Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.

Copyright

© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
CONTENTS

Aquatic environment
Investigation of the hydrodynamic behavior of diatom aggregates using particle image velocimetry
Feng Xiao, Xiaoyan Li, Kitiming Lam, Dongsheng Wang .. 1157
Shellac-coated iron oxide nanoparticles for removal of cadmium(II) ions from aqueous solution
Jialong Gong, Long Chen, Guangming Zeng, Fei Long, Jiuhua Deng, Qiuya Niu, Xun He .. 1165
Prediction of DOM removal of low specific UV absorbance surface waters using HPSEC combined with peak fitting
Linan Xing, Rolando Fabris, Christopher W. K. Chow, John van Leeuwen, Mary Driskas, Dongsheng Wang 1174
Photoproduction of dissolved inorganic carbon from dissolved organic matter in contrasting coastal waters in the southwestern Taiwan Strait, China
Weidong Gao, Liyang Yang, Xianxiang Yu, Weidong Zhai, Husheng Hong ... 1181
One century sedimentary record of lead and zinc pollution in Yangzong Lake, a highland lake in southwestern China
Enlou Zhang, Enfeng Liu, Ji Shen, Yuanmin Cao, Yanling Li .. 1189
Antimony(V) removal from water by iron-zirconium bimetal oxide: Performance and mechanism
Xuehua Li, Xiaoming Dou, Junqing Li .. 1197
Carbonaceous and nitrogenous disinfection by-product formation in the surface and ground water treatment plants using Yellow River as water source
Yukun Hou, Wenhua Chu, Meng Ma .. 1204
Water quality evaluation based on improved fuzzy matter-element method
Dongjun Liu, Zhihong Zou ... 1210
Formation and cytotoxicity of a new disinfection by-product (DBP) phenazine by chloramination of water containing diphenylamine
Wenjun Zhou, Linjie Lou, Lifang Zhu, Zhimin Li, Lizhong Zhu ... 1217

Atmospheric environment
Chemical compositions of PM2.5 aerosol during haze periods in the mountainous city of Yong’an, China
Liqian Yin, Zhenchuan Niu, Xiaqi Chen, Jinsheng Chen, Lingling Xu, Fuwang Zhang ... 1225
Decomposition of trifluoromethane in a dielectric barrier discharge non-thermal plasma reactor
M. Sanjeeva Gandhi, Y. S. Mok .. 1234
Transverse approach between real world concentrations of SO2, NOx, BTEX, aldehyde emissions and corrosion in the Grand Mare tunnel
I. Amerou-Boudabbous, J. Kasperek, A. Barbier, F. Harel, B. Hannony .. 1240
A land use regression model incorporating data on industrial point source pollution
Li Chen, Yuming Wang, Peiwu Li, Yaquin Ji, Shaofei Kong, Zhiyong Li, Zhipeng Bai ... 1251

Terrestrial environment
Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions
Hua Fang, Bin Dong, Hu Yan, Feifan Tang, Baichuan Wang, Yuming Li ... 1259
Enhanced flushing of polychlorinated biphenyls contaminated sands using surfactant foam: Effect of partition coefficient and sweep efficiency
Hao Wang, Jiajun Chen ... 1270
Transpiration rates of urban trees, Aesculus chinensis
Hua Wang, Xiaoke Wang, Ting Zhao, Hua Zheng, Yufen Ren, Fuyuan Gao, Zhiyun Ouyang .. 1278

Environmental biology
Methanogenic community dynamics in anaerobic co-digestion of fruit and vegetable waste and food waste
Jia Lin, Jiane Zuo, Ruofan Ji, Xiaojie Chen, Fenglin Liu, Kuijun Wang, Yufang Yang .. 1288
Differential fate of metabolism of a disperse dye by microorganisms Galactomyces geotrichum and Brevibacillus laterosporus and their consortium GG-BL
Tatoba R. Waghmode, Mayur B. Kurade, Amuradha N. Kagalkar, Sanjay P. Govindwar .. 1295

Environmental catalysis and materials
Effects of WO3 modification on the activity, adsorption and redox properties of Co3O4 catalyst for NOx reduction with ammonia
Ziran Ma, Duan Peng, Xiaowei Wang, Zhichun Si ... 1305
Photocatalytic degradation of bisphenol A using an integrated system of a new gas-liquid-solid circulating fluidized bed reactor and micrometer Gd-doped TiO2 particles
Zhihui Cheng, Xuejun Quan, Jinwen Wang, Yuming Huang, Yunlan Xu ... 1317
Effect of CeO2 and Al2O3 on the activity of Pd/CeO2/cordierite catalyst in the three-way catalysis reactions (CO/NO/CO2/H2).... 1327
Sergiy O. Solovyev, Pablo I. Kyriienko, Natalia O. Popovich .. 1327

Environmental analytical methods
Development of indirect competitive fluorescence immunoassay for 2,2′,4,4′-tetrabromodiphenyl ether using DNA/dye conjugate as antibody multiple labels
Zi-Yan Fan, Young Soo Keum, Qing-Xiao Li, Weilin L. Shelver, Liang-Hong Guo .. 1334
A novel colorimetric method for field arsenic speciation analysis
Shan Hu, Jinsoo Lu, Chuanong Jing ... 1341
Aminobenzenesulfonamide functionalized SBA-15 nanoporous molecular sieve: A new and promising adsorbent for preconcentration of lead and copper ions
Leila Hajigahababaei, Babak Ghasemi, Alineza Badiei, Hassan Gholooz, Mohammad Reza Ganjali, Ghodsii Hamzehi 1347

Serial parameter: CN: 11-2629/X*1989*m*198*en*P*24*2012-7
Development of indirect competitive fluorescence immunoassay for 2,2′,4,4′-tetrabromodiphenyl ether using DNA/dye conjugate as antibody multiple labels

Zi-Yan Fan1, Young Soo Keum2, Qing-Xiao Li3, Weilin L. Shelver4, Liang-Hong Guo1,∗

1. State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environment Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: sumioo.van@gmail.com
2. College of Life and Environmental Sciences, Konkuk University in Korea, 1 Hwayang-dong, Guwangjin-gu, Seoul 143-701, Korea
3. Department of Molecular Bioscience and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
4. USDA-ARS Bioscience Research Laboratory, 1605 Albrecht Boulevard, Fargo, ND 58105, USA

Received 29 September 2011; revised 30 November 2011; accepted 14 December 2011

Abstract
An indirect competitive fluorescence immunoassay using a DNA/dye conjugate as antibody multiple labels was developed on 96-well plates for the identification and quantification of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in aqueous samples. A hapten, 2,4,2′-tribromodiphenyl ether-4′-aldehyde, was synthesized, and was conjugated to bovine serum albumin to form a coating antigen. Specific recognition of the antigen by anti-PBDE antiserum was confirmed by a surface plasmon resonance measurement. In the immunoassay, the coating antigen was adsorbed on a 96-well plate first, and a sample, antiserum and biotinylated goat anti-rabbit secondary antibody were then added and reacted sequentially. A biotinylated, double-stranded DNA with 219 base pairs was attached to the secondary antibody by using streptavidin as a molecular bridge. In situ multiple labeling of the antibody was accomplished after addition of a DNA-binding fluorescent dye, SYBR Green I. The working range of the immunoassay for the BDE-47 standard was 3.1–390 μg/L, with an IC50 value of 15.6 μg/L. The calculated LOD of the immunoassay is 0.73 μg/L. The immunoassay demonstrated relatively high selectivity for BDE-47, showing very low cross-reactivity (< 3%) with BDE-15, BDE-153 and BDE-209. With a spiked river water sample containing 50 μg/L BDE-47, quantification by the immunoassay was 41.9 μg/L, which compared well with the standard GC-ECD method (45.7 μg/L). The developed immunoassay provides a rapid screening tool for polybrominated diphenyl ethers in environmental samples.

Key words: polybrominated diphenyl ethers; fluorescence immunoassay; microplate; multiple labeling
DOI: 10.1016/S1001-0742(11)60929-7

Introduction
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants with 209 congeners that have been widely used in many applications such as building materials, electronic products, plastics, and textiles (Hardy, 2002). There are three types of commercial PBDEs mixtures, namely “pentaBDEs”, “octaBDEs”, and “decaBDEs”. They were reported to be manufactured at a level of approximately 70,000 tons per year worldwide before they were regulated (de Wit, 2002).

As a result of their widespread usage as well as high stability and high bioaccumulation, PBDEs have been found in almost all environmental media and biological samples including air, soil, house dust, wildlife and humans (Lindberg et al., 2004; Sjödin et al., 2003; Zota et al., 2008). Even in Arctic air and biota, PBDEs have been found according to recent reports (de Wit et al., 2006; Muir et al., 2006). Exposures to PBDEs have been shown to cause developmental and neurological effects, but many aspects of their toxicity are uncertain at this time. Because of their rapidly increasing presence in the environment and their potential health consequences, penta- and octa-BDEs were banned from all products in the European Union in 2004, and in ten states of the USA in 2007. In 2009, they were added to the list of persistent organic pollutants in the Stockholm Convention. In June 2008, the US EPA set a safe daily exposure level ranging from 0.1 to 7 μg/kg body weight per day for most common PBDEs. The European Union also set an upper limit of 1 g/kg body weight per day for the sum of polybrominated biphenyl and PBDEs in the RoHS directive. Therefore, there is a huge need for routine screening of PBDEs in the environment and food samples, especially for BDE-47 and BDE-99.

Current quantitative analytical methods for PBDEs detection are usually carried out by gas chromatography coupled with electron capture detection (GC-ECD) or gas chromatography combined with mass spectrometry (GC-
MS) (Xu et al., 2009). These methods are very specific and accurate, but to some extent expensive and time-consuming due to complicated sample separation and pretreatment procedures. Alternatively, several enzyme-linked immunosassays have been developed in recent years as a rapid, low-cost and sensitive method for screening PBDEs in diverse environmental matrices. Targeting BDE-47 as the analyte, Sheler et al. (2005) synthesized four haptens with different bromine and linker substitution patterns. These haptens were then utilized to generate seven polyclonal antibodies, one of which exhibited the best results in competitive immunoassays for BDE-47, with an IC50 of 27.7 μg/mL. Using this antibody, a sensitive magnetic particle enzyme-linked immunoassay was developed to analyze PBDEs in water, milk, fish, and soil samples. The LOD of the assay was below 0.1 μg/L, with the cross-reactivity of BDE-28, BDE-100 and BDE-153 being less than 15% relative to BDE-47 (Shelver et al., 2008). More recently, Ahn et al. (2009) synthesized BDE-47 immunizing haptens with a rigid double-bonded hydrocarbon linker. With the screened antibody, indirect competitive ELISA immunoassay showed a linear detection range of 0.35–8.50 μg/L with an IC50 value of 1.75 μg/L for BDE-47. Little or no cross-reactivity (<6%) was observed to related PBDE congeners containing the BDE-47 moiety and other halogenated compounds.

In our previous work, a method for attaching multiple fluorescent labels to an antibody was proposed and tested. In the method, a double-stranded DNA was first attached to the antibody. Fluorescent dyes were then allowed to bind to the DNA, forming a dye/DNA conjugate. Because the dye can bind to DNA at high ratios, the antibody is labeled with a large number of fluorescent dyes through the DNA (Zhang and Guo, 2007). Using this method, fluorescence immunoassays on 96-well plates showed a detection limit of 1.9 pg/mL for 17β-estradiol, which is 200 fold lower than assays using conventionally labeled antibodies (Zhu et al., 2008). In the current work, a dye/DNA conjugate has been employed in competitive fluorescence immunoassays for PBDEs. Unlike ELISA, this format is compatible with the current biochip technology, and thus can be readily developed into immunoassay biochips for the simultaneous detection of multiple analytes in a single sample.

1 Experimental

1.1 Reagents

N-Hydroxysuccinimide (NHS) and 1-[3-(dimethylamino) propyl]-3-ethylcarbodiimide (EDC) were purchased from Alfa Aesar (Ward Hill, USA). 4,4′-Dibromodiphenyl ether (BDE-15), 2,4,4′-tribromodiphenyl ether (BDE-28), 2,2′,4,4′-tetra-bromodiphenyl ether (BDE-47), 2,2′,4,4′,5-penta-bromodiphenyl ether (BDE-99), 2,2′,4,4′,5,5′-hexabromodiphenyl ether (BDE-153), and decabromodiphenyl ether (BDE-209) were purchased from AccuStandard (New Haven, USA). Their structures are depicted in Fig. 1. Biotin-labeled goat anti-rabbit IgG was obtained from CW Biotech (Beijing, China). Taq DNA polymerase, DNA marker DL 2000 and DNA fragment purification kit were purchased from Takara Biotech Co. (Dalian, Liaoning, China). Streptavidin was obtained from Promega (Madison, USA). Fluorescein isothiocyanate (FITC) was obtained from Amresco (Solon, OH, USA) and SYBR Green I from Invitrogen (Carlsbad, USA). Rabbit anti-PBDEs serum was produced by immunizing a rabbit with 4-(2,4-dibromo-5-(2,4-dibromophenoxy) phenoxy) butyrate-BSA according to Shelver et al. (2005). A 219 bp biotinylated DNA was synthesized by PCR (see details in the supporting information). All buffers were prepared in high-purity water from a Millipore Milli-Q (Biocel) purification system (Billerica, USA). All other chemicals and solvents were purchase from Sigma-Aldrich (St. Louis, USA) unless specifically stated otherwise.

1.2 Hapten synthesis

2,4′-Tribromodiphenyl ether-4′-aldehyde was designed and synthesized as a hapten (Fig. 2). The main reactions to prepare the hapten containing the carboxaldehyde group were based on methods previously described (Marsh et al., 2008). More recently, Ahn et al. (2009) synthesized BDE-47 immunizing haptens with a rigid double-bonded hydrocarbon linker. With the screened antibody, indirect competitive ELISA immunoassay showed a linear detection range of 0.35–8.50 μg/L with an IC50 value of 1.75 μg/L for BDE-47. Little or no cross-reactivity (<6%) was observed to related PBDE congeners containing the BDE-47 moiety and other halogenated compounds.

In our previous work, a method for attaching multiple fluorescent labels to an antibody was proposed and tested. In the method, a double-stranded DNA was first attached to the antibody. Fluorescent dyes were then allowed to bind to the DNA, forming a dye/DNA conjugate. Because the dye can bind to DNA at high ratios, the antibody is labeled with a large number of fluorescent dyes through the DNA (Zhang and Guo, 2007). Using this method, fluorescence immunoassays on 96-well plates showed a detection limit of 1.9 pg/mL for 17β-estradiol, which is 200 fold lower than assays using conventionally labeled antibodies (Zhu et al., 2008). In the current work, a dye/DNA conjugate has been employed in competitive fluorescence immunoassays for PBDEs. Unlike ELISA, this format is compatible with the current biochip technology, and thus can be readily developed into immunoassay biochips for the simultaneous detection of multiple analytes in a single sample.
There are two main steps: synthesis of iodonium chloride and coupling of iodonium salt with benzaldehyde. All the synthetic steps are detailed as follows.

1.2.1 Synthesis of iodonium chlorides
A mixture of sulfuric acid (10 mL) and fuming sulfuric acid (40% SO₃, 10 mL) was added dropwise to iodine (5 g) at room temperature. Then a mixture of sulfuric acid (2 mL), fuming sulfuric acid (40% SO₃, 1 mL) and fuming nitric acid (85%, 3 mL) was added over 20 min followed by stirring at 80°C for 3 hr. The reaction mixture was diluted with sulfuric acid (20 mL), and 1,3-dibromobenzene (25 g) was added over 30 min at 10°C. The mixture was stirred at 40°C overnight. Water (100 mL) was gently added into the mixture in an ice bath. After standing in the refrigerator for 1 day, the clear aqueous solution was decanted off. The crude product was dissolved in methanol (200 mL). Then, HCl (5 mL) in methanol (10 mL) was added dropwise. The crystalline product was filtered off, washed with methanol and water, and dried under vacuum for 1 day.

1.2.2 Coupling of iodonium salt with benzaldehyde
Iodonium chloride synthesized in the first step was added to a mixture of 3-bromo-4-hydroxybenzaldehyde (2.5 mmol), 18-crown-6 (0.1 g), and K₂CO₃ (0.7 g) in N,N-dimethylacetamide (40 mL) with stirring at 80°C for 1 hr. Then, the mixture was diluted with CH₂Cl₂ (40 mL) and water (80 mL). The organic layer was separated, and the water layer was extracted with CH₂Cl₂ (30 mL). After extraction, the organic layer was washed sequentially with aqueous NaHSO₃ (5%, 50 mL), aqueous NaOH (1 mol/L, 2×100 mL), and water (2×100 mL). Finally, the organic solvent was removed, and the residues were further purified by silica gel column chromatography with a mixture of chloroform-hexane as the eluent.

In general, the reaction yield of this procedure was 50%–60%, giving a pale yellow oil. GC/MS (Agilent Technologies 6890/5973N GC-MS, Santa Clara, USA) analysis indicated greater than 95% purity. The identity of the product was confirmed by NMR (Bruker Avance 400 NMR spectrometer, Billerica, USA). ¹H NMR (DMSO), δ: 9.90 (s, CHO), 8.18 (s, Ar), 7.84 (s, Ar), 7.74 (d, J = 8.1 Hz, Ar), 7.49 (d, J = 8.7 Hz, Ar), 6.97 (d, J = 9.0 Hz, Ar), and 6.76 (d, J = 8.4 Hz, Ar). ¹³C NMR (DMSO), δ: 191.17 (CHO), 157.62, 151.03, 136.33, 135.46, 133.40, 133.12, 131.07, 123.88, 118.67, 117.96, 116.10, and 113.10 (Ar). Electrospray ionization-mass spectrometry (Agilent Technologies 5973N, Santa Clara, USA): m/z 435 [M+H]⁺, 247 [M-COBr₂]⁺.

1.3 Preparation of Coating Antigen
2,4,2'-Tribromodiphenyl ether-4'-aldehyde was conjugated to bovine serum albumin (BSA) according to the method of Guar et al. with modification (Gaur et al., 1981; Li et al., 1991). A BSA solution (50 mg in 4 mL of 0.2 mol/L PBS, pH 7.4) was added to 50 μmol 2,4,2'-tribromodiphenyl ether-4'-aldehyde dissolved in 1 mL methanol and stirred for 1 hr at 37°C. Then 30 μmol NaBH₄ dissolved in methanol was added into the mixture. After stirring for another hour at 4°C, 1 mL of 0.1 mol/L HCl was added to destroy the excess NaBH₄. The mixture was then transferred into a Pierce D-Salt™ polyacrylamide 6000 desalting column (Rockford, USA) for purification. The concentration of the purified BSA conjugate (PBDE-BSA) was determined using an Agilent 8453 UV-Visible spectrophotometer at 280 nm (Santa Clara, USA).

1.4 Surface plasmon resonance measurement
Surface plasmon resonance measurements were carried out on a Biosensing Instruments SPR-1000 System (Tempe, USA). In the measurement, PBDE-BSA was immobilized in situ on a bare gold chip by injecting 50 μL of PBDE-BSA solution (100 mg/L in PBS pH 7.4) into the flow cell at a flow rate of 20 μL/min. After washing the gold surface with PBS and blocking it with 1% BSA, the anti-PBDE antiserum (1/100 dilution in PBS, pH 7.4) was injected into the flow cell at the same flow rate, and the angular shift due to antibody binding was recorded over time. In the reference measurement, BSA and anti-estradiol antibody (10 mg/L) was applied instead of the anti-PBDE antiserum, and the angular shift was recorded over time.

1.5 Indirect competitive fluorescence immunoassay on 96-well plate
A 96-well plate was coated with PBDE-BSA antigen by incubating with a 100 μL solution (10 mg/L in 50 mmol/L NaHCO₃, 50 mmol/L Na₂CO₃, pH 9.15) per well overnight at 4°C. The plate was washed three times.
with phosphate-buffered saline containing 0.1% Tween 20 (PBST). It was then blocked overnight at 4°C with 100 μL of 1% BSA (in PBS) per well and washed. Then 50 μL/well of a BDE standard or sample was added into the plate, followed by the addition of 50 μL/well PBDE antiserum, and incubated at 37°C for 2 hr with shaking. After incubation, 100 μL of biotin-labeled goat anti-rabbit antibody (1/400 dilution) was added into the wells and reacted at 37°C for 2 hr with shaking, followed by the addition of 100 μL of 5 mg/L streptavidin. After shaking for 2 hr at 37°C, biotin-labeled 219 bp DNA was added into the plate and reacted at 37°C for 1 hr with shaking, and washed. Finally, SYBR Green I (600 nmol/L) was added into the plate and incubated for 7 min at room temperature. After washing to move unbound dyes, the fluorescence intensity was measured on a Perkin Elmer LS-55 fluorescence spectrometer (Waltham, USA) with 498 nm excitation, 525 nm emission, 5 nm slit width, and 515 nm cutoff.

1.6 GC-ECD analysis

River water samples were collected from the Tonghui River located in the southeastern portion of Beijing, which serves as a main urban drainage river for Beijing. The samples were spiked with a proper volume of BDE-47 (50 mg/L, in isooctane) to a final concentration of 50 μg/L. The pretreatment procedures were as follows. The sample (2 mL) was extracted with 8 mL hexane/dichloromethane (1:3, V/V) by sonication for 10 min, followed by centrifugation. The supernatant was collected. This process was repeated twice. Then the extract was condensed to approximate 2 mL using a rotary evaporator, and passed through a 15-mm i.d. column packed with 3 cm height anhydrous sodium sulfate. The sample was then transferred into the GC inlet after concentrating to approximately 0.1 mL by evaporation with a nitrogen stream.

The GC-ECD setup consisted of an Agilent 6890 gas chromatography (GC) coupled with an electron capture detector (ECD) (Santa Clara, USA). The separation was accomplished on a DB-5 fused silica capillary column (30 m × 0.25 mm i.d. × 0.25 μm film thickness). High purity helium (> 99.999%) was used as carrier gas. The injector temperature was set at 250°C, and a splitless mode was used. The oven temperature program was as follows: 80°C for 2 min, ramped at 10°C/min to a final temperature of 300°C, held for 5 min. The temperature of the detector was held constant at 300°C. BDE-47 was identified by the retention time.

2 Results and discussion

2.1 Antibody multiple labeling strategy

The PBDE immunoassay we aimed to develop in this study is an indirect competitive fluorescence immunoassay using a DNA/dye conjugate as antibody multiple labels. The DNA/dye multiple labeling strategy was proposed and tested in our previous work (Zhang and Guo, 2007; Zhu et al., 2008; Zhang et al., 2011). The same strategy was employed in the PBDE fluorescence immunoassay in the current work with slight modification. Anti BDE-47 antiserum and biotinylated goat anti-rabbit secondary antibody were used in the current assay, and the latter was labeled with the DNA/dye conjugate, as illustrated in Fig. 3.

2.2 Antigen preparation and antibody recognition

Among all the 209 PBDE congeners, 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) has been identified as the one with the highest body burden, especially in human milk, serum, and fat tissues (Hites, 2004; Petreas et al., 2003). According to our experimental design, an indirect competitive immunoassay format was selected for BDE-47 detection. In this format, BDE-47 needs to be immobilized on the bottom of a microplate well. Since BDE-47 is a small molecule, it requires conjugation to a protein carrier to realize immobilization. Therefore, the hapten 2,4,2′-tribromodiphenyl ether-4′-aldehyde was designed and synthesized as described above in the Experimental Section. After hapten characterization by GC-MS and NMR, it was conjugated to BSA to form the coating antigen PBDE-BSA. Binding of PBDE-BSA with anti-PBDE antiserum was then investigated by SPR measurement to make sure this coating antigen could be recognized by the antibody. In the measurement, PBDE-BSA was immobilized on a bare gold sensor chip by passive adsorption. A solution of the anti-PBDE antibody was then passed over the chip surface while the SPR angular shift was monitored. As shown in Fig. 4, about 30 mDeg angular shift was observed after the antiserum was injected into the SPR flow cell, suggesting that the antibody had bound to PBDE-BSA on the sensor surface. In contrast, when a high concentration solution of either BSA or anti-E2 antibody was passed over the PBDE-BSA coated sensor surface, there was no change in angular shift. This demonstrates the high selectivity in the binding of PBDE-BSA with the corresponding antiserum.
2.3 Competitive immunoassay for BDE-47

In general, the assay consists of the following steps: (1) the immobilization of the coating antigen on 96-well plates; (2) the addition of antiserum and BDE-47 standard or sample, and immuno-reaction; (3) the addition of the secondary antibody; (4) the attachment of DNA to the secondary antibody through streptavidin/biotin interaction; (5) the binding of fluorescent dyes to DNA; (6) the fluorescence detection. The detailed assay protocol is described in the Experimental Section. The assay conditions (reagent concentration, reaction time, reaction temperature) are very similar to those optimized for E2 in our previous work (Zhu et al., 2008). Figure 5 shows the results of the competitive immunoassay for BDE-47. In the range of 0.125–390 μg/L BDE-47, the change of the fluorescence signal with BDE-47 concentration exhibited a typical sigmoidal shaped competition curve. The measured limit of detection for BDE-47 (the lowest BDE-47 concentration which produced a signal reduction in the assay that is more than three times the standard deviation of the blank) was 3.1 μg/L. The log-logit fit of the curve was reasonably linear in the range of 3.1–390 μg/L BDE-47, with an R^2 of 0.9924. From the fitting equation, the calculated LOD is 0.73 μg/L. Therefore, the working range of the assay spans 2 orders of magnitude. Unlike E2 assays, use of the DNA/dye conjugate label did not improve the detection limit of BDE-47 significantly when compared with previous ELISA assays (Ahn et al., 2009). As we know, assay sensitivity is determined not only by the signal detection method, but also by antibody affinity. Presumably, the affinity of the BDE-47 polyclonal antibody is not as high as the E2 monoclonal antibody, which is in the range of 1010 L/mol. The low affinity of the BDE-47 antibody would put a limit on the BDE-47 assay sensitivity. To further improve BDE-47 immunoassay sensitivity, new antibodies with high affinity need to be developed.

2.4 PBDE congener selectivity of the immunoassay

To investigate the selectivity of the new immunoassay, several PBDE congeners including BDE-15, -28, -99, -153 and -209 were evaluated for their potential cross-reactivity (CR) with the anti-PBDE antiserum. CR is often employed as a parameter for evaluating immunoassay selectivity, and is usually calculated from the IC$_{50}$ value in a competition curve for each congener. However, many of the listed PBDEs have poor water solubility, and it is not possible to obtain an IC$_{50}$ value for them. To overcome this problem, all the congeners were assayed at a fixed concentration (500 μg/L) instead of a full range competition curve. Relative CR of a particular congener was then obtained by dividing the fluorescence signal of BDE-47 by that of the congener. The results are summarized in Table 1. From the table, BDE-99 had the highest CR relative to BDE-47, followed by BDE-28, whereas BDE-15, BDE-153 and BDE-209 exhibited insignificant CR. The data suggest that the antibody’s selectivity is based on the number of bromines of a congener. It recognizes PBDEs with 3, 4, and 5 bromines effectively, but discriminates against low and high bromination PBDEs. All the CR values are below 100%, indicating that the antibody binds to BDE-47 with the highest affinity. The results are in good agreement with ELISA measurements (Shelver et al., 2005).

![Fig. 4](image-url)
Fig. 4 Surface plasma resonance (SPR) angular shift of PBDE-BSA coated gold chip after injection of (line a) 1/100 dilution anti-PBDE antiserum, (line b) 10 mg/L BSA solution, (line c) 10 mg/L anti-estradiol antibody. Flow rate: 20 μL/min.

![Fig. 5](image-url)
Fig. 5 Competitive fluorescence immunoassay for the detection of BDE-47 on PBDE-BSA coated 96-well plates using the DNA/dye multiple label format (a) and log-logit curve fit of the experiment results (b).
2.5 Immunoassay accuracy

To evaluate the accuracy of our method, GC-ECD was introduced as the reference method. In this evaluation, 50 µg/L BDE-47 was spiked into a river water sample. After the sample treatment described in the Experimental Section, the samples were measured both by our immunoassay and by the GC-ECD method, and the recovery was calculated. As shown in Table 2, the measured concentration and recovery of BDE-47 in the spiked river water sample by the immunoassay were in accordance with the GC-ECD method. These results demonstrate that the developed fluorescence immunoassay can be used to detect PBDEs in real environmental samples.

We thank Yaxian Zhao for skillful technical support and Zongyan Cui for GC-ECD operation.

3 Conclusions

We have developed a competitive fluorescence immunoassay of PBDEs, using a DNA/dye conjugate as antibody multiple labels. Under the currently optimized conditions, the immunoassay yielded a detection limit of 726 ng/L for BDE-47, with a working range spanning 2 orders of magnitude. The assay showed high selectivity for 3-, 4-, and 5-brominated PBDEs, and discriminated against lower and higher bromination PBDEs. The assay was also certified by the GC-ECD method in the detection of spiked BDE-47 in river water samples. The assay uses common biochemical reagents (such as biotin, streptavidin, oligonucleotide, fluorescent dye) for in situ antibody labeling, and thus can be implemented easily by others. Due to the existence of a large variety of organic contaminants in the environment, simultaneous detection of multiple contaminants in a single sample is highly desirable. Because this assay is based on fluorescence detection, it can be readily configured into the current microarray technology platform. Research work in this direction is currently underway in our lab.

Acknowledgments

This work was supported by the Chinese Academy of Sciences (No. KSSCX2-YW-G-059), the National Hi-Tech Research and Development Program of China (No. 2007AA06A407) and the National Natural Science Foundation of China (No. 20825519, 20890112, 20921063).

References

