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Abstract
Intensive daytime and nighttime sampling was carried out from 23 Oct to 31 Dec 2008 to investigate the occurrence of nitrated
polycyclic aromatic hydrocarbons (NPAHs) in PM10 at a roadside site in Xiamen, China. At the same time, six PM10 samples
were collected from a nearby roadway tunnel for comparison. Six NPAHs, namely 9-nitroanthracene, 2- and 3-nitrofluoranthene, 1-
nitropyrene, 7-nitrobenz[a]anthracene, and 6-nitrobenzo[a]pyrene, were identified and quantified using GC/MS in negative ion chemical
ionization mode. The average total concentration of six NPAHs (

∑
NPAHs) in the cold season (26 Nov–31 Dec) was 2.3 (daytime) and

9.9 (nighttime) times higher than those in the warm season. Significant statistical difference (p < 0.01, 2-tailed) of
∑

NPAHs between
daytime and nighttime was found during both the warm and cold seasons. NPAHs were significantly positively correlated with their
parent PAHs and nitrogen dioxide but negatively correlated with ambient temperature. The ratio of 2 + 3-nitrofluoranthene to 1-
nitropyrene exhibited a similar diurnal pattern as

∑
NPAHs and was generally greater than 5, indicating the importance of secondary

atmospheric formation. The diurnal variations of NPAHs were all influenced by the diurnal variations of PAHs, nitrogen dioxide,
sunlight, and temperature. The daily inhalable exposure to the six NPAHs in the tunnel was much higher than the roadside values in the
warm season but only slightly higher than those in the cold season.

Key words: nitrated PAHs; diurnal variations; source; inhalation exposure

DOI: 10.1016/S1001-0742(11)61018-8

Introduction

Atmospheric nitrated polycyclic aromatic hydrocarbons
(NPAHs) are generated as a result of the imperfect com-
bustion of organic matter (Fan et al., 1995; Finlayson-Pitts
and Pitts, 2000; Zielinska et al., 2004) or formed via the
nighttime reaction of parent PAHs with nitrate radicals
(NO3) and their daytime reaction with hydroxyl radicals
(OH) in the presence of NOx (Arey et al., 1986; Atkinson
et al., 1990; Atkinson and Arey, 1994, 1997; Reisen
and Arey, 2005). For these reasons, they are present in
significant concentrations in urban areas as well as in rural
and remote areas (Ciccioli et al., 1995; Ciccioli et al., 1996;
Tang et al., 2005; Kojima et al., 2010; Minero et al., 2010).

Several NPAHs are believed to be far more mutagenic
or carcinogenic than their parent PAHs (Grimmer et al.,
1987; IARC, 1989; Durant et al., 1996) and, moreover, are
significant direct-acting mutagens and readily condense
onto particulate matter due to their low vapor pressure
in the atmosphere (Bamford and Baker, 2003; Pedersen
et al., 2004). Thus in most cases only particle phase
NPAHs are measured, although 2-ring and 3-ring NPAHs
(nitronaphthalene and nitroanthracene, nitrophenanthrene)

* Corresponding author.

occur in both the gas and particle phases (Dimashki et al.,
2000; Albinet et al., 2007, 2008). Many studies show that
NPAHs in vehicle emissions, especially diesel-engine ve-
hicles, play an important role in direct- and indirect-acting
mutagenicities (Hayakawa et al., 1997; Zwirner-Baier and
Neumann, 1999; Toriba et al., 2007; Yang et al., 2010).
Hence, from a human health standpoint, the investigation
of NPAHs in emission sources and in ambient air is
important (Grimmer et al., 1987; IARC, 1989; Nielsen
et al., 1996). Obviously, like many other Chinese cities,
Xiamen is undergoing a process of rapid urbanization
and rapid economic development, and PM10 has been the
predominant pollutant for many years, according to the
reported data of the Xiamen Environmental Protection
Bureau (http://www.xmepb.gov.cn). The total number of
licensed vehicles reached 0.27 million at the end of 2008, a
year-on-year increase greater than 22%, and the number of
vehicles is expected to reach 0.88 million in 2012. Around
29.4% on average of ambient PM10 is attributed to motor
vehicle emission in Xiamen (Zhang, 2007). Both the direct
emission of NPAHs from motor vehicle exhaust pipes
and secondary photochemical transformation of PAHs will
contribute greatly to particulate pollution in Xiamen. The
increase of anthropogenic particulate matter and PAHs in
the atmosphere from vehicle emissions has raised health

http://www.jesc.ac.cn
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concerns in Xiamen (Hong et al., 2007; Wu et al., 2010;
Zhao et al., 2010), but to date no data have been reported
for NPAHs in the Xiamen atmosphere.

Because of the significant differences of OH and NO3
radicals, O3, solar ultraviolet radiation, atmospheric sta-
bility (McLaren et al., 2004) and the gas phase reaction
pathway of PAHs with NOx between daytime and night-
time, it is expected that NPAHs in the atmosphere should
also present a diurnal variation. Some measurements at 12-
hr day and night sampling intervals or shorter time periods
(4 hr) have been carried out to study the diurnal variations
and formation mechanism of NPAHs (Arey, 1998; Reisen
and Arey, 2005; Albinet et al., 2007, 2008; Hien et al.,
2007; Tsapakis and Stephanou, 2007). Measurements from
Ho Chi Minh City show a higher nighttime concentration
of 2-nitrofluoranthene (2NF) at two rural sites and a higher
daytime concentration at an urban site from July 2005
to March 2006 (Hien et al., 2007). No defined diurnal
variation of NPAHs occurred at rural sites in France during
either winter or summer sampling (Albinet et al., 2007,
2008). A 6-hr sample collection carried out in central
Tokyo in winter showed higher levels of 1-nitropyrene
(1NP) in the daytime with respect to those in the night-
time (Ishii et al., 2001). Tsapakis and Stephanou (2007)
observed a significant diurnal variation of 2NF and 2-
nitropyrene (2NP) at a background coastal site with a
maximum during midday (11:00–15:00) followed by a
sharp decrease, consistent with the OH radical diurnal
pattern during the summer sampling period. However, the
highest levels of 1NP and 2NF were observed in the
morning (7:00–10:30) during both summer and winter
sampling periods in the Los Angeles urban atmosphere
(Reisen and Arey, 2005). The above analyses indicate that
the diurnal trend of NPAHs in the atmosphere cannot be
extrapolated from one setting to another, and depends to a
great extent on the specific local atmospheric environment
and source strength.

As part of the “Great Xiamen Bay Air Quality Monitor-
ing Project”, intensive PM10 daytime-nighttime sampling
was carried out in autumn-winter 2008 at a roadside site
in Xiamen, China. All together 100 samples from the site
were studied for NPAHs to characterize the diurnal varia-
tion of NPAHs associated with PM10 and to investigate the
factors influencing their diurnal variations. The roadside
measurements can also provide researchers with data to
produce health impact assessment reports when evaluating
the effect of PM10 chemical content on particle toxicity in
the air at roadside.

1 Materials and methods

1.1 Sampling and measurements

A coastal roadside site on the roof of the Ocean Building
(ca. 21 m height) at Xiamen University (24◦26′08′′N,
118◦05′25′′E) in the south of Xiamen Island was selected
to carry out the intensive PM10 sampling from Oct 23 to
Dec 31 2008 using a High-Volume Air Sampler (GMW
PM10 VOL, Thermo Scientific Co., USA) equipped with

a PM10 size-selective inlet at a constant flow rate of 1.13
m3/min. The average daily traffic volume for all vehicles of
the road near the sampling site (the distance is ca. 10 m) is
more than 20,000 and there is not much difference between
weekdays and weekend days. However, the total number
for all vehicles in the day is around two times that at night.
The number of buses and cars (including taxis) account
for 15% and 80% of the traffic volume, respectively. We
consider that the diurnal and seasonal patterns of NPAHs in
PM10 at this roadside site are representative of the roadside
general conditions of busy traffic areas in other parts of
Xiamen in the presence of similar heavy traffic and vehicle
types passing on this road.

For the purpose of comparison, the sampling period was
broken into two periods based on the daily temperature,
a warm season from 23 Oct to 25 Nov (corresponding
to autumn) and a cold season from 26 Nov to 31 Dec
(corresponding to winter) (Fig. 1). The daytime samples
were collected from 08:00 to 19:00, and the nighttime
samples were taken from 20:00 to 07:00 (local time). At
the same time, six PM10 samples from the Zhonggushan
roadway tunnel, near the roadside sampling site, were
also collected to investigate the emission characteristics
of NPAHs. Because the air was very contaminated in the
tunnel, the sampling time was no more than 2 hr in order
to prevent overloading of the filters. Glass microfiber filters
(GF/A, Whatman, England) were pre-weighed using a mi-
crobalance (Sartorius 0.1 mg, Germany) in a temperature
(25°C) and humidity (65% RH) controlled laboratory after
being baked at 450°C for 4 hr in a muffle furnace. A baked
aluminum foil bag was used to store the cleaned filter.
After sampling, loaded filters were folded and wrapped in
their aluminum foil bags and weighed as soon as possible.
The filter samples were stored at –20°C until they were
subjected to analysis.

The levels of typical air pollutants, such as PM10, NOx
(NO + NO2), SO2, CO and O3 (TEOM 1400a, 42i, 43i,
48i and 49i, Thermo Electron Co., USA), from the nearest
air quality automatic monitoring station located on the
same road within one kilometer of the sampling site, were
provided by the Xiamen Environmental Protection Bureau
during the sampling time. The meteorological factors of
temperature, relative humidity, wind direction and speed,
and rainfall were monitored using an automatic weather
station (PH-1, XPH Co., China) at the sampling site.
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Fig. 1 Daily temperature during the sampling period in 2008.
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1.2 Sample analysis and quality assurance

The method of extraction and cleanup was modified from
US EPA method 3550B (ultrasonic extraction) and 3630C
(silica gel cleanup), Dimashki et al. (2000) and Prvček et
al. (2004). A quarter of each filter was cut into small pieces
and a known amount of 4-nitro-p-terphenyl (AccuStandard
Inc., USA) was added to the filters before extraction to
serve as a surrogate standard. The filters were ultrasoni-
cally extracted three time for 30 min in dichloromethane
(DCM) after soaking overnight. All the extracts were
merged in a pear-shaped flask and concentrated to ca.
ten milliliters by rotary evaporator in a water bath at
20°C under reduced pressure. An additional 15 mL hexane
was added into the pear-shaped flask and concentrated
again to ca. 1 mL. The concentrated extract was transferred
to a silica gel column (1 cm i.d. and 20 cm length with
Teflon stopcock) with a pipette and washed with 2 mL
of hexane to complete the transfer. The silica gel (type
60, 70–230 mesh, Merk) was pre-cleaned with DCM in
the Soxhlet extractor and then activated by heating in a
foil-covered glass beaker for 16 hr at 150°C. The column
was successively eluted with 25 mL hexane, 40 mL hex-
ane/DCM (6:4, V/V) and 30 mL DCM to separate alkanes,
PAHs and NPAHs from polar compounds. The fraction
eluted by hexane/DCM and DCM was collected together
because some target PAHs and NPAHs co-eluted but did
not interfere with each other when detected using a dif-
ferent instrument. The PAHs/NPAHs fraction was solvent
exchanged to hexane (EPA method 3510) and concentrated
to 200 µL using a nitrogen blow-down device, and then
divided into two parts for analysis of the PAHs and NPAHs
(Pyrček et al., 2004; Wu et al., 2010).

The analyses of NPAHs were performed with a GC/MS
(Agilent 6890N-5975B) in negative ion chemical ioniza-
tion (NICI) and selective ion monitoring mode (Bamford
et al., 2003; Reisen et al., 2003; Albinet et al., 2006).
An HP-5MS capillary column (0.25 mm i.d. × 30 m,
0.25 µm film thickness, 5% phenyl methyl polysiloxane)
was used to separate different compounds and ultra pure
helium (99.999%) was used as the carrier gas. The oven
temperature program was 70°C (1 min) to 300°C (6.5
min) at 20°C/min. The GC/MS interface temperature was
280°C and electron energy for the mass spectrometer
was 70 eV. In the NICI mode, methane (99.999% puri-
ty) was used as the reagent gas to minimize molecular
fragmentation while allowing ionization of NPAHs by
resonance capture of the thermal electrons (Nishioka et
al., 1988). The GC/MS in NICI ionization mode can
improve the sensitivity of the method by more than
two orders of magnitude compared with that of the EI
GC/MS method (Bezabeh et al., 2003; Zhang et al.,
2010). Standard solutions of 9-nitroanthracene (9NA),
3-nitrofluoranthene (3NF), 1NP, 7-nitrobenz[a]anthracene
(7NBaA) and 6-nitrobenzo[a]pyrene (6NBaP) were pur-
chased from AccuStandard and 2-nitrofluoranthene (2NF)
was from Chiron. A set of standard mixtures containing
the six NPAHs, in concentrations ranging from 1 to 100
ng/mL, were prepared by dilution of stock solutions of

these compounds. It should be noted that 2NF and 3NF
were co-eluted from the HP-5MS chromatography column
and the two compounds were quantified together when
making a calibration curve (Bamford et al., 2003; Albinet
et al., 2006). NPAHs in the samples were identified by
comparison of retention time with standards and their
molecular ions and quantified with the external standard
technique. A very good linear relationship was found
between the injected amount and measured peak area for
each compound (R2 > 0.99).

Field and laboratory blanks were used to determine
the potential contamination from transportation, glass-
ware and solvents. Two spiked blanks (standard mixtures
spiked into blank filters) were also prepared and analyzed
with every batch of samples. Since the recovery rates
for each target compound based on spiked blanks were
quite different and the surrogate standard of 4-nitro-p-
terphenyl added to the samples alone could not represent
all the target compounds, this surrogate standard was
only used to supervise procedure and matrix effects in-
stead of correction for target compound quantification.
There was not much difference in NPAHs levels between
field and laboratory blanks, and both levels were less
than 3% of the mass in samples. Mean recovery rates
of the surrogate standards, 9NA, 2+3NF, 1NP, 7NBaA
and 6NBaP were 71.3%–92.1%, 85.2%–89.4%, 90.5%–
96.0%, 91.1%–93.6%, 90.7%–92.8% and 64.9%–70.2%,
respectively. The final results for the six compounds were
corrected according to the spiked standards mixtures and
blanks. For each compound, the method detection limit
(MDL) was determined from the standard deviation of
concentration for seven replicate measurements, which
was multiplied by the one-sided t distribution (the t value
for a 99% confidence interval is 3.14). The MDL for the air
sampling with an air volume of 750 m3 varied from 0.60
pg/m3 (9NA) to 1.42 pg/m3 (7NBaA).

2 Results and discussion

2.1 Seasonal variation of NPAHs

All of the six target compounds were identified and quan-
tified in all the PM10 samples. The total concentrations of
the six target NPAHs (

∑
NPAHs) ranged from 37.9 to 802

pg/m3 during the daytime and from 39.3 to 6195 pg/m3

during the nighttime sampling period (Table 1), and the
levels were one to two orders of magnitude lower than
those of their parent PAHs (Wu et al., 2010). The mean
value of

∑
NPAHs in the roadway tunnel was comparable

to that in the nighttime of the cold season at the roadside
(Table 1). However, NPAHs profiles in the roadside sam-
ples were dominated by 2+3NF, followed by 9NA, while
the dominant compound in the tunnel samples was 1NP.
The ratio of 1NP to 2+3NF (1NP/2+3NF) ranged from
2.0 to 8.9, significantly higher than those at the roadside
(which ranged from 0.02 to 0.47). These data suggested
that NPAHs in the roadway tunnel were directly from
vehicle emission while the NPAHs at the roadside were
primarily influenced by secondary atmospheric formation
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Table 1 Comparison of various NPAH concentrations (pg/m3) in PM10 samples from a roadside site and a roadway tunnel

Compound Warm season (roadside) Cold season (roadside) Roadway tunnel
Daytime Nighttime Daytime Nighttime

Range Mean Range Mean Range Mean Range Mean Range Mean
(n = 25) (n = 25) (n = 25) (n =25) (n = 6)

9NA 3.6–50.2 17.5 3.6–199 44.2 15.9–180 64.4 23.8–2319 619 84.6–155 121
2+3NF 22.3–120 49.0 21.8–326 90.7 40.8–654 179 65.3–4714 1012 148–486 264
1NP 5.1–10.2 7.7 5.6–16.0 8.8 7.7–32.9 15.7 6.7–230 41.6 630–1312 985
7NBaA 2.9–10.0 4.2 3.2–50.6 11.1 1.7–11.9 6.6 4.5–231 70.7 41.5–86.9 55.7
6NBaP 3.0–10.7 5.6 2.7–14.9 7.0 4.2–19.7 10.7 5.3–104 27.2 129–230 184∑

NPAHs* 37.9–175 84 39.3–507 161.8 73.5–802 276 109–6195 1770 1210–1931 1610

*
∑

NPAHs, the sum of 9NA, 2+3NF, 1NP, 7NBaA and 6NBaP.

(Arey, 1998; Dimashki et al., 2000; Bamford and Baker,
2003; Reisen and Arey, 2005). The value of

∑
NPAHs in

the cold season was, on average, 2.3 (daytime) and 9.9
(nighttime) times higher than that in the warm season.
This could be partly explained by variations of temperature
inversion (which are very common in the winter season,
trapping pollutants at ground level) (Li et al., 2006);
ambient temperature and solar ultraviolet irradiation (both
lower in winter and thus causing less photolysis) (Albinet
et al., 2008); their precursor PAHs and the atmospheric
oxidant NOx (Atkinson and Arey, 1994, 2007; Reisen and
Arey, 2005; Wu et al., 2010); and the PM10 loading in
air (high levels of PM10 most frequently occur in winter).
Lower temperature generally accompanies temperature in-
version and lower solar irradiation. The individual NAPHs
were significantly negatively correlated with ambient tem-
perature (T) (Table 2) indicating that temperature was an
important factor affecting the accumulation and dilution
of NPAHs in PM10 at this site. The significant positive
correlations between NPAHs and their parent PAHs and
NO2 suggested that NPAHs were formed through the
nitration of PAHs by NO2 or emitted by similar sources or
had similar environmental behavior. Air pollutants, such
as SO2, NO2, and

∑
PAHs were also found to be signif-

icantly negatively correlated with ambient temperature at
the p < 0.01 level in both daytime and nighttime sam-
pling periods. The strong statistical correlation between
temperature and the above air pollutants indicated that
temperature was also an important factor resulting in the
increased levels of these air pollutants in cold season.
The correlations between SO2, NO2, CO, PAHs, PM10
and NPAHs in Table 2 probably resulted from the fact
that all these air pollutants were influenced by temperature
and showed an increase in cold season. In contrast to the
increase of NPAHs in the cold season, the concentration
of the sum

∑
PAHs was, on average, 2.2 (daytime) and

5.3 (nighttime) times higher in the cold season than in the
warm season (Wu et al., 2010), indicating that there was
more NPAHs formation at nighttime in the cold season
than that in the warm season, assuming that NPAHs were
synchronously emitted from vehicle engine with PAHs.
In addition, for SO2, NO2, CO, O3 and PM10 in the cold
season, no more than a 50% increase (decrease for O3 and
wind speed) was observed for both daytime and nighttime
with respect to those in the warm season. Thus, it can be
proposed that there was more input of NPAHs in the local
atmosphere and temperature inversion had a limited direct

Table 2 Pearson correlations coefficients (n = 50) between individual
NPAHs with SO2, CO, NO, NO2, O3, PM10, PAH concentrations and

with temperature and wind speed (WS) at the roadside site

Time 9NA 2+3NF 1NP 7NBaA 6NBaP

SO2 Day 0.329* 0.457** 0.427** 0.211 0.264
Night 0.320* 0.299* 0.142 0.301* 0.182

CO Day 0.454** 0.653** 0.365** 0.243 0.192
Night 0.398** 0.481** 0.213 0.168 0.086

NO Day 0.334* 0.694** 0.318* 0.121 0.129
Night 0.323* 0.064 0.156 0.414** 0.226

NO2 Day 0.584** 0.825** 0.484** 0.346* 0.315*
Night 0.553** 0.387** 0.361* 0.576** 0.445**

O3 Day –0.366** –0.395** –0.06 –0.188 0.062
Night –0.379** –0.261 –0.347* –0.478** –0.362**

PM10 Day 0.464** 0.498** 0.380* 0.311* 0.312*
Night 0.432** 0.437** 0.445** 0.254 0.365*

Temp. Day –0.539** –0.381** –0.528** –0.438** –0.534**
Night –0.571** –0.453** –0.436** –0.481** –0.515**

WS Day –0.360* –0.556** –0.376** –0.239 –0.18
Night –0.372** –0.068 –0.037 –0.312* –0.162

Ant Day 0.762** 0.676** 0.714** 0.62** 0.635**
Night 0.507** 0.801** 0.924** 0.699** 0.864**

Flua Day 0.693** 0.577** 0.744** 0.56** 0.685**
Night 0.478** 0.8** 0.89** 0.64** 0.829**

Py Day 0.709** 0.587** 0.709** 0.556** 0.645**
Night 0.56** 0.788** 0.872** 0.69** 0.85**

BaA Day 0.76** 0.683** 0.724** 0.574** 0.635**
Night 0.743** 0.736** 0.86** 0.872** 0.931**

BaP Day 0.756** 0.696** 0.675** 0.568** 0.588**
Night 0.748** 0.711** 0.825** 0.871** 0.911**

Ant: anthracene, Flua: fluoranthene, Py: pyrene, BaA: benz[a]anth-
racene, BaP: benzo[a]pyrene (Wu et al., 2010).
∗ Correlation significant at P < 0.05 level (2 tailed);
∗∗ Correlation significant at P < 0.01 level (2 tailed).

influence on the enhanced levels of NPAHs in the cold
season.

For the semi-volatile PAH and NPAH compounds, the
low temperature also favored the particle-phase because
the phase distribution depends substantially on vapor
pressure, which is temperature-dependent (Albinet et al.,
2008). Based on the relationship between the fraction
of 3-nitrophenanthrene in the particle phase and the ex-
ternal temperature (Albinet et al., 2008), up to 20% of
particle-phase 9NA (with the same molecular weight as
3-nitrophenanthrene) increased in the cold season with
respect to that in the warm season at the roadside. But,
for the other five NPAHs detected in this study, the gas-
phase fractions were negligible because these compounds
exist almost entirely in the particle phase in the atmosphere
(Albinet et al., 2007). Therefore, the contribution of gas-to-
particle partitioning of NPAHs due to the low temperature
during the cold season could be neglected assuming there
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was no new input of NPAHs. Much higher OH radical
reactivity (defined as the reciprocal of the OH radical life
time) is reported in winter than in summer due to the high
level of pollutants in New York and Santiago de Chile
(Ren et al., 2006; Elshorbany et al., 2010). The increased
particulate PAHs and NOx in the cold season may have
contributed to the increased production of NPAHs due
to the increased yield of NO3 radicals in the nighttime
and OH radicals in the daytime (Atkinson and Arey,
1994, 2007; Bamford and Baker, 2003; Shao et al., 2004;
Reisen and Arey, 2005; Acker et al., 2006; Esteve et
al., 2006; Nishion et al., 2008; Ma et al., 2011). As the
prevailing wind direction was mostly from the northeast
(accounting for more than 80%) during both seasons,
the air mass travelling from upwind cities with domestic
heating in winter might contribute to the increased PAHs
and NPAHs. However, the aging and diagnostic ratios of
PAHs nearly coincided with those freshly emitted from
vehicles (Wu et al., 2010). Thus, NPAHs which are more
easily degraded than their precursor PAHs (Hayakawa et
al., 2002) would be expected to be from locally, instead of
regionally, formed sources. Based on the analysis above,
the enhanced concentrations of NPAHs in PM10 in the
cold season could be attributed mostly to the increased
photochemical formation (increased PAHs and reactive
species accompanied by decreased temperature) followed
by less photodegradation and temperature inversion at the
roadside.

Similar seasonal patterns of NPAHs associated with
particulate matter have been reported in other cities and
areas such as Shenyang (Tang et al., 2005; Hattori et
al., 2007), Mexico (Valle-Hernández et al., 2010), Tokyo
(Kakimoto et al., 2000), and an Alpine valley (Albinet et
al., 2008) and domestic heating (more emission from coal
combustion), low degradation (less loss) and temperature
inversion (accumulation) were regarded as the main causes
for the enhanced NPAHs in winter. On the contrary, higher
levels of 9NA, 2NF and 6NBaP in summer and autumn
and the highest levels of 1NP and 7NBaA in spring were

reported in the urban area of Algiers (Ladji et al., 2009).
Wilson et al. (1995) also reported higher levels of 9NA
and 2NF in summer and autumn and lower levels of 1NP
in summer in Houston, Texas. Unlike the previous causes,
seasonal changes of ambient temperature as well as the
atmospheric reactive species NO2, O3 and OH radicals are
attributed to the observed seasonal variations of NPAHs
at the roadside in Xiamen. Thus, the seasonal changes of
NPAHs in PM10 should be evaluated based on ambient
temperature as well as local atmospheric oxidants.

Two selected nitro-PAHs, 9NA and 1NP, with certified
concentrations in diesel particulate matter (NIST, 2006),
were much higher than those measured in Copenhagen
and Los Angeles but slightly higher than or comparable
to those in Birmingham, Baltimore, Marseilles and Ho Chi
Minh City (Table 3). The data in Tables 1 and 3 suggest that
the roadside air is heavily contaminated by NPAHs, and
the levels will increase with the increasing number of reg-
istered vehicles in Xiamen if there are no effective control
measures for vehicle exhaust. Understanding the pollution
level of NPAHs in PM10 is very important to enhance
the risk assessment of respirable particles (PM10) because
certain of these compounds, such as 1-NP and 3-NF, are
strong direct mutagens. As shown in Table 3, the average
ratios of 9NA to 1NP (9NA/1NP) were also higher than
other areas except Baltimore and Los Angeles (afternoon
samples), tunnel samples (0.64 in Dimashki et al., 2000;
0.12 this study), and diesel particulate reference materials
(0.08–0.8 in Bamford and Baker, 2003), again suggesting
the importance of the secondary atmospheric formation of
NPAHs and the fast atmospheric transformation of PAHs
initiated by OH and/or NO3 radicals at the roadside site.

2.2 Diurnal variation of NPAHs

To better illustrate the diurnal variation of NPAHs, the
sampling period was further divided into 10 sub-periods
(Fig. 2a). They demonstrated a distinct diurnal variation
characterized by high concentration in the nighttime and
enhanced day-night difference in the cold season. The
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Table 3 Comparison of particle-associated 9NA and 1NP concentrations (pg/m3) with those reported for other locations

City/Country Location Sampling period 9NA 1NP 9NA/1NP Reference

Birmingham/UK Urban 1995.11–1996.2 34–520 19–204 1.4 Dimashki et al., 2000
Copenhagen/Denmark Traffic 1998.1–1999.2 63 ± 30 127 ± 44 0.52 Feilberg et al., 2001
Baltimore/USA* Urban 2001.1 38–98 14–45 2.4 Bamford and Baker, 2003

Los Angeles/USA Traffic 2003.1 (morning) 12 38 0.3 Reisen and Arey, 2005
2003.1 (day) 13 13 1.0
2003.1 (afternoon) 44 12 3.7
2003.1 (night) 20 21 1.0

Marseilles/France* Urban 2004.7 56.6–227.7 14.9–222.1 1.8 Albinet et al., 2007
Ho Chi Minh/Vietnam Traffic 2005–2006 – 73 ± 40 – Hien et al., 2007
Xiamen/China Roadside Warm season (day) 3.6–50.2 5.1–10.2 2.2 This study

Warm season (night) 3.6–199 5.6–16.0 4.4
Cold season (day) 15.9–180 7.7–32.9 4.2
Cold season (night) 23.8–2319 6.7–230 15.7

Tunnel 2008.11 84.6–155 630–1312 0.12
∗ Data presented here are the total concentrations (filter plus PUF).

diurnal cycle could be driven in part by the more often
occurring temperature inversion, less photodegradation,
higher concentration of PAHs and NOx, low wind speed
and temperature, and more secondary formation at night.
For the data in Table 1, the contributions of 1NP and
6NBaP to

∑
NPAHs were higher in day samples compared

to night samples, probably reflecting more direct emission
from motor vehicles (Arey, 1998; NIST, 2006) and/or their
relatively stable characteristics under sunlight in compar-
ison with other NPAHs (Stewart et al., 2010). In contrast,
9NA showed significant night predominance probably due
to its decreased photo-stability with a perpendicular nitro
group (Stewart et al., 2010), and/or more nighttime for-
mation. As for 3-NF, very low concentrations (accounting
for less than 5% of 2NF) were reported in ambient and
diesel particulate matter (Bamford et al., 2003; Bamford
and Baker, 2003; Saldarriaga et al., 2008). However, high
levels of 3NF accounting for up to 50% of 2NF were
also reported in a city in Denmark (Feilberg et al., 2001).
Considering the relatively low proportion of 3NF relative
to 2NF, the ratio of 2+3NF to 1NP (2+3NF/1NP) could
have represented the ratio of 2NF to 1NP (2NF/1NP) to
a large extent as reported in previous studies (Albinet et
al., 2007, 2008). The diurnal changes of the 2+3NF/1NP
ratios for each sub-period (Fig. 2b) exhibited a similar
trend to

∑
NPAHs (Fig. 2a). The 2+3NF/1NP ratios were

generally higher than the benchmark ratio of 5 (a ratio > 5
indicating secondary formation of NPAHs) and the much
higher nighttime ratios, especially in the cold season, can
be attributed to nighttime gas-phase reactions of the parent
PAHs with the nitrate radical (Ciccioli et al., 1996; Fan et
al., 1996a, 1996b; Hien et al., 2007; Albinet et al., 2008).
It should be noted that based on the formation mechanism
(Arey et al., 1986; Atkinson et al., 1990; Atkinson and
Arey, 1994, 1997; Reisen and Arey, 2005) and the much
higher yields of the reactions of PAHs with NO3 than OH
(Atkinson and Arey, 1994) it would be anticipated that
NPAHs yields would increase significantly with the NO2
concentration at night.

To better understand the influence of air pollutants and
meteorological factors on the diurnal variation of NPAHs,
the dependent t-test for paired samples was carried out

using SPSS 10.0 for Windows (SPSS Inc.) to test the null
hypothesis that there was no significant difference between
the means of day and night concentrations (Table 4). The
results showed that the difference between day and night
means of

∑
NPAHs, O3, wind speed (WS), temperature

(T), 2+3NF/1NP and 9NA/1NP was significant in both
the warm and cold seasons. No significant difference was
found between day and night means of PM10 or SO2 in
both seasons, suggesting that the two kinds of pollutants
were relatively conservative and/or insensitive to the diur-
nal variation of vehicle exhausts, photochemical reactions,
and temperature inversion. The higher concentrations of
CO and NO in the daytime in the warm season reflected
more vehicle exhaust, when more PAHs and NPAHs were
expected to be emitted. Although no significant diurnal
differences for

∑
PAHs and NO2 were found,

∑
NPAHs,

2+3NF/1NP and 9NA/1NP exhibited significant nighttime
predominance in the warm season, probably due to the

Table 4 Paired-samples T -test with 95% confidence intervals of the
difference test (2-tailed, t0.05[24] = 2.064)

D-N Paira Warm season Cold season
ts

b Significance ts Significance
level (2-tailed) level (2-tailed)∑

PAHsd –0.697 0.492 –3.35 0.003∑
NPAHs –3.328c 0.003 –4.788 < 0.001

CO 2.746 0.011 0.088 0.93
PM10 1.523 0.141 –0.886 0.385
SO2 0.197 0.845 –1.615 0.119
O3 5.548 < 0.001 6.514 < 0.001
NO 3.936 0.001 1.695 0.103
NO2 1.978 0.06 –12.42 < 0.001
WS 3.23 0.004 3.281 0.003
Temp. 9.19 < 0.001 8.138 < 0.001
2+3NF/1NP –3.334 0.003 –4.490 < 0.001
9NA/1NP –3.492 0.002 –7.221 < 0.001
BaA/Chrd 1.043 0.307 –1.949 0.063
BaP/BeP 2.242 0.034 –1.997 0.057
a Paired difference of daytime level (D) minus nighttime level (N);
b T-test statistics is calculated according to ts = D̄

√
n/SD, where, D̄ is

the arithmetic mean of difference between daytime and nighttime, n is the
sample number and SD is the standard deviation;
c Bold indicates a statistically significant difference (its absolute values is
larger than t0.05[24]).
d Data from Wu et al. (2010).

http://www.jesc.ac.cn


jes
c.a

c.c
n

No. 10 Diurnal variation of nitrated polycyclic aromatic hydrocarbons in PM10 at a roadside site in Xiamen, China 1773

daytime photodegradative loss of PAHs and more night-
time reaction of the nitrate radical with PAHs. In the
cold season, the day-night difference became significant
for
∑

PAHs and NO2, but no statistical difference was
found for CO and NO. Higher concentrations of both PAHs
and NO2 caused by the more often occurring temperature
inversion were expected to speed up the nighttime nitration
of PAHs. However, the daytime predominance of CO and
NO directly emitted from vehicles was suppressed by
the temperature inversion at night. O3 reacts with NO to
produce NO2, which further reacts with O3 to produce
the NO3 radical for the nocturnal periods (NO + O3→
NO2 + O2; NO2 + O3→NO3 + O2) (Wallace and Hobbs,
2006). NO3 can hardly exist during daytime because of its
fast photolysis. Moreover, the OH radical concentration
showed an increase in the morning and was maximized
at midday, mainly dominated by the sunlight, and its
concentration was insignificant at night (Kameda et al.,
2004). The diurnal variations of OH and NO3 radicals,
together with their production yield with PAHs, were
expected to influence the diurnal variations of NPAHs to
a great extent (Atkinson and Arey, 1994).

A number of studies also show that some NPAHs are
readily decomposed when exposed to light, and their half-
lives depend strongly on aerosol chemical composition
(Fan et al., 1996a, 1996b; Feilberg and Neisen, 2000,
2001). Fan et al. (1996b) find that the half-lives of at-
mospheric particulate NPAHs from photolysis and from
dark heterogeneous reactions with O3 are about 1 and
29 hr, respectively. In contrast, the aging and photo-
chemical degradation markers of two PAHs ratios, ben-
zo[a]anthracene/chrysene (BaA/Chr) and benzo[a]pyrene/
benzo[e]pyrene (BaP/BeP), do not show significant day-
night difference except BaP/BeP in the warm season (Wu
et al., 2010). In addition, a “carry-over” from the daytime
OH radical-initiated formation of NPAHs would contribute
to the nighttime NPAHs. Nonetheless, day “carry-over”
contribution was of minor significance to nighttime NPAH
because the day-night differences of NPAHs were much
greater than those of PAHs. Similarly, the nighttime “carry-
over” also contributed to the daytime concentration, but
the fact that the daytime low level closely followed the
nighttime high level emphasized the influence of the
daytime photodegradation and/or vertical dilution on the
diurnal variation (Fan et al. 1996a; Feilberg and Neisen,
2000). These results tended to suggest that the diurnal
variations of NPAHs were likely influenced, in order
of importance, by the diurnal variations of atmospheric
oxidants and PAHs, sunlight intensity, thermal inversion
and direct emission.

2.3 Airborne exposure to NPAHs in PM10

NPAHs are classified into Group 2B (possibly carcino-
genic to humans, such as 1NP) and Group 3 (not
classifiable as carcinogenic to humans, such as 7NBaA,
6NBaP, and 3NF) (IARC, 1989). Supposing an adult
inhales daily about 20 m3/day of air and spends 12 hr/day
and 12 hr/night at the roadside site, his/her average 12
hr (day and night) exposure to six NPAHs in PM10 in
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Fig. 3 Daily inhalable exposure to six NPAHs at the roadside in daytime
and nighttime and in the roadway tunnel.

each sub-period can be calculated (Fig. 3). The day-night
differences in the amount of NPAHs exposure in the cold
season were significantly greater than those in the warm
season, suggesting that the inhalation risk assessment
of exposure to NPAHs in PM10 must take into account
both seasonal and diurnal variations. The daily inhalable
exposure of NPAHs in PM10 in the roadway tunnel was
much higher than those in the ambient air, suggesting
that air pollution in the roadway tunnel was serious due
to the weak ventilation and photodegradation. One hour
inhalation exposure to the tunnel level was equivalent to
around 2-day and 10-hr (daytime) exposure to the ambient
level in the warm and cold season, respectively. To date,
the total length of roadway tunnels in Xiamen is 74 km and
people spend more and more time in the roadway tunnels
on the way between home and office. Thus, the potential
risk assessment of inhalation exposure to NPAHs in PM10
may need to consider the high levels and residence time
in the roadway tunnels as well as the seasonal and diurnal
variations of these pollutants.

3 Conclusions

In this study, the occurrence of six NPAHs in PM10 from
a roadside site and roadway tunnel were measured. The
difference of the relative distribution between ambient and
tunnel samples suggested that the source of NPAHs at
the roadside was mainly secondary atmospheric formation.
Significant seasonal and diurnal variations of NPAHs in
PM10 were observed, and the diurnal variation of NPAHs
in PM10 collected in the cold season was more significant
than that in the warm season. The seasonal variations could
be mainly driven by secondary atmospheric formation,
thermal inversions, and photochemical degradation; while
the diurnal variations could be attributed to the diurnal
variation of precursor PAHs and atmospheric oxidants,
sunlight and temperature inversion. Decreased temperature
in winter results in more accumulation of reactants such as
PAHs, NO2 and other atmospheric oxidants in the air, and
more reactants lead to more nitro derivatives of PAHs. It is
just like a domino effect. Although one roadside sampling
site cannot give an overall picture of the occurrence of
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NPAHs in PM10 in the city of Xiamen, the results gathered
here may throw light on the investigation of secondary
organic pollutants in PM10 in other busy traffic areas. The
ambient temperature should be considered as an important
factor in the health risk assessment of NPAHs in PM10.
Moreover, more attention should be paid to roadway tunnel
air pollution based on the fact that most cities are seeing
rapid urbanization in China, and a resultant increase in
road tunnels. In the future, more intensive sampling pro-
cedures (4 hr interval over 24 hr) including measurement
of gas- and particle-phase NPAHs, NO3 and OH radical
at roadside, urban and rural background sites are required
in order to investigate the mechanism(s) controlling their
diurnal and seasonal variations.
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