Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.

Copyright

© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
CONTENTS

Aquatic environment
Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China
Lei Zhao, Xiaoling Zhang, Yong Liu, Bin He, Xiang Zhu, Rui Zou, Youguan Zhu .. 1355
Removal of dispersant-stabilized carbon nanotubes by regular coagulants
Ni Liu, Changli Liu, Jing Zhang, Duoshi Lin ... 1364
Effect of environmental factors on the effectiveness of ammoniated bagasse in wicking oil from contaminated wetlands
Seungjoon Chung, Makram T. Suidan, Albert D. Venosa .. 1371
Cationic content effects of biodegradable amphoteric chitosan-based flocculants on the flocculation properties
Zhen Yang, Yabo Shang, Xin Huang, Yichun Chen, Yuobo Lu, Aimin Chen, Yuxiang Jiang, Wei Gu,
Xiaofu Qian, Hu Yang, Rongshi Cheng ... 1378
Biosorption of copper and zinc by immobilised and free algal biomass, and the effects of metals biosorption on the growth
and cellular structure of Chlorella sp. and Chlamydomonas sp. isolated from rivers in Penang, Malaysia
W. O. Wan Maznah, A.T. Al-Fawwaz, Misiu Surif ... 1386
Variation of cyanobacteria with different environmental conditions in Nansi Lake, China
Chang Tian, Haiyan Pei, Wenhong Hu, Jun Xie ... 1394
Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods
Fenwu Liu, Jun Zhou, Dianzhuan Wang, Liangzhou Zhou ... 1403
Effect of chloride content of chlorophenols on their adsorption by mesoporous SBA-15
Qingdong Qin, Ke Liu, DaFang Fu, Haiying Gao ... 1411
Surface clogging process modeling of suspended solids during urban stormwater aquifer recharge
Zijia Wang, Xinqiang Du, Yuesuo Yang, Xueyan Ye ... 1418
Adsorptive removal of iron and manganese ions from aqueous solutions with microporous chitosan/polyethylene glycol blend membrane
Neama A. Reiad, Omar E. Abdel Salam, Ehab F. Abadir, Farid A. Harraz 1425
Polyphenylene sulfide based anion exchange fiber: Synthesis, characterization and adsorption of Cr(VI)
Jiajia Huang, Xin Zhang, Lingling Bai, Siqiu Yuan ... 1433

Atmospheric environment
Removal characteristics and kinetic analysis of an aerobic vapor-phase bioreactor for hydrophobic alpha-pinene
Yifeng Jiang, Shanshan Li, Zhauwei Cheng, Runye Zhu, Jiameng Chen .. 1439
Characterization of polycyclic aromatic hydrocarbon emissions from diesel engine retrofitted with selective catalytic reduction
and continuously regenerating trap
Asad Naem Shah, Yunshan Ge, Jianwei Tan, Zhihua Liu, Chao He, Tao Zeng 1449
Size distributions of aerosol and water-soluble ions in Nanjing during a crop residual burning event
Honglei Wang, Bin Zhu, Lijuan Shen, Hanging Kang .. 1457
Aerosol structure and vertical distribution in a multi-source dust region
Jie Zhang, Qiang Zhang, Congguo Tang, Yongxiang Han ... 1466

Terrestrial environment
Effect of organic wastes on the plant-microbe remediation for removal of aged PAHs in soils
Jing Zhang, Xianguan Lin, Weiwei Liu, Yiming Wang, Jun Zeng, Hong Chen 1476
Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland
Ximei Zhang, Xingguo Han .. 1483

Environmental biology
Augmentation of tribenuron methyl removal from polluted soil with Bacillus sp. strain BS2 and indigenous earthworms
Qiang Tang, Zhiping Zhao, Yajun Liu, Nanxi Wang, Banjun Wang, Yanan Wang, Ningyi Zhou, Shuangjiang Li 1492
Microbial community changes in aquifer sediment microcosms for anaerobic anthracene biodegradation under methanogenic condition
Rui Wang, Shuying Zhang, Shuangxu Xie ... 1498

Environmental health and toxicology
Molecular toxicity of earthworms induced by cadmium contaminated soil and biomarkers screening
Xiaohui Mo, Yuhui Qiao, Zhenjun Sun, Xiaofei Sun, Yang Li .. 1504
Effect of cadmium on photosynthetic pigments, lipid peroxidation, antioxidants, and artemisinin in hydroponically grown Artemisia annua
Xuan Li, Manxi Zhao, Lanping Guo, Luqi Huang ... 1511

Environmental catalysis and materials
Influences of pH value in deposition-precipitation synthesis process on Pt-doped TiO₂ catalysts for photocatalytic oxidation of NO
Shuzhen Song, Zhongyi Sheng, Yue Liu, Haiqiang Wang, Zhongbiao Wu .. 1519
Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure
Yaxin Zhang, Yan Zhao, Yong Zhu, Huayong Wu, Hongtao Wang, Wening Lu 1533

Municipal solid waste and green chemistry
Recovery of phosphorus as struvite from sewage sludge ash
Huacheng Xu, Pinjing He, Weimei Gu, Guanzhao Wang, Liming Shao ... 1525

Serial parameter: CN 11-2629/X*1989*mr*184*en*P*24*2012-8
Cationic content effects of biodegradable amphoteric chitosan-based flocculants on the flocculation properties

Zhen Yang1, Yabo Shang2, Xin Huang1, Yichun Chen2, Yaobo Lu1, Aimin Chen2, Yuxiang Jiang2, Wei Gu2, Xiaozhi Qian2, Hu Yang1,*, Rongshi Cheng1

1. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, China. E-mail: nju.yangzhen@163.com
2. Zhenjiang Water Supply Company, Zhenjiang 212009, China

Received 14 October 2011; revised 16 January 2012; accepted 18 January 2012

Abstract

A series of biodegradable amphoteric chitosan-based flocculants (3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA) modified carboxymethyl chitosan, denoted as CMC-CTA) with different substitution degrees of CTA were prepared successfully. The content of carboxymethyl groups in each CMC-CTA sample was kept almost constant. The solubility of the various flocculants showed that, higher cationic content of flocculants caused a better solubility. The flocculation experiments using kaolin suspension as synthetic water at the laboratory scale indicated that the substitution degree of CTA was one of the key factors for the flocculation properties. With the increase of cationic content, the flocculants were demonstrated better flocculation performance and lower dosage requirement. Flocculation kinetics model of particles collisions combining zeta potential and turbidity measurements was employed to investigate the effects of the cationic content of the flocculants on the flocculation properties from the viewpoint of flocculation mechanism in detail. Furthermore, flocculation performance using raw water from Zhenjiang part of Yangtze River at the pilot scale showed the similar effects to those at the laboratory scale.

Key words: amphoteric chitosan-based flocculants; substitution degree of CTA; flocculation kinetics and mechanism

DOI: 10.1016/S1001-0742(11)60962-5

Introduction

Flocculation, an important process for solid-liquid separation (Garcia et al., 2009; Nan et al., 2009), is widely applied in the primary purification of wastewater with suspended particles contamination, due to technological and especially economic reasons (Renault et al., 2009).

Recently, much more attention has been given to research on natural polymer flocculants (Khiari et al., 2010), since they have characteristics of low dosage requirements, low energy input, environmental-friendly, renewable and wide sources (Azlan et al., 2009), which are even acclaimed as “Green Flocculants of 21st Century” (Xiao and Zhou, 2005). Among them, chitosan, poly-[β-(1→4)-2-amino-2-deoxy-D-glucose, obtained by deacetylation of chitin (the second only less than cellulose in abundance in nature), is one of the most promising candidates, because of its outstanding performance (Chatterjee et al., 2009; Guibal et al., 2006). To date, research of chitosan has become one of the most popular hot aspects (Chatterjee et al., 2009; Guibal et al., 2006).

However, poor solubility under neutral or higher pH conditions always limits the practical application of chitosan. Many researchers have reported that incorporation of other materials can improve this problem. Therein, quaternary modification (Ali and Singh, 2009a; Li et al., 2010; Rojas-Reyna et al., 2010), such as 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CTA, a kind of low toxic reagent) modified chitosan (Chito-CTA) (Ali and Singh, 2009a; Rojas-Reyna et al., 2010), is usually regarded as an efficient way, which not only widens the solubility range of the flocculants towards neutral and weak alkaline pH, but also benefits for the charge neutralization of negatively charged particles in natural turbid water. Nevertheless, only strengthening cationic degree on chitosan can not improve its solubility at high pH. It is well known that carboxyalkylation is also an efficient way to expand the solubility region of chitosan, especially for high pH region. (Li et al., 2010; Bratskaya et al., 2009; Cai et al., 2007; de Abreu and Campana-Fiho, 2009; Yang et al., 2011a) Therefore, the amphoteric chitosan-based flocculants, containing both anionic and cationic groups, are believed more effective for its wider range of applicability and remarkable increased solubility in the whole pH range.

In our previous work (Yang et al., 2011b), an amphoteric chitosan-based flocculant (CTA modified carboxymethyl...
chitosan, denoted as CMC-CTA), which has notable improvement in solubility and salt-resistance in comparison with chitosan and Chito-CTA, has been successfully prepared. The flocculation experiments both at the laboratory and pilot scale demonstrate that CMC-CTA shows good flocculation performance. Besides, some factors on the flocculation properties have been investigated systematically. At the laboratory scale, the effects of pH, temperature and original turbidity of untreated raw water on the dosage and flocculation performance have been studied, respectively. Simultaneously, the influences of dosage, sedimentation time and mechanical mixing rate on the flocculation properties have been investigated by orthogonal tests at the pilot scale.

However, all the aforementioned factors are external. It has been reported that the structure factors (inner factors), such as the substitution degree of the functional groups, have more strong influence on the flocculation performance in practice (Bratskaya et al., 2009; Ali and Singh, 2009b; Ghimici et al., 2010; Wang et al., 2008, 2009; Yuan et al., 2010; Zhang et al., 2010). Therefore, a series of CMC-CTA samples with various substitution degrees (DS) of CTA were prepared in this work. The effects of cationic content of the flocculants on the flocculation performance were studied at both laboratory and pilot scale. Furthermore, the flocculation mechanism was discussed in detail from the kinetics studies, zeta potential and turbidity measurements.

1 Materials and methods

1.1 Materials

Chitosan was purchased from Shangdong Aokang Biological Co., Ltd. (China), with the degree of deacetylation of 85.2%, and its viscosity average molecular weight is 83.4 x 10^5 g/mol, calculated from the intrinsic viscosity (Wang et al., 1991). Monochloroacetic acid from Zibo Lushuo Economic Trade Co., Ltd. (China) and CTA from Wuhan Yuancheng Technology Development Co., Ltd. (China) are both C.P. grade reagents and used without further purification. All other chemicals were purchased from Nanjing Chemical Reagent Co., Ltd. (China).

1.2 Preparation of CMC-CTA

CMC-CTA samples are designed and synthesized by two steps as shown in Fig. 1. A desired amount of chitosan is dispersed in isopropanol and NaOH aqueous solution. After stirring and alkalized for 1 hr at 45°C in water bath, a certain amount of CTA is added into the bottle dropwise for 20 min. The resultant solution is stirred for 10 hr at 60°C. The pH of the mixture is then adjusted to pH 7.0 with HCl aqueous solution. The solid is filtered and rinsed with HCl aqueous solution. The final products of CMC-CTA are prepared.

Four CMC-CTA samples with different DS of CTA are prepared by adjusting the CTA feeding in the first step. The DS of CTA for different CMC-CTA samples and that of carboxymethyl group are both calculated from 1H NMR spectra. Based on varied CTA contents, the series of CMC-CTA samples are nominated from CMC-CTA1 to CMC-CTA4, respectively. The detailed information about these samples is listed in Table 1.

1.3 Instrument analysis

Fourier Transform Infrared (FT-IR) spectra are recorded using a FT-IR spectrometer (IFS 66/S, Bruker, Germany). The interval of tested wave numbers is 650–4000 cm⁻¹. 1H nuclear magnetic resonance spectroscopy (1H NMR) spectra are recorded on a spectrometer (AVANCE DRX-500, Bruker, Germany), operating at 500 MHz, in a mixed solvent containing CF₃COOD and D₂O with a mass ratio of 1:1. Zeta-potential measurement is carried out using a Zetasizer (Nano-Z, Malvern, USA).

1.4 Flocculation experiment

The beaker experiments at the laboratory scale are conducted as follows: Kaolin suspension with original solution to swell and alkalize at 50°C for 1 hr. A certain amount of monochloroacetic acid is dissolved in isopropanol, and added into the reaction mixture dropwise for 30 min and reacted for 4 hr at the same temperature, then stopped by adding 70% ethanol. The pH of the solution is adjusted to pH 7.0 with HCl solution. The solid sample is washed and dried using the same method as mentioned in the first step. The final products of CMC-CTA are prepared.

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Substitution degree of CTA (%)</th>
<th>Substitution degree of carboxymethyl group (%)</th>
<th>Isoelectric points</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMC-CTA1</td>
<td>22.0</td>
<td>48.1</td>
<td>5.7</td>
<td>75.3</td>
</tr>
<tr>
<td>CMC-CTA2</td>
<td>48.0</td>
<td>47.9</td>
<td>6.3</td>
<td>73.5</td>
</tr>
<tr>
<td>CMC-CTA3</td>
<td>52.0</td>
<td>47.5</td>
<td>6.3</td>
<td>72.2</td>
</tr>
<tr>
<td>CMC-CTA4</td>
<td>60.0</td>
<td>47.3</td>
<td>6.4</td>
<td>71.0</td>
</tr>
</tbody>
</table>
turbidity of 75 NTU at pH 4.0 and 25°C is used as synthetic water. To dissolve CMC-CTA fully and quickly, the flocculants stock solution is always freshly prepared in 1 wt.% HCl solution before each flocculation test. A known amount of flocculants solution is mixed with synthetic water under magnetic stirring. After 10 min, the kaolin suspension is hold still for a certain time until reaching sedimentation equilibrium. Then, the supernatant is collected for further turbidity and zeta potential measurements. The turbidity is measured by a spectrophotometer (722s, Shanghai Lengguang Tech. Co., Ltd., China) at a wavelength of 550 nm.

Treatment of raw water from Zhenjiang part of Yangtze River (pH: 7.0–7.45; zeta potential: –15 to –20 mV; mean particles diameter: 11 μm; solid concentration: 4% to 8%) at the pilot scale is carried out at Zhenjiang Water Factory in China. The set of equipment has been described in previous works (Zhang et al., 2010; Lu et al., 2011). Its flow chart is shown in Fig. 2, and it includes a raw-water tank (0.66 m in length (L), 0.66 m in width (W), and 0.80 m in height (H)), triple coagulative sedimentation tanks (L; the mechanical mixing rate in the raw-water tank is 150 r/min, respectively; the sedimentation time is 20 min. The height of the silicious sand in the sand-filtering column is 76 cm, and the column is backflushed every 24 hr. The soil discharging process in the inclined-tube settling tanks is carried out every 12 hr.

The detailed flocculation experimental parameters are the optimal ones obtained in previous work by orthogonal tests (Yang et al., 2011b) and described as follows: the dosage of the flocculants is 1.1 mg/L; the mechanical mixing rates in triple coagulative sedimentation tank are 150, 100, 50 r/min, respectively; the sedimentation time is 20 min. Turbidity is measured by Turbidity Indicator (ATZ-A22, Wuxi Guangming Instrument Factory, China). The raw water and flocculants were mixed in the raw-water tank, coagulated in the triple coagulative sedimentation tanks, and settled in the inclined-tube settling tank. After filtration in the sand-filtering column, the treated water is stored in the clear-water tank, and turbidity is then measured.

2 Results and discussion

2.1 Characterization of CMC-CTA flocculants

The FT-IR and 1H NMR spectra of chitosan and the four amphoteric chitosan-based products are shown in Figs. 3 and 4. From their FT-IR spectra, the bands of 3286, 1585, 1151 and 1025 cm⁻¹ in Fig. 3 are attributed to O–H stretch, N–H bend, bridge –O– stretch and primary C–OH stretch in chitosan (Chen and Park, 2003), respectively. New peaks appearing at 1584 cm⁻¹ for COO⁻ groups (Chen and Park, 2003) and 1471 cm⁻¹ for –CH3 in quaternary ammonium groups (Cai et al., 2007) as shown in Fig. 3 lines b–e demonstrate that carboxymethyl and CTA groups are successfully introduced to chitosan backbone.

1H NMR spectra also confirm the final structures of the amphoteric flocculants. In addition to the signal of H-2 proton (about 2.95 ppm), H-3–6 protons (around 3.25–3.80 ppm) and H-1 proton (about 4.66 ppm) of chitosan (Yuan et al., 2010; Chen and Park, 2003) in Fig. 4 line a, the intense resonances at 2.94 and 3.93 ppm in Fig. 4 lines b–e are attributed to the protons on methyl groups of CTA (Cai et al., 2007) and the carboxymethyl group (Chen and Park, 2003), respectively. And the new peak at about 4.16 ppm is the resonance of H-2’ on quaternary ammonium group (Cai et al., 2007). Besides, according to Eqs. (1) and (2), DS of carboxymethyl group and CTA for different CMC-CTA samples are also calculated from 1H NMR spectra, respectively, as shown in Table 1.

\[DS_{CTA} = \frac{A_{H-2'}}{A_{H-1}} \times 100\% \] \hspace{1cm} (1)

\[DS_{carboxymethyl} = \frac{A_{H-a}}{A_{H-1}} \times 100\% \] \hspace{1cm} (2)

where, DS_{CTA} (%) and DS_{carboxymethyl} (%) are the DS of CTA and carboxymethyl group, respectively. \(A_{H-2'}, A_{H-1}, A_{H-a} \) and \(A_{H-1} \) are the NMR peak areas corresponding to the protons of H-2’, H-a and H-1 respectively. The DS of CTA in varied CMC-CTA samples is various with different CTA feeding, but the content of carboxymethyl groups is kept almost constant.

2.2 Solubility of different flocculants

As mentioned above, the amphoteric chitosan-based flocculants have enhanced solubility in comparison with chitosan and cationic chitosan. Therefore, the solubility of chitosan and different CMC-CTA samples in aqueous solutions with various pH values is tested, and the results
are shown in Table 2. As is expected, CMC-CTA samples reveal evidently improved solubility due to the dual characteristics of both anionic and cationic groups, and this phenomenon is fully consistent with our previous report (Yang et al., 2011b).

Furthermore, comparing the four different CMC-CTA samples, it can be found that the solubility becomes better and better with the increase of cationic contents. CMC-CTA4 with the highest DS of CTA is soluble almost at the whole pH range, and only shows partially insoluble near its isoelectric point around pH 6.4. It is ascribed to the fact that the original ordered structure of chitosan has been destroyed largely by the introduced groups.

Table 2 Solubility of different chitosan samples in aqueous solutions with various pH values

<table>
<thead>
<tr>
<th>Sample</th>
<th>pH 1</th>
<th>pH 2</th>
<th>pH 3</th>
<th>pH 4</th>
<th>pH 5</th>
<th>pH 6</th>
<th>pH 7</th>
<th>pH 8</th>
<th>pH 9</th>
<th>pH 10</th>
<th>pH 11</th>
<th>pH 12</th>
<th>pH 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chitosan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>CMC-CTA1</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>−</td>
<td>−</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CMC-CTA2</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>−</td>
<td>−</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CMC-CTA3</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>−</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CMC-CTA4</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>±</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Each solid sample (100 mg) was dispersed in aqueous solution (20 mL) on the basis of the reported method (Chen and Park, 2003).

b +: soluble; ±: partially soluble; −: insoluble.

2.3 Flocculation experiment

2.3.1 Flocculation properties at the laboratory scale

Before the study of the flocculation properties, the zeta potentials of different CMC-CTA aqueous solutions at various pH values are measured and shown in Fig. 5. Since kaolin suspension is used as synthetic water, the zeta potential-pH curve of kaolin suspension is also illustrated in Fig. 5. It is found that kaolin particles are negatively charged over the whole pH range, while various CMC-CTA solutions are all positively charged at lower pH values. Different CMC-CTA samples have different isoelectric points as summarized in Table 1. They are proportional to the CTA content, and CMC-CTA floculants with higher DS of CTA show higher isoelectric point. In addition, Fig. 5 illustrates that the greatest differences of zeta potential between kaolin suspension and the floculants solutions appear around pH 4–5. In our previous work (Yang et al., 2011b), it has been found that, in the pH range from 2 to 10, the best flocculation effects of CMC-CTA are always observed at pH 4 at the laboratory scale. The detailed reasons for this phenomenon have been explained as follows: on the one hand, the zeta potential of CMC-CTA is positive at pH 4, and the opposite charges between CMC-CTA and kaolin particles improve the charge neutralization effect. On the other hand, the extensive morphology of the polymeric floculants due to the intra-chain electrostatic repulsion is also beneficial for flocculation process. Therefore, based on our previous work (Yang et al., 2011b), the following flocculation experiments at the laboratory scale are all carried out at...
pH 4 to investigate the effect of the substitution degree of CTA.

Figure 6a–d gives the variations of transmittance of the supernatant collected from synthetic water as a function of flocculation time with different dosages of four CMC-CTA samples. It is found that the transmittance of the supernatant treated by various flocculants increases with increasing flocculation time. This trend indicates that, the flocculation properties can be improved by prolonging the sedimentation time. In addition, a blank experiment without adding any flocculants is performed to evaluate the “natural” sedimentation rate of kaolin suspension.

Fig. 6 Flocculation properties of different CMC-CTA samples: Variations of transmittance of the supernatant collected from synthetic water as a function of flocculation time with different dosages of CMC-CTA1 (a), CMC-CTA2 (b), CMC-CTA3 (c), and CMC-CTA4 (d); According to Fig. 6a–d, variations of transmittance and zeta potential of the supernatant collected from synthetic water as a function of dosage of CMC-CTA1 (e), CMC-CTA2 (f), CMC-CTA3 (g), and CMC-CTA4 (h) after reaching flocculation equilibrium.
since kaolin suspension is unstable itself. It is found that the transmittance of the supernatant of the blank sample reaches plateau after near 1 hr, and keeps less than 90% even after 24 hr, which is lower than the values of supernatant treated by flocculants. It illuminates that the polymeric flocculants play an important role in the removal of turbidity from raw water.

Based on Fig. 6a–d, variations of transmittance of the supernatant after reaching sedimentation equilibrium as function of dosage of different flocculants are summarized in Fig. 6e–h. At the same time, the zeta potentials of the supernatant have been also measured and showed in Fig. 6e–h. The variations of transmittance and zeta potential of CMC-CTA2, CMC-CTA3 and CMC-CTA4 show typical trend of flocculation systems controlled by charge neutralization mechanism. With the dosage increase, the transmittance has up-climax-down variation trend, whereas zeta potential increases all the time and is near zero at the optimal dosage. However, as for CMC-CTA1, the negative value of zeta potential at the optimal dosage point may be due to the patching flocculation mechanism. This can be explained as follows: since CMC-CTA1 has the lower cationic content, its polymer chains are not extended enough due to the decreased intra-molecular electrostatic repulsion. Hence, when adsorbing onto kaolin particles, the more coiled chains are easier to form heterogeneous patch-like surface structures (Ghimici and Nichifor, 2010).

Based on Fig. 6e–h and the calculated DS of CTA results as shown in Table 1, the CTA content dependence of the optimal dosage and the corresponding maximum transmittance of the supernatant are summarized in Fig. 7. Although CMC-CTA1 has the lowest optimal dosage due to the patching mechanism, its flocculation performance is the poorest one among the four samples, resulting from the fact that its transmittance of the supernatant is even lower than 94%. The poorest flocculation performance can be ascribed to the lowest DS of cationic groups. Therefore, although CMC-CTA1 has the lowest optimal dosage, from the view of cost-effective aspect, it could not be recognized as an efficient flocculant due to its poor flocculation performance. Beside CMC-CTA1, in other three samples, as the DS of CTA increases, lower optimal dosage of flocculants but higher corresponding maximum transmittance of the supernatant is obtained. It is ascribed to the fact that flocculants with higher cationic content have not only higher efficiency in charge neutralization effects, but also more extended structures due to the increased intra-molecular electrostatic repulsion (Flory, 1953; Radeva, 2001), which also enhances the bridging flocculation effects. Hence, it could be concluded from Fig. 7 that, higher cationic content is beneficial for improvement of the flocculation performance of CMC-CTA. This result also agrees well with some reports from other publications (Ghimici et al., 2010; Ghimici and Nichifor, 2010; Pal et al., 2006). In addition, although the optimal dosage of CMC-CTA4 is about twice larger than that of CMC-CTA1, its flocculation performance improves a lot. Hence, CMC-CTA4 can still be recognized as a cost-effective flocculant.

Furthermore, to investigate the effects of CTA content further, flocculation kinetics model of particles collisions is employed. It is well known that the order of flocculation process is mostly bimolecular (Chen et al., 2007; Das and Somasundaran, 2004; Deng et al., 1996):

\[
\frac{N_0}{N_i} = 1 + \frac{1}{2}kN_0t^2
\]

where, \(N_0\) is the initial number concentration of kaolin particles, \(N_i\) is the number concentration of kaolin particles at time \(t\) (sec), and \(k\) (sec\(^{-1}\)) is the rate constant for collisions between the singlets. Moreover, the relationship between transmittance and the number concentration of kaolin particles is:

\[
\frac{N_0}{N_i} = 100 - T_0 - T_i
\]

where, \(T_0\) (%) and \(T_i\) (%) are the transmittance of the initial water and supernatant at time \(t\) (sec), respectively. Therefore, based on original data in Fig. 6a–d, a plot of \([(100-T_0)/(100-T_i)]^{1/2}\) against \(t\) will give a straight line with an intercept of 1 for a bimolecular process as described in Fig. 8. \(kN_0\) are also calculated by computer fitting and shown in Table 3.

Since \(N_0\) is a fixed value for the same synthetic water, it is obvious from Table 3 that, the rate constant \(k\) at every dosage all increases as the DS of CTA increases. In the case of low cationic content, the interaction between the flocculants and kaolin particles is weak, which results in low \(k\). The enhancement in \(k\) with the increase of DS of CTA could be due to the more flocculation sites on the flocculants and higher efficient in charge neutralization effects, which are both beneficial for acceleration of the flocculation process. Hence, the possibilities for molecular collisions between the charge-neutralized kaolin particles become more notable. Besides, based on Fig. 7 and Table 3, \(k\) of every CMC-CTA sample always shows the highest value at respective optimal dosage. It is demonstrated that the most efficient collisions will take place at the optimal dosage. Nevertheless, after the optimal dosage, higher dosage of flocculants can also cause a decrease of \(k\). This can be ascribed to the electrostatic repulsive forces between the kaolin particles enwrapped by excessive polymeric flocculants, which hinder their effective collisions.
2.3.2 Flocculation properties at the pilot scale

For practical applications, besides beaker experiments, the flocculation properties of different flocculants are also studied at the pilot scale. Table 4 summarizes the flocculation results by the four different CMC-CTA samples. In terms of the calculated results of DS of CTA, it is found from Table 4 that, the average turbidity before and after sand filtration both indicate that, the DS of CTA for CMC-CTA flocculants is a very important factor to the flocculation performance. The flocculants with higher DS of CTA for CMC-CTA shows better flocculation performance, but also show enhanced bridging effects for more extended structures due to the increased intra-molecular electrostatic repulsion in solutions. Further investigation finds that the flocculation process follows the kinetics model of particles collisions very well ($R^2 > 0.99$), and higher cationic content is beneficial for the increase of the probability for colloids collisions.

Acknowledgments

This work was supported by the Key Natural Science Foundation of China (No. 51073077, 50938004, 50825802), the Research Project of Ministry of Housing and Urban-Rural Development of China (No. 2009-K7-11), the Open Fund from State Key Laboratory of Pollution Control and Resource Reuse of Nanjing University (No. PCRRF11004), the Fundamental Research Funds for the Central Universities (No. 1105020504, 1116020510), and the Scientific Research Foundation of Graduate School of Nanjing University (No. 2012CL06).

References

