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Abstract
Four magnetic anion exchange resins (MAERs) were used as adsorbents to purify drinking water. The effect of water quality
(pH, temperature, ionic strength, etc.) on the performance of MAER for the removal of dissolved organic matter (DOM) was also
investigated. Among the four studied MAERs, the strong base resin named NDMP-1 with high water content and enhanced exchange
capacity exhibited the highest removal rate of dissolved organic carbon (DOC) (48.9% removal rate) and UV-absorbing substances
(82.4% removal rate) with a resin dose of 10 mL/L after 30 min of contact time. The MAERs could also effectively remove inorganic
matter such as sulfate, nitrate and fluoride. Because of the higher specific UV absorbance (SUVA) value, the DOM in the raw water
was found to be removed more effectively than that in the clarified water by NDMP resin. The temperature showed a weak influence on
the removal of DOC from 6 to 26°C, while a relatively strong one at 36°C. The removal of DOM by NDMP was also affected to some
extent by the pH value. Moreover, increasing the sulfate concentration in the raw water could decrease the removal rates of DOC and
UV-absorbing substances.
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Introduction

Dissolved organic matter (DOM) in water is a mixture
of aromatic and aliphatic hydrocarbon structures with
attached functional groups (Leenheer and Croué, 2003;
Leenheer, 2007; Xie et al., 2012). DOM can add color,
taste and odor to raw drinking water (Christman and
Ghassemi, 1966); contribute to biological re-growth in the
distribution network (Van der Kooij et al., 1995; Vrouwen-
velder et al., 2000) and produce undesirable disinfection
byproducts (DBPs) after chemical disinfection (Minear
and Amy, 1996; Reckhow et al., 1990; Humbert et al.,
2007; Yan et al., 2007; Zhang et al., 2009). Thus, DOM
has adverse effects on drinking water treatments and the
quality of produced water (Ates et al., 2007; Gao and Yue,
2005; Liu et al., 2005).

Anion exchange is a potential strategy for removing
DOM from raw drinking water and controlling the forma-
tion of DBPs (Singer and Chang, 1989). The mechanism
for the removal of DOM is the exchange between DOM
acids and other ions such as chloride ions, rather than
physical adsorption (Tan, 2005). In a recent study, Bolto
et al. (2004) investigated the performance of 19 anion
exchange resins (AERs) for the removal of DOM in
synthetic waters. Strong base AERs were found to be

* Corresponding author. E-mail: liaimin@nju.edu.cn (Aimin Li);
wjnnju@163.com (Jinnan Wang)

the most efficient (59%–99% UV-absorbance removal)
and presented relatively short equilibrium time ranging
from 6 to 42 min (Bolto et al., 2002). The conventional
implementation of ion exchange must be as a fixed bed.
However, magnetic anion exchange resins named MIEX
after special modification can be used to remove dissolved
organic carbon (DOC) from natural water in a slurry form
in completely mixed continuous-flow reactors (Boyer and
Singer, 2006; Slunjski et al., 2002). MIEX is a macro-
porous, strong base anion exchange resin with ammonia
functional groups, consisting of 150–180 mm beads of
polyacrylic structure (Mergen et al., 2008; Singer and
Bilyk, 2002). Magnetic iron oxide is incorporated into
the resin matrix to aid in agglomeration and settling. The
diameter of MIEX resin particles is 2–5 times smaller than
traditional ion exchange resins, resulting in an increase in
the specific surface area and a decrease in the resistance to
solid-phase mass transfer (Singer and Bilyk, 2002; Boyer
and Singer, 2005). Depending on the characteristics of the
treated water, pre-treatment with a magnetic ion exchange
resin can remove from 30% to over 70% of the DOC from
the water (Tan et al., 2005; Slunjski et al., 2002; Wert
et al., 2005). Bench-scale testing of MIEX illustrated the
rapid removal of DOM, with the majority of UV-absorbing
organics removed in the first 10–20 min (Singer and Bilyk,
2002).

MIEX could be used as adsorbent to remove both DOM
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and other inorganic anions. Thus, nitrate, sulfate, etc.
(Humbert et al., 2005; Kitis et al., 2007) could be removed
effectively by MIEX. For all selected source waters, 17%–
42% nitrate and 9%–24% sulfate removals were obtained
at a resin dose of 10 mL settled resin/L and a contact time
of 10 min (Kitis et al., 2007). The removal efficiency of
these compounds depends on the anion competition for
exchange sites (Neale and Schäfer, 2009).

Performances of AERs for DOM removal are influenced
by the inner characteristics of the resins (strong or weak
base AER) and the water quality (pH, ionic strength, etc.)
(Humbert et al., 2008). Weak base resins remove less DOM
as compared to strong base ones (Bolto et al., 2002).
The water content of resins is another important factor
influencing DOM removal. Resins with high water content
can remove more DOM due to a more open structure
allowing a better entry of larger compounds (Gottlieb,
1995). The effectiveness of the ion exchange process can
be strongly influenced by the pH value. At high pH, ion
exchange is the dominant mechanism, whereas physical
adsorption also plays a role at neutral pH (Croué et al.,
1999). Besides the pH value, the presence of anions may
also affect the ion exchange process. Sulfate and nitrate
can be rapidly and almost completely removed by ion
exchange and reduce DOM removal due to ion exchange
competition (Boyer and Singer, 2006; Hongve et al., 1999).

This present work compared the performances of four
selected strong anion exchange resins (MIEX from Orica
Pty. Ltd., Australia; NDMPs from Nanjing University, Chi-
na) for the removal of DOM and mineral anions (sulfate,
nitrate and fluoride). DOM was monitored by measure-
ment of UV-absorbing substances and DOC. Moreover, the
influence of treatment conditions on the kinetics of DOM
removal by a selected mganetic AERs (MAERs) resin was
investigated.

1 Materials and methods

1.1 Characteristics of the studied waters

The raw water sample was collected from the Tongyu
River, which is a branch of the Yangzi River, the most
important source of drinking water in China. Now the
Tongyu River serves almost 720,000 people in Dafeng
City. The raw water was coagulated using polyaluminium
chloride (PACl) at a concentration about 10 mg/L without
adjusting the pH. Then the coagulated water was settled,
sand-filtered, and chlorinated. The physicochemical char-
acteristics of the raw water are as follows: total organic
carbon (TOC) 4.0–4.4 mg/L; DOC 3.5–4.0 mg/L, UV
absorbance at 254 nm (UV254) 0.10–0.14 cm−1, SUVA254
3.4–3.9 L/(mg·m), pH 6.5–7.0, total hardness 140–170

as CaCO3 mg/L, alkalinity 120–130 as CaCO3 mg/L,
turbidity 20–40 NTU, sulfate 40–60 mg/L, nitrate 0.5–1.0
mg/L, fluorine 0.02–0.03 mg/L and chloride 40–50 mg/L.

1.2 Characteristics of magnetic anion exchange resins

Four MAERs were selected on the basis of the research
results in references (Bolto et al., 2002, 2004). The total
ion exchange capacity is connected with the amount of
functional groups on the resins, which is expressed as the
total number of chemical equivalents available per unit
volume of resin. The water content is associated with
the functional groups (on and in the ion exchange resins)
and the adsorbed water on the outer surface of the resin
particles (Cornelissen et al., 2008).

All selected anion exchange resins had a macroporous
structure (Table 1). The NDMP resins are composed of
polyacrylic particles with sizes of 80–100 µm (Shuang et
al., 2012).

1.3 Ion exchange kinetics

These tests were conducted on the raw water using
MAERs. The reaction kinetics of the resins was studied
in order to assess the maximum removal of DOC and
UV254 after contact times shorter than an hour. It was found
that the maximum removal of the UV254 and DOC was
achieved by the resin dose of 10 mL/L with 30 min of
contact time. In the preliminary experiments, two liters of
the water to be tested was added into 2 L square jars along
with the desired resin dose, mixed for 60 min at 150 r/min,
and then allowed to settle for 20 min at room temperature.
The MAER procedures were based on previous research by
Singer and Bilyk (2002). During mixing, 20 mL samples
were taken at 2, 5, 10, 20, 30 and 60 min for DOC, UV254
and inorganic ion analysis. The samples were vacuum
filtered through a pre-rinsed 0.45 µm membrane filter and
refrigerated at 4°C in the dark.

To investigate the impact of water quality (pH, tem-
perature, ionic strength, etc.) on NDMP performance,
the NDMP procedure was carried out under different
conditions. The jar-tests were carried out at various
temperatures. The pH value was changed by adding con-
centrated sodium hydroxide or hydrochloric acid to the
raw water. A concentrated spiking solution was prepared
and mixed with the raw water. The spiking solutions were
prepared by dissolving a predetermined mass of sodium
sulfate in the raw water.

1.4 Multiple-loading jar tests

In order to evaluate the performance of MAERs in a
continuously operated process, a multiple-loading test was
performed using a series of successive jar experiments on
the same resin for a number of repetitions. The multiple-

Table 1 Characteristics of the resins

Resin Types Pores Structure Particle size (µm) Total exchange capacity (mmol/mL) Water content (%)

NDMP-1 Strong base Macropore Acrylic 80–100 0.98 65
NDMP-2 Strong base Macropore Acrylic 80–100 1.32 59
NDMP-3 Weak base Macropore Acrylic 80–100 1.55 60
MIEX Strong base Macropore Acrylic 150–180 0.52 65
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loading test covered the whole service range of typical
resins for the MAER process. After the kinetic tests, 10
mL settled resin/L was selected as the resin dose and 30
min as contact time for all multiple-loading jar tests. This
first step was conducted at a loading of 100 bed volume
(BV), i.e. the treated water volume was 100 times the
volume of the resin dose. After 30 min of mixing and 20
min of settling, samples from the supernatant were taken
and filtered for DOC and UV254 measurements. For the
subsequent steps, another liter of raw water was added
to the beaker containing 10 mL settled NDMP resin and
stirred for 30 min. The above operation step was repeated
10 times until a loading of 1000 BV was achieved.

1.5 Analytical methods

UV254 was measured using a UV-1800 spectrophotometer
(Shimadzu, Japan). TOC was measured using a TOC-V
CSH (Shimadzu, Japan). DOC was operationally defined
as the organic carbon concentration of a sample filtered
through a 0.45 µm membrane filter. Every TOC mea-
surement was repeated three times and the average value
was recorded, as long as the relative percent error was
less than 5%. Turbidity was measured using an AQ3010
Turbidity Meter (Thermo Fisher Scientific Inc., USA).
Chloride, fluoride, sulfate, and nitrate were analyzed using
ion chromatography in accordance with Method 300.0
(US EPA, 1993). The samples were analyzed on a liquid
chromatograph LC-10AD (Shimadzu, Japan) using an
IC-GA2S guard column and IC-A2S analytical column
(Shimadzu, Japan).

2 Results and discussion

2.1 Kinetics of the removal of organic and inorganic
matters

2.1.1 DOC and UV254 analyses
Figure 1 provides the kinetics of the removal of DOC
and UV254 from the raw water sampled in April 2011 by
10 mL/L MAERs including NDMPs and MIEX. Similar
experiments were conducted for the raw waters collected at
different periods. The results show that UV254 absorbance

and DOC content decreased rapidly with increasing con-
tact time on any resin used. After 30 min of contact
time, DOC content dropped from 4 mg/L to less than 2.6
mg/L on each resin, indicating that all kinds of MAERs
displayed fast DOC and UV254 removal. This finding is
attributed to the small bead size (Singer and Bilyk, 2002;
Boyer and Singer, 2005). For every resin, about 10% of
the initial DOC was eliminated after 5 min of contact
time. After 30 min of contact time, the remaining DOC
and UV254 tended to approach a low residual and achieve
pseudo-equilibrium. As a general observation for all resins,
the removal of UV absorbing substances is more important
than the removal of DOC, indicating a preferential sorption
of aromatic type molecules (Ates et al., 2007; Humbert et
al., 2005).

With the resins NDMP-1 and MIEX, about 48.9% and
39.3% of the initial DOC was eliminated after 30 min of
contact time. Within the same time, only 36.5% and 32.5%
of the DOC were removed using NDMP-2 and NDMP-3,
respectively. The removal of both DOC and UV254 reached
a maximum (pseudo-equilibrium) after 30 min on each
of the resins. For all resins, the DOC remaining after 30
min of contact time was found to be extremely low (2.0–
2.6 mg/L depending on the resin), and the removal of UV
absorbing substances was 82.4% after 30 min of contact
time, while the removal of DOC by NDMP-1 was 48.9%.
The removal of UV absorbance was almost 33% more
than the DOC removal, which confirmed that MAER could
remove the aromatic matters more effectively.

The better performance of NDMP-1 compared to
NDMP-3 was attributed to the different type of resins. The
effect of the quaternary ammonium group in NDMP-1,
which is positively charged, gave it a greater affinity for
hydrophobic counter ions because of the larger size and
lower charge density of the –NMe3

+ sites (Bolto et al.,
2004; Jensen and Diamond, 1965). Although the weakly
basic resins are effective for the removal of organics (Boen-
ing et al., 1980), their performance was found to be not as
good as that of the strong base resin (Bolto et al., 2004;
Boyer and Singer, 2008). With the increased exchange
capacity of NDMP-1, it exhibited higher removal of DOM
than MIEX with the same quaternary ammonium group
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and water content. The removal extent of UV absorbance
by NDMP-1 was 8% more than that by MIEX after 30
min of contact time. The removal mechanism of DOM
is mainly due to ion exchange reactions. Thus the higher
removal of DOM by NDMP-1 compared to MIEX could be
explained by its increased ion exchange capacity, as shown
in Table 1. As compared to NDMP-1, NDMP-2 with lower
water content led to a lower removal percentage. It was
found that water content had a remarkable effect on the
DOC removal (Bolto et al., 2002). AERs with high water
content were found to be very efficient for the removal of
any charged aquatic DOM, due to a more open structure
allowing a better entry of larger compounds (Bolto et al.,
2002; Gottlieb, 1995; Cornelissen et al., 2008).

SUVA (L/(mg·m)), the ratio of the UV absorbance at
254 nm (UV254, cm−1) to the DOC concentration (mg/L)
multiplied by 100, is reported to be directly correlated
with the aromatic carbon content and molecular weight
of DOM (Chin et al., 1994; Weishaar et al., 2003). The
SUVA value reduction by NDMP-1 was 65.7% after
pseudo-equilibrium, the results of which confirm the pref-
erential removal of DOM with higher aromatic character
by MAERs (Humbert et al., 2005). The percentage SUVA
reductions were 57.3% by MIEX, 51.8% by NDMP-2 and
36.9% by NDMP-3.

The results confirmed the inferences suggested by pre-
vious publications (Bolto et al., 2002; Boyer and Singer,

2008; Anderson and Maier, 1979; Fu and Symons, 1990),
i.e. the strong-base anion exchange resins with high water
content and extensive exchange capacity are most effective
for DOC removal.

2.1.2 Removal of mineral ions
Figure 2 presents the evolution of chloride, fluoride, nitrate
and sulfate during the treatment of the raw water (April
2011) with MAERs. As compared with the DOM removal,
all resins showed the same trend with regard to the removal
of fluoride, nitrate and sulfate. A similar pattern was also
found in all resins, i.e. the anions such as fluoride, nitrate
and sulfate decreased progressively with prolonged contact
time followed by an increase in chloride content. All AERs
were used in chloride form, and the anions were easily
exchanged with the chloride of the resin (Humbert et al.,
2005).

The resins rapidly eliminated all three anions and
reached pseudo-equilibrium after 30 min. Fluoride, sulfate
and nitrate concentrations dropped from 0.02 to 0.008
mg/L, 23.6 to 1.8 mg/L and 0.9 to 0.17 mg/L after 30
min of contact time with NDMP-1, respectively. A greater
reduction of fluoride was obtained with NDMP-1 (63.1%)
and MIEX (57.8%) compared to NDMP-2 (53.2%) and
NDMP-3 (48.5%). The reduction of nitrate was greater
with NDMP-1 (81.4%) and MIEX (76.6%) than with
NDMP-2 (70.2%) and NDMP-3 (58.3%). The sulfate re-
moval was also greater with NDMP-1 (92.2%) and MIEX
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(89.0%) compared to NDMP-2 (84.4%) and NDMP-3
(66.5%) after 30 min of mixing time. The sulfate in raw
water showed the highest removal efficiency by MAERs
due to its high selectivity. Thus, high alkalinity and sulfate
content in raw water could limit the competition by other
anions (Humbert et al., 2005).

2.2 Multiple-loading jar tests of a series magnetic ion
exchange resins

2.2.1 DOC and UV254 analyses
In the multiple-loading jar tests (Fig. 3), the DOC level
achieved 2.0 mg/L and 2.4 mg/L at 100 BV loading (i.e.,
the first jar step or treated water volume 100 times the
volume of resin used) when the raw water was treated by
NDMP-1 and MIEX, respectively, whereas the DOC levels
achieved were 2.6 and 3.0 mg/L at a loading of 1000 BV.
The removal of DOC by both of the resins was decreased
by about 0.6 mg/L at a loading of 1000 BV compared
to the fresh resin. At a load of 1000 BV, the DOC level
achieved was 3.3 mg/L by NDMP-2 and 3.5 mg/L by
NDMP-3, which implied a decrease of about 0.8 mg/L in
the DOC removal compared to the fresh resins. In addition,
the UV absorbance removal showed the same trend as the
DOC removal. The results demonstrated that the NDMP-1
and MIEX resins showed higher DOM removal and better
performance than NDMP-2 and NDMP-3 during the con-
tinuously operated process.

2.2.2 Removal of mineral ions
In the multiple-loading jar tests shown in Fig. 4, the
removal of fluoride achieved was 63.0% and 57.4% at
100 BV loading and 43.0% and 38.3% at 1000 BV when
treated by NDMP-1 and MIEX, respectively. The removal
of fluoride by both resins was decreased by about 20%
at a loading of 1000 BV as compared to the fresh resins,
whereas the removal of fluoride by NDMP-2 and NDMP-3
was decreased by 22% and 28%, respectively. At a loading
of 1000 BV, the removal percentages of nitrate by NDMP-
1, MIEX, NDMP-2 and NDMP-3 were 49.4%, 44.1%,
34.9% and 23.1%, respectively. The removal percentage
of nitrate was decreased by 32% with NDMP-1 and
MIEX, while it was decreased by 35% with NDMP-2 and

NDMP-3.
The removal percentages of sulfate by NDMP-1 and

MIEX were 92.2% and 89.1% at the loading of 100 BV,
while 59.8% and 55.4% at 1000 BV loading, respectively.
The sulfate removal was decreased by about 37% with
NDMP-2 and NDMP-3 at a loading of 1000 BV when
compared to the fresh resin. As shown in Fig. 3, the
removal of DOM by a series of resins appeared to follow
a similar trend as for the removal of fluoride, nitrate
and sulfate during the continuously operated process. A
corresponding result was found in the change of chloride
content in the treated water. It was noticed that the variation
of chloride was dependent on the removal of DOM and
inorganic ions by all resins in the multiple-loading process.
With the increase of the DOM removal by the series of
resins, the content of chloride in the treated water was also
increased. And when the resin has been used a number of
times, the chloride content in treated water was decreased
along with the lower removal of DOM.

2.3 Influences of treatment conditions and water
quality

In order to better explore the capability of NDMP for
DOM removal, dose response experiments were conducted
with waters of different quality. The previous results con-
firmed that among ion exchange resins, strong-base anion
exchange resins with high water content and exchange
capacity have been shown to be the most effective ones for
DOC removal. Among the four MAERs tested, NDMP-1
was selected because of its high efficiency for the removal
of DOM and inorganic matter.

2.3.1 Impact of treatment conditions on DOM removal
by NDMP

Figure 5 plots the kinetics of the removal of DOC and
UV254 for raw and clarified waters using NDMP-1 at
different doses (1, 4 and 10 mL/L). The results show that
DOC content and UV absorbance decreased rapidly with
prolonged time for the three doses of NDMP applied.
The higher the resin dose, the more reduction of DOC
and UV absorbance occurred. After 30 min, the DOC
residual remained almost unchanged (pseudo-equilibrium
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Fig. 3 Multiple-loading jar tests of magnetic ion exchange resins for DOC and UV254 removal from the raw water.
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Fig. 4 Impact of multiple-loading jar tests of magnetic ion exchange resins on inorganic species.

condition) with NDMP for the raw and clarified water. On
the other hand, significant improvements were observed
when doses were increased from 1 to 10 mL/L. The DOC
fractions that remained after NDMP treatment were all
about 2.0 mg/L with resin dose of 10 mL/L after 30 min
contact time with the raw water and clarified water. The
DOC removal by NDMP was 48.3% and 42.6% for raw
water and clarified water, respectively, whereas the UV

absorbance reduction was 81.7% by NDMP for the raw
water and 76.5% for the clarified water by NDMP with
resin dose of 10 mL/L after 30 min of contact time. It is
found that the DOM removal in the raw water by NDMP
was more effective than that in the clarified water. This
could be attributed to the high SUVA value of the treated
water, which is more efficient for the removal of DOM by
MAERs (Humbert et al., 2005).
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Fig. 5 Impact of NDMP dose on the kinetic removal of DOC and UV254 for raw and clarified (PACl, 10 mg/L) waters.
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2.3.2 Impact of temperature on DOM removal by
NDMP

The effect of temperature on the kinetics of the removal
of DOC and UV254 by NDMP-1 was also investigated
(Fig. 6). DOC removal was slightly influenced by the
temperature between 6 and 26°C. However, a significant
effect was observed at 36°C. The removal of DOC and UV-
absorbing substance was 45.7% and 77.8% by NDMP at
temperature of 6°C after 30 min of contact time, 3% and
5% lower than the reduction at 26°C, respectively. When
the temperature was increased to 36°C, higher removal
of DOM was obtained. The removal of DOC and UV-
absorbing substances was 54.2% and 88.9% by NDMP
at temperature of 36°C after 30 min of contact time,
5% and 6% more than the reduction of DOC and UV
absorbance at 26°C, respectively. The results showed that
temperature has potential effects on the DOM removal.
This is because an increase in temperature leads to an
augmentation of reaction kinetics (Humbert et al., 2005).
On the other hand, NDMP is an ion-exchange resin, and
the removal mechanism of DOM is mainly due to ion ex-
change reaction. It was reported that the major component
of DOM was natural organic acids, such as humic, fulvic
and tannic acids, and these natural organic acids could
dissociate in water. Higher temperature was beneficial to
the dissociation of DOM. Thus compared with 6 and 26°C,
the removal rate of DOM was the highest at 36°C.

2.3.3 Impact of pH on DOM removal by NDMP
The pH value had a small effect on the kinetics of the
removal of DOM by NDMP as shown in Fig. 7, when the
pH value varied between 6.5 and 8.5 (the ordinary water
treatment temperature). However, the removal efficiency of
DOC can be affected by the quality of the raw water. Due to
the presence of carboxylic groups (Wert et al., 2005), DOC
is in an anionic form within the pH range 4–5. At low pH
(< 4) the resin cannot be used to effectively remove DOC.
The best applications are in the pH range 6.5–7.5 because
it can remove DOC rich in carboxylic groups. The DOC
removal was increased slightly as the pH value decreased
in the pH range of 6.5–8.5. However, the UV absorbance
removal was slightly higher at pH 8.5 than at pH 7.5. This
could be explained by the fact that the removal efficiency
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Fig. 6 Effect of temperature on the kinetics of removal of DOC and
UV254 by NDMP for raw water. Resin dose: 10 mL/L.
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Fig. 8 Effect of inorganic sulfate on the kinetics of removal of DOC and
UV254 by NDMP for raw water. Resin dose: 10 mL/L.

could be greatly reduced if the raw water came from a
source rich in tannins. Tannins primarily contain phenolic
hydroxyl groups, which are not in an anionic form until
approximately pH 8–9 (Allpike et al., 2005).

2.3.4 Impact of sulfate on DOM removal by NDMP
Figure 8 illustrated the impact of elevated levels of sulfate
on the removal of DOM in raw water. It was clear that the
removal of DOC and UV-absorbing substances decreased
with increasing sulfate concentration. When the sulfate
concentration was increased from 54 mg/L to 94 mg/L,
the removal of DOC and UV absorbance decreased from
48.3% to 39.6% and from 81.7% to 72.5% after 30 min
of the contact time, respectively. The sulfate anion in raw
water showed higher removal percent by MAERs due to
their high selectivity for sulfate, which was also found in a
previous study (Boyer and Singer, 2006). When the sulfate
content became higher in raw water it could also limit
the DOM removal by MAER because of the competition
phenomenon (Humbert et al., 2005; Boyer and Singer,
2008).

3 Conclusions

It was found that MAERs could remove DOM effectively
and showed fast dynamics for removal from surface water.
Among ion exchange resins, strong-base anion exchange
resins with higher water content and enhanced exchange
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capacity appeared to be the most effective ones for DOM
removal. The best removal of DOC and UV absorbance
were about 48.9% and 82.4% by NDMP-1, respectively,
with a resin dose of 10 mL/L after 30 min of contact time.

The MAERs also showed excellent ability for the
removal of anions. Fluoride, nitrate and sulfate concen-
trations were reduced by about 63.1%, 81.4% and 92.2%
with NDMP-1, respectively. The concentration changes of
chloride confirmed the speculation that the most important
mechanism in ion exchange processes for DOM removal is
the exchange of DOM ions and chloride ions on resins.

The treatment conditions had some impact on DOM
removal by NDMP-1. It was concluded that the DOM
removal in raw water by NDMP was more effective than
that in clarified water. This could be explained by the
higher SUVA value of the raw water, that would benefit the
removal of DOM by NDMP. The influence of temperature
on the removal of DOC between 6 and 26°C was minor
compared to that at 36°C. The pH value had a small
effect on the kinetics of the removal of DOM by NDMP.
Increasing the sulfate concentration in the raw water by
approximately 40 mg/L resulted in a decrease in the
removal of DOC and UV-absorbing substances by 8.7%
and 9.2% after 30 min of contact time, respectively.
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