR was homogenized before sampling.
Samples with a volume of 50 mL were collected in
centrifuge tubes at the end of each mixture ratio–specified
stage. The tubes were centrifuged at 15,000 r/min for
20 min at 4°C (CR22G, HITACHI, Japan), with the su-
pernatant removed. Total community DNA was extracted
from the solid fraction using the Fast DNA kit for soil (MP,
USA). All extraction steps were carried out according to
the manufacturer’s protocols. The concentration and purity
of DNA were measured by a UV spectrophotometer (ND-
2000, Nano Drop, USA) at 260 and 280 nm, and checked
by 0.8% agarose gel electrophoresis.

1.3 DGGE and phylogenetic analysis

A nested polymerase chain reaction (PCR) approach was
used to amplify 16S rRNA genes of Archaea. In the first
round, primers ARCH46f and ARCH1017r were applied,
and in the second round, primers pARCH344f-GC and
UNIV522r were applied (Roling et al., 2006). A touch-
down PCR was conducted in a PTC-200 instrument (MJ
research, Watertown, MA, USA) as follows: 94°C for 5

Table 1 Characteristics of the fruit and vegetable waste and food waste

pH Total solid Volatile solid Elemental compositions (wt.% TS) C/N ratio
(%) (wt.% TS) C H O N

FVW 4.24 7.4 88.1 43.3 5.2 38.0 2.8 15.6
FW 3.55 22.2 92.5 51.0 7.3 29.2 3.0 17.2

TS: total solids; FVW: fruit and vegetable waste; FW: food waste.
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Table 2 Primers used in PCR amplification of Archaea 16S rRNA
genes*

Target Primer Sequence (5′–3′)

First round ARCH46f YTAAGCCATGCRAGT
ARCH1017r GGCCATGCACCWCCTCT

Second round ARCH344f HGCAGCAGGCGCGA
UNIV 522r GWATTACCGCGGCKGCTG

GC-clamp On ARCH344f CGCCCGCCGCGCGCGGCGGG
CGGGGCGGGGGCACGGGGGG

* Roling et al., 2006.

min, 20 cycles of 94°C for 1 min, annealing at 62 to
52°C (reducing the temperature by 0.5°C per cycle) for 1
min, and extension at 72°C for 1.5 min; additional 5 cycles
of 94°C for 1 min, 52°C for 1.5 min, and 72°C for 1.5 min;
and final extension at 72°C for 10 min.

Denaturing gradient gel electrophoresis was performed
with the Bio-Rad DCodeTM system (Bio-Rad, Hercules,
CA, USA). The PCR product was loaded on 8% (W/V)
polyacrylamide gels containing a 50% to 70% linear dena-
turing gradient (100% denaturant contained 7 mol/L urea
and 40% (V/V) deionized formamide). Electrophoresis
was performed at 130 V for 6 hr in 1× TAE buffer. The
gel was stained with Gel-Red and photographed under UV
transillumination (Gel Doc XR, Bio-Rad, Hercules,USA).
DGGE images were analyzed via Quantity One (Bio-
Rad, Hercules, CA, USA). Dominant DNA bands were
excised from the gel, eluted in 30 µL of sterile water, and
reamplified with the same primers (without GC-clamp).
The resulting fragments were purified and then cloned into
the pGEM-T Easy vector (Promega, Madison, WI, USA),
followed by sequencing analysis using T7 primer. Subse-
quently, the sequencing results were compared against the
GenBank databases. Sequence alignment and neighbor-
joining phylogenetic tree construction were carried out
using the MEGA software version 4.0.

1.4 Analytical methods

The following parameters were analyzed: pH, total alkalin-
ity, soluble chemical oxygen demand (sCOD), ammonium
concentration, volatile fatty acids (VFAs), total solids (TS),
and volatile solids (VS) as described previously (Lin et al.,
2011). To quantify the diversity of Archaea, the Shannon

index (H′) was computed (Nettmann et al., 2008).

1.5 Ordination

The correlation of environmental factors and band oc-
currence was conducted using Canoco analysis (Canoco
4.5, Biometris, Wageningen, The Netherlands), where the
following statistical analysis were undertaken. The band
matrices were designated as representing species occur-
rence and the environmental variables, which were volatile
fatty acid (VFA), NH4

+, methane production yield (MPY)
and mixture ratio.

Detrended correlation analysis (DCA) was applied to
determine the size of the data gradient and to indicate the
best methodology to find the main factors that influence
community composition. Once a linear correlation was
achieved for the analyzed groups (gradient size lower than
4.0), redundancy analysis (RDA) was used. To verify the
significance of environmental variables in the composition
of Archaeal communities, the non-parametric Monte Carlo
permutation test was applied with 499 random permu-
tations. In addition to P values for significance of each
environmental factor, RDA and Monte Carlo permutation
tests supplied information about the marginal effects of en-
vironmental variables, quantifying the amount of variance
explained by each factor.

2 Results and discussion

2.1 Reactor performance

The digester was operated stably and efficiently at five
different FVW/FW mixture ratios (100:0, 67:33, 50:50,
33:67 and 0:100, m/m) and the performances of the
reactor at steady state are summarized in Table 3. The
NH4

+-N and total VFA concentrations were estimated
to be lower than the inhibitive concentrations reported
for methanogens (Anderson et al., 1982, Angelidaki and
Ahring, 1993). The maximum methane production yield
(MPY) was 0.49 m3 CH4/kg VS at the OLR of 3 kg
VS/(m3·day) with the mixture ratio of 50:50 (m/m). When
the ratio of FVW to FW in influent changed to 33:67
(m/m), the average concentration of NH4

+-N and total
VFA in effluent increased to 1242.1 and 1216.5 mg/L,

Table 3 Summary of performance parameters in different operational phases

Phase I Phase II Phase III Phase IV Phase V
Day 0–30 Day 30–60 Day 60–90 Day 90–131 Day 131–178

Substrates
FVW (kg VS/(m3·day)) 3 2 1.5 2 0
FW (kg VS/(m3·day)) 0 1 1.5 1 3
TS (%) 7.4 9.4 11.0 13.1 22.2
VS (%) 6.5 8.4 9.7 11.8 20.5

Effluent characteristics
pH 7.37 ± 0.03 7.40 ± 0.03 7.56 ± 0.03 7.73 ± 0.02 7.07 ± 0.14
NH4

+-N (mg/L) 585.3 ± 61.7 608.9 ± 27.0 763.9 ± 25.8 1242.1 ± 60.0 2329.7 ± 143.5
VFA (mg/L) 69.7 ± 11.4 181.7 ± 33.6 170.64 ± 44.0 1216.5 ± 77.2 8887.0 ± 754.1

Digester performances
Biogas production rate 2.17 2.25 2.35 2.45 0.35
(m3/(m3·day))
Methane production yield 0.42 0.44 0.49 0.49 0.06
(m3 CH4/kg VS)
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respectively. Furthermore, acetate was the major fermenta-
tion product, which comprised 92% of total VFA. The VFA
production and utilization rates were unbalanced. As a
result, the MPY remained unchanged due to the incomplete
utilization of acetic acid. Moreover, no anaerobic digestion
was observed due to VFAs accumulation when the FW
was fed as the only substrate. The NH4

+-N and TVFAs
concentration were 2329.7 and 8887.0 mg/L, respectively.
The concentration of each individual acid is as described
previously (Lin et al., 2011).

2.2 Methanogenic community analysis

The microbial community involved in the anaerobic diges-
tion of biowaste is affected by changes of environmental
conditions. Therefore, it is crucial to relate the microbial
community structure to the process of the anaerobic diges-
tion of biowaste, which would be helpful for the operation
and optimization of biogas plants (Nettmann et al., 2008).
DGGE, followed by phylogenetic analysis, was applied
to investigate the dynamic of methanogenic community
structures. The total DNAs were extracted from five sludge
samples (Sample 1–5) when the reactor was run at a steady
state in each mixture ratio and used for PCR targeting
Archaeal 16S rDNA genes. After obtaining DNA bands by
DGGE (Fig. 1, Table 4), the phylogenetic affiliations of the
bands, as shown in Fig. 2, were determined by comparison
against the GenBank database.

A total of 22 distinct bands were observed (Fig. 1).
The band profiles varied among samples, indicating clear
changes of the composition of methanogen communities
during the anaerobic digestion at different mixture ratios
of FVW to FW. This was confirmed by the community
diversity Shannon index, which fluctuated over different
mixture ratios and ranged from 0.73 to 0.90. The species
composition of the methanogenic community clearly dif-
fered between Sample 2 and other samples. Notably, bands
6 and 7 were two dominant bands in Samples 4 and 5.

Band 6 was closely matched to Methanosaeta sp., which
is widely distributed in nature owing to its specifically high
affinity for acetate (Fig. 2). Bands 17–19 were the domi-
nant bands in samples 1 and 3, and two of the dominant
bands in Samples 4 and 5. Band 17 showed 99% sequence
similarity with Methanosarcina mazeii, which was isolated
from a broad range of environments, including sediments
and digesters (Joulian et al., 1998). Methanosarcina was
one of the only two genera of methanoarchaea, known to
use acetate as substrate for methanogenesis. Methanosarci-
na prefers methylated compounds such as methanol and
methylamines as compared to acetate (Shin et al., 2010).
Band 19 is related to Methanoculleus sp., which has also
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Fig. 1 Archaeal DGGE profiles of the 16S rRNA gene PCR products
generated from DNA extracted from bioreactor biomass during the trial.
1–5 mean five sludge samples; 1–22 mean distinct bands.

been previously identified in biogas processes (Feng et al.,
2010; Krober et al., 2009).

Bands 8, 9, 12 and 13 were the dominant bands in
Sample 2. Band 8 was matched with Methanomicro-
biales. The hydrogenotrophic pathway is represented by
Methanomicrobiales, which is closely related to extreme-
ly halophilic Archaea (Bapteste et al., 2005). Band 12
shares 100% homology with an Archaeal clone isolated
from a novel anaerobic digester treating organic waste
(Nelson et al., 2010). Band 13 was matched with an uncul-
tured Methanosarcinales achaean in limonene-degrading
methanogenic cultures.

Acetate is regarded as the most important intermediate
metabolite in anaerobic digestion (Sasaki et al., 2011). Ac-
etate can be directly utilized by aceticlastic methanogens
such as Methanosarcina spp. Methanosarcina are sensitive
to turbulence and shearing, and frequently dominate in
fixed- and stirred-tank digesters (Liu and Whitman, 2008).
The organic fractions of FVW include sugar, cellulose,
hemicellulose and lignin, while FW were mainly com-
posed of lipid, protein and starch. When FVW was the only
substrate fed into digester, M. mazeii and Methanoculleus
sp. were the dominant methanogens. When FW was added
into digester, the lipid and protein were degraded into
amino acids and long chain fatty acids (LCFA). More
acetate and H2 were produced in FW due to the high

Table 4 Similarities between the DNA extracted from the bands and known species

Band Closest match Match (%)

6 Methanosaeta sp. enrichment culture clone A22130 16S ribosomal RNA gene, partial sequence 100
8 Uncultured Methanomicrobiales archaeon gene for 16S rRNA, partial sequence 100
12 Uncultured archaeon clone NBLA23C 16S ribosomal RNA gene, partial sequence 100
13 Uncultured Methanosarcinales archaeon partial 16S rRNA gene, clone LiM 2B-7A 100
17 Methanosarcina mazeii strain SarPi 16S ribosomal RNA gene, complete sequence 99
19 Uncultured Methanoculleus sp. clone ARK2 4 16S ribosomal RNA gene, partial sequence 100
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 Band 6

 Methanosaeta sp. enrichment culture clone (HQ133144.1)

 Band 19

 Uncultured Methanoculleus sp. clone (GQ501013.1)

 Band 12

 Uncultured Methanosarcinales archaeon gene (AB353211.1)

 Uncultured archaeon clone 16S ribosomal RNA gene (GU388906.1)

 Band 13

 Band 17

 Methanosarcina mazeii strain SarPi (AF028691.1)

 Band 8

 Uncultured Methanomicrobiales archaeon gene (AB353211.1)
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94

33
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Fig. 2 Neighbor-joining tree showing the phylogenetic affiliation of DGGE band sequences.

contents of lipid and protein. In phase II, with the addition
of FW, the TVFA concentration increased to 181.7 mg/L.
The dominant species in Sample 2 altered to Methanomi-
crobiales and Methanosarcinales-like Achaean. This can
be explained by the shift in methane production routes.
The high H2 partial pressures in the digester might be one
reason for the promotion of the growth of hydrogenotroph-
ic methanogens such as Methanomicrobiales (Liu and
Whitman, 2008).

The optimal performance was achieved at the mixture
ratio of 50:50 (m/m). The stable performance implies the
maintenance of well-established methanogenic consortia
throughout the reaction period. The methanogenic com-
munity in Sample 3 changed back to nearly the same
community structure as in Sample 1. M. mazeii has the
same metabolic capacity as other Methanosarcina spp.
(Osumi et al., 2008). The substrates which M. mazeii
is capable of utilizing are H2/CO2, acetate, all methy-
lamines and methanol (Osumi et al., 2008). This differs
from M. acetivorans, which cannot subsist on H2/CO2
utilization for they lack a functional H2 utiliser (Maeder
et al., 2006). In addition, it provides a certain versatility
for M. mazeii, which allows utilization of a variety of
substrates and environments. The high H2 partial pressure
and acetate concentration might be one reason for the vari-
ation in culture development. The dominant aceticlastic
methanogens made a contribution to the small decrease of
VFA concentration despite the fact that the amount of FW
increased. It is also likely that the variation was caused by
the salinity. Previous studies reported that M. mazeii did
not aggregate in intermediate salinity, but lower or higher
salinity allowed or caused M. mazeii to aggregate (Tenchov
et al., 2006). This dual behavior is relatively unique even
for other Methanosarcina spp. because the others do not
naturally disaggregate and in fact, have difficulty living
singly. The total saline concentration (Na+, Ca2+, Cl−) was
about 3%. It is noted that a high saline concentration is
present in typical Chinese food waste. At the mixture ratio
of 67:33 (m/m), the saline concentration increased to an
intermediate level due to the addition of FW and caused
the disaggregation of M. mazeii, resulting in loss of this
species in the effluent. When the amount of FW in influent
increased to over 50%, the high salinity allowed M. mazeii
to aggregate. Complex substrates with high acetate con-
centration and H2 pressure will support the growth of M.

mazeii. Acetic acid and propionic acid accumulated when
the percentage of FW was over 50%. This was indicative
of inhibition of syntrophic propionate-oxidizers as well as
inefficient utilization of acetate by methanogens, which
was also reflected by a lower methane yield (Ziganshin
et al., 2010). Accordingly, hydrogenotrophic methanogens
(Methanoculleus) were dominant. It is possible that acetate
was metabolized by acetotrophic microorganisms via syn-
trophic acetate oxidation delivering hydrogen and carbon
dioxide funneled into hydrogenotrophic methanogenesis
(i.e., Methanoculleus). In the literature, it was also reported
that Methanoculleus was dominant in a biogas process
containing high levels of ammonium and VFA, where
acetate was degraded via syntrophic acetate oxidation
(Wagner et al., 2011, Ziganshin et al., 2010). This could
explain the dominance of Methanoculleus in the last 3
samples.

Usually, only one aceticlastic methanogen group,
Methanosaeta or Methanosarcina, dominates each di-
gester, depending upon the types of waste and digester
(Leclerc et al., 2004). Methanosaeta have slower growth
rates and higher affinity for acetate, while Methanosarcina
have faster growth rates and lower affinity for acetate
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Fig. 3 Redundancy analyses of shifts in the structure of methanogenic
community and their correlation between species, VFA, NH4

+, MPY and
mixture ratio.
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(Liu and Whitman, 2008). The relative abundance of
these two groups is not only regulated by acetate con-
centrations as seen in other environments, but also by
feeding rates (Aiyuk et al., 2006; Conklin et al., 2006).
Methanosaeta reside better in digesters with high feeding-
rate, such as an upward-flow anaerobic sludge blanket
(UASB), presumably due to their efficient adhesion and
granulation. In contrast, Methanosarcina are more sen-
sitive to turbulence and shear, and frequently dominate
in fixed- and stirred-tank digesters (Liu and Whitman,
2008). Band 6 representing Methanosaeta of Samples 4
and 5 became brighter than the band 17 representing
Methanosarcina. These findings contrasted with those
of previous studies. One explanation is the adhesion of
organism cells. Some researchers reported that the compe-
tition between Methanosaeta and Methanosarcina might
be affected by other factors, such as adhesion, and feast
and famine conditions (Angenent et al., 2002; Conklin et
al., 2006). The individual Methanosaeta cells form long
filaments in anaerobic biomass, while Methanosarcina
cells grow as cocci. Lower mixing intensity emerged with
higher relative level of Methanosaeta and lower relative
level of Methanosarcina (Hoffmann et al., 2008). In ad-
dition, Schmidt’s research showed that Methanosarcina
might serve as inert support material for the growth of
Methanosaeta (Schmidt and Ahring, 1999). It could form
multicellular aggregates to resist the inhibition caused by
a high level of VFA, because the slow diffusion rate of the
acid limits the concentration of VFA inside the aggregates,
which provides another explanation for this phenomenon.
It should be mentioned that the cell morphology and
acetate accumulation hypotheses are not exclusive and
both could play a role in the competition of Methanosaeta
and Methanosarcina. However, further studies are still
necessary.

2.3 Correlation between environmental factors and
methanogenic community dynamics

To quantify the relationship between environmental factors
and changes of the microbial community, RDA was con-
ducted. As shown in Fig. 3, it generated a direct gradient
ordination that was related to two sets of variables: the
dependent species data and the independent environmental
data. For the plot, the eigenvalue was 0.742, meaning that
summation of each variable’s dispersion could provide
an explanatory power of 74.3% for the respective mod-
el. The results showed that aceticlastic methanoarchaea
(bands 6, 12 and 17) had a positive correlation with VFA,
NH4

+, and mixture ratio, and a negative correlation with
MPY. The major factor determining the ability to produce
methane is the Methanomicrobiales arrow (band 8) line
in RDA. In contrast, Methanoculleus had no correlation
with those environmental variations. The joint-plot RDA
results suggested that the community shifts were more
significantly correlated with NH4

+, VFA and MPY than
mixture ratio, implying that the intermediate metabolites
generated from hydrolysis and acidification are closely
related to the diversity of a microbial community. The
results are consistent with the findings of a previous study,

which showed that that intermediate metabolites produced
by acetogens are important for the community structure of
the methanogens (Dearman et al., 2006).

It could be expected that the methanogen community
structure would be affected by the composition of acido-
genic products, which are further utilized for methanogen
growth. This corresponds to the biphasic production of
biogas. The results clearly demonstrated that the com-
munity structure profiles of methanogens developed in a
totally divergent manner during the anaerobic co-digestion
trials. This, along with the fact that the functional property
of an anaerobic digester is closely related to the relative
abundance of microbial populations and the community
composition (Lee et al., 2010), suggests that more attention
should be paid to bacterial, as well as Archaeal, commu-
nities for an in-depth view of the relationship between
the microbial communities and environmental factors in
methanogenic environments.

3 Conclusions

In this study, the molecular technology PCR-DGGE
was used to investigate the Archaea community struc-
tural dynamics in anaerobic co-digestion of FVW and
FW with different mixture ratios. It demonstrated that
the mixture ratio of FVW to FW is a factor af-
fecting changes of the Archaeal community structure.
Methanoculleus, Methanosaeta and Methanosarcina be-
came the predominant methanogen with the addition of
FW. The methanogenic community shift is significantly
correlated with the composition of acidogenic products and
the methane production yield. The microbial community
analysis could be used to diagnose other anaerobic pro-
cesses.
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