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Abstract
Owing to its low cost, free chlorine is one of the most common disinfectants for wastewater and drinking water treatment. However, the
formation of disinfection byproducts has been found to occur after free chlorine disinfection in recent decades. Antipyrine (ANT), an
anti-inflammatory analgesic, has been frequently detected in the aquatic environment. In this work, the removal efficiency of ANT by
free chlorine oxidation in ultrapure water was investigated with batch experiments. The influencing factors on the removal of ANT were
explored at initial concentrations of ANT from 0.04 to 0.64 mg/L, free chlorine dosage from 0.30 to 1.31 mg/L, and pH from 1.5 to 9.0.
The main degradation products were identified by solid phase extraction-gas chromatography-mass spectrometry. The results showed
that ANT reacted rapidly with free chlorine in ultrapure water systems and up to 90.6% removal efficiency of ANT was achieved after
25 sec (initial free chlorine 1 mg/L, ANT 0.5 mg/L, pH 7.0). Higher oxidant dosage, lower ANT initial concentration and low pH favor
the ANT removal. The main degradation product in ANT chlorination was a monochlorine substitution product (4-chloro-1,2-dihydro-
1,5-dimethyl-2-phenyl-3H-pyrazol-3-one), which can be further chlorinated by free chlorine. In addition, the total organic carbon result
indicated that ANT is difficult to be mineralized using chlorine.

Key words: antipyrine; chlorination; disinfection byproduct
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Introduction

Richardson and Bowron (1985) first confirmed that mi-
cropollutants (e.g., pharmaceutical and personal care
products (PPCPs), endocrine disruptors (EDs)) from do-
mestic, industrial and medicinal applications are present
at trace level (µg/L–ng/L) in the effluents of wastewater
treatment plants (WWTPs). Since then, PPCPs have been
frequently reported in effluents and sludge from WWTPs,
as well as in surface water, ground water, and even in
drinking water, across the world (Kim et al., 2007; Sui et
al., 2010; Ternes 1998; Vieno et al., 2007; Wang et al.,
2010; Watkinson et al., 2009). In view of the increase of
PPCPs’ species and usage and their persistence in aquatic
environments, the potential risk of PPCPs to the ecosystem
and human health cannot be ignored.

Due to the widely varying types and physical-chemical
properties of these compounds, conventional drinking wa-
ter treatment methods (coagulation/flocculation, filtration
and disinfection) cannot effectively remove all the PPCPs.
Many studies have documented that the removal efficien-

* Corresponding author. E-mail: fengLi hit@163.com

cy of PPCPs by coagulation, flocculation and filtration
processes is poor, and the removal capacity is related
to physical-chemical properties of compounds, such as
hydrophilicity (Kim et al., 2007; Kosma et al., 2010;
Simazaki et al., 2008; Vieno et al., 2007). By comparison,
disinfection processes (e.g., Cl2, ClO2, O3) are more
favorable for the removal of PPCPs (Kosma et al., 2010;
Simazaki et al., 2008; Vieno et al., 2007).

As a low-cost disinfectant, free chlorine is the most-
used chemical oxidant in drinking water and wastewater
disinfection (Gibs et al., 2007; Glassmeyer and Shoe-
maker, 2005; Lee and von Gunten, 2010; Sharma, 2008).
Free available chlorine (FAC) in water includes hypochlor-
ous acid (HOCl) and hypochlorite (OCl−). FAC can
react with micropollutants (e.g., NOM, PPCPs, EDCs)
to form uncharacterized chlorinated byproducts during
the disinfection process (Acero et al., 2010; Bedner and
MacCrehan, 2006; Dodd and Huang, 2004, 2007; Dodd et
al., 2005; Li et al., 2011; Shah et al., 2006; Xagoraraki et
al., 2008). Some investigations reported the transformation
of certain PPCPs and found that some products have
biotoxicity (e.g., acetaminophen) (Bedner and MacCrehan,
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2006; Chamberlain and Adams, 2006; Dodd and Huang,
2004, 2007; Dodd et al., 2005; Li et al., 2011; Shah et
al., 2006). But there are still many PPCPs that need to
be investigated concerning their fate in the process of
disinfection.

Antipyrine (ANT) is a kind of anti-inflammatory anal-
gesic, belonging to the category of non-prescription drugs,
which is applied extensively in clinics to relieve headache,
fever, and general pain. It has toxicity towards lungs
and mucosas, leading to target organ damage for long-
term exposure. According to investigations, ANT and its
metabolites were measured at up to the µg/L level in mu-
nicipal sewage effluents, ground water and drinking water
in the northwestern districts of Berlin, Germany (2.5–0.05
µg/L) (Reddersen et al., 2002; Wiegel et al., 2004; Zuehlke
et al., 2004, 2007). In China, Yu et al. (2010) also found
that the concentration of ANT in drinking water plant
influent was 1.34–2.22 ng/L. In addition, Ternes (1998)
observed relatively low removal efficiency of ANT (33%)
in WWTPs with preliminary and final clarification and
aeration, and a significant percentage of this compound is
thus able to reach receiving natural waters. Zuehlke et al.
(2007) also determined a removal efficiency of 89% for
ANT in a drinking water plant (aeration and filtration).
Therefore, ANT is commonly present in environments and
cannot be removed completely after general water and
wastewater treatments. Some oxidation technologies have
good removal efficiency for ANT, such as ClO2, ozone,
and UV (Huber et al., 2005; Rivas et al., 2011a, 2011b).
However, the removal of ANT in disinfection processes is
still not clear.

In the present study, the removal efficiency of ANT by
FAC oxidation was determined. The influencing factors
including initial ANT concentration, oxidant dosage and
pH during chlorination were investigated. In addition, the
main products of ANT from its reaction with FAC were
identified.

1 Materials and methods

1.1 Materials

ANT with purity > 99% was obtained from WAKO
(Japan). A stock solution of ANT (50 mg/L) was prepared
using ultrapure water after dissolution in 1 mL methanol,
and then was protected from light and stored at 4°C. Sodi-
um hypochlorite solution (NaOCl) was purchased from
Sigma-Aldrich at 13% available chlorine concentration.
All other reagents (Na2S2O3, NaOH, H2SO4, Na2SO4,
phosphate, etc.) were analytical reagents or better and used
without further purification. Methanol and acetonitrile
were HPLC grade (Fisher Scientific). Dichloromethane
was pesticide grade (DUKSAN). All solutions were pre-
pared using ultrapure water (18 MΩ·cm) from a Water
Purification System (ELGA Purelab Classic, Veolia).

1.2 Analytical methods

ANT was analyzed by a Rapid Resolution Liquid Chro-
matography system (RRLC 1260, Agilent, USA) which
included a Quatpump, automatic liquid sampler, ther-
moregulation column compartment and variable wave-
length UV detector. A sample volume of 5 µL was injected
onto a Poroshell 120 EC-C18 column (4.6×50 mm 2.7
Micron, Agilent, USA). The column was maintained at
30°C with a flow rate of 1.0 mL/min. The composition of
the mobile phase was 10% acetonitrile, 5% methanol and
85% acetic acid (0.02 vol.%, pH 4). ANT was detected
at 242 nm with an isocratic flow for 10 min. The limit of
quantitation for ANT was approximately 5 ng/L.

Free chlorine stock solution was prepared at 100
mg/L Cl2 and quantified by the DPD (N,N-diethyl-p-
phenylenediamine, Sigma-Aldrich, > 99%) colorimetric
method. Identification of chlorinated products was carried
out using an Agilent 7890 gas chromatograph (GC) with
an Agilent 5975C MSD mass spectrometer (MS) (Agilent,
USA). The capillary column was a DB-5ms (30 m × 0.25
mm × 0.25 µm film thickness, 5% phenyl methylpolysilox-
ane, Agilent, USA). The sample (1 µL) was injected
into the GC/MS in splitless mode at an inlet temperature
280°C, using helium (99.999%) as the carrier gas which
maintained at a constant flow rate of 0.8 mL/min. The
column temperature was programmed as follows: from
80°C (20 min) to 300°C (1 min) at 3.5°C/min. The MS
interface temperature was kept at 300°C. The MS ion
source and quadrupole temperatures were set at 230 and
150°C, respectively. Qualitative analysis was carried out
using SCAN mode with the National Institute of Standards
and Technology (NIST) mass spectral data library.

1.3 Chlorination experiments in ultra-pure water

Batch experiments were conducted in 250-mL amber
borosilicate bottles with glass stoppers under continuous
magnetic stirring at room temperature (25 ± 0.5°C). ANT
solution (10 mg/L) was prepared by diluting stock so-
lution (50 mg/L) using ultrapure water. The methanol
concentration of each experiment was less than 0.05 vol.%
and should have a negligible impact on the oxidation of
ANT (Dodd et al., 2005). pH was controlled by using
0.05 mol/L phosphate and 0.25 mol/L acetate buffer, and
NaOH and H2SO4 were used to adjust the pH of the buffer
solution to the desired values. The sample pH did not vary
by more than 0.05 at the initial and final point of each
experiment. In addition, experiments without oxidant to
assess the potential acid- and base-catalyzed hydrolysis of
ANT showed only 5.5% loss of ANT in 528 hr confirmed
that the hydrolysis of ANT is extraordinarily weak and can
be considered to be negligible over a wide pH range (1.5–
9.0).

The volume of reaction solution for each experiment
was 150 mL. The reaction time was 30 min. Each
sample (2 mL) was obtained at constant time intervals,
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and quenched with 0.1 mL sodium thiosulfate (0.3 g/L).
The residual concentration of ANT was analyzed by
RRLC/UV.

The effects of the initial concentrations of ANT (0.04–
0.64 mg/L), chlorine dosage (0.30–1.31 mg/L), and pH
(1.5–9.0) on the removal efficiency of ANT were inves-
tigated. All experiments were conducted in duplicates or
triplicates, and the averaged data are presented.

1.4 Products identification

ANT (50 mg/L) was added to phosphate buffer (0.05
mol/L, pH 7.0) to achieve starting concentrations of 1
mg/L in 500 mL volume. After adding FAC, 5 g/L sodium
thiosulfate (1.5 mL) was used to quench the reaction at
different reaction times for each sample (0, 10 sec, 60
sec, 10 min, 30 min, 1 hr, 4 hr and 8 hr). Samples
(500 mL) for products identification were pre-concentrated
by solid-phase extraction equipment (Mediwax 12-ports
Vacuum SPE manifold) at a speed of 3 to 5 mL/min. Oasis
HLB SPE cartridges (500 mg, 6 mL, Waters, USA) were
conditioned with 2×5 mL methanol and 2×5 mL ultrapure
water prior to use. After loading samples and washing with
3 mL ultrapure water, the cartridges were flushed with
air for 10 min and eluted using 4×2 mL methanol. The
eluents were evaporated under a gentle nitrogen stream
until complete dryness, dehydrated by anhydrous sodium
sulfate and then dissolved in 0.5 mL dichloromethane.
Final extracts were filtered through a 0.45 µm membrane
filter, transferred into 2 mL amber glass vials and analyzed
by GC/MS.

Total organic carbon (TOC) over 21 hr of reaction time
was analyzed to confirm whether FAC can mineralize
ANT or not, using a Shimadzu TOC-V analyzer (Japan).
UV-Vis spectroscopic scans by an evolution 300 UV-Vis
spectrophotometer (Thermo, USA) and RRLC/UV were
also used as a supplementary tool to illustrate the changes
of ANT in chlorination.

2 Results and discussion

2.1 Effects of initial ANT concentration on ANT chlori-
nation

Figure 1a shows a good removal efficiency of ANT
(> 85%) by FAC oxidation in around 4 min (25 ± 0.5°C,
pH 7.0, initial chlorine 0.52 ± 0.02 mg/L). Moreover, the
residual ANT declined with decreasing initial ANT con-
centration at constant oxidant dosage, pH and temperature.
Using pseudo first-order kinetics (Dodd and Huang, 2004,
2007; Dodd et al., 2005; Shah et al., 2006) to plot the
natural logarithm of the normalized concentration versus
time, the results show good correlation coefficients (Fig.
1b), R2 > 0.96 in all the experiments except the case of 0.64
mg/L initial ANT concentration because of the shortage of
free chlorine (data not shown in Fig. 1b). Therefore, under
an excess of FAC, ANT chlorination exhibited a pseu-
do first-order dependence on the concentration of ANT.
Meanwhile, pseudo first-order reaction rate constants (kobs,
sec−1) of ANT with chlorine under these conditions also
can be determined from the absolute value of the slope
(Fig. 1b). The rate constant increased from 0.018 sec−1

(initial ANT 0.44 mg/L) to 0.049 sec−1 (initial ANT 0.04
mg/L).

2.2 Effects of chlorine dosage

As shown in Fig. 2a and Table 1, with increasing chlorine
dosages from 0.30 to 1.31 mg/L, the removal rates were
enhanced from 42% to 95% in 25 sec. Moreover, the

Table 1 kobs at different chlorine dosages

Chlorine dosage (mg/L) kobs (sec−1) R2

0.57 0.018 0.9651
0.82 0.059 0.9956
1.01 0.097 0.9964
1.31 0.121 0.9966

Experimental condition: 25.0 ± 0.5°C, pH 7.0, initial ANT concentration
0.45 ± 0.02 mg/L.
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Fig. 1 ANT chlorination at different initial ANT concentrations. (a) ANT removal efficiency; (b) Pseudo first-order kinetic plot. Experimental condition:
25.0 ± 0.5°C, pH 7.0, chlorine dosage 0.52 ± 0.02 mg/L.
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Fig. 2 ANT chlorination at different chlorine dosages. (a) removal efficiency; (b) effect on kobs. Experimental condition: 25.0 ± 0.5°C, pH 7.0, initial
ANT concentration 0.45 ± 0.02 mg/L.

effects of chlorine dosage on the extent of ANT elimination
(0.45 mg/L) at pH 7.0 were positive. This indicates that
the chlorine dosage applied in WWTPs (5–20 mg/L) and
drinking water plants (0.5–2.0 mg/L) can remove ANT
effectively in a short time (Glassmeyer and Shoemaker,
2005; Acero et al., 2010). As shown in Table 1, kobs
positively correlated with chlorine dosage (Deborde et al.,
2004) and increased from 0.018 sec−1 (chlorine 0.57 mg/L)
to 0.121 sec−1 (chlorine1.31 mg/L). The linear correlation
between kobs and initial chlorine dosage was confirmed
from Fig. 2b with R2 = 0.9484.

2.3 Effects of pH

Lower pH is favorable to the removal of ANT. Removal
rates of ANT were higher than 98% at pH < 7.0, while only
up to 72 % and 29% in 4 min at pH 8.0 and 9.0, respectively
(data not shown). Table 2 shows that kobs decreased two
orders of magnitude as pH increase. The results indicated
that reactions between ANT and FAC were fast and ANT
was more readily transformed by FAC at pH < 7.0.

Figure 3 shows the variation tendency of kobs over the
pH range 1.5–9.0. The kobs decreased slowly with pH
increasing from 5.0 to 9.0, while at pH < 4.5 kobs decreased
sharply. These trends can be attributed to the varying
importance of specific reactions amongst the individual
acid-base species of ANT and FAC. FAC may be present
as HOCl or as OCl− with an associated pKa,HOCl of 7.5
(Chamberlain and Adams, 2006; Wang et al., 2011) at
25°C (Reaction (1)) and ANT has two species, cationic
ANT (ANT+) and neutral ANT, with pKa,ANT of 1.4
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Fig. 3 Influence of pH on kobs and FAC mole fraction. Experimental
condition: 25.0 ± 0.5°C, chlorine dosage 0.51 ± 0.03 mg/L, ANT 0.45 ±
0.04 mg/L.

(Rimmer et al., 1986; Staiger et al., 1980; Taylor and
Blaschke, 1984) (Reaction (2)).

HOCl
Ka,HOCl←→ H + + OCl− (1)

ANT+
Ka,ANT←→ ANT + H+ (2)

The distribution coefficient of cationic ANT species is
less than 10−4 at pH 6.0–9.0 and neutral ANT is the
main species undergoing oxidation (Fig. 3). Meanwhile,
the HOCl distribution coefficient decreases from 0.96 (pH

Table 2 kobs at different pH levels

pH kobs (sec−1) R2 pH kobs (sec−1) R2 pH kobs (sec−1) R2

1.5 0.247 0.9996 4.0 0.054 0.9977 6.0 0.035 0.9773
2.0 0.211 0.9995 4.5 0.044 0.9938 7.0 0.018 0.9652
2.5 0.187 0.9975 5.0 0.041 0.9931 8.0 0.006 0.9543
3.2 0.103 0.9989 5.5 0.040 0.9839 9.0 0.003 0.9992
3.5 0.068 0.9986

Experimental condition: 25.0 ± 0.5°C, chlorine dosage 0.51 ± 0.03 mg/L, ANT 0.45 ± 0.04 mg/L.
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6.0) to 0.024 (pH 9.0). However, lower reactivity can be
obtained at pH more than 8.0, and it can be inferred that
the possibility of reaction between OCl− and ANT is very
small. Therefore, in these conditions, ANT chlorination
may be mainly the reaction of ANT with HOCl. When pH
< 4.5, the OCl− distribution coefficient (< 0.0013) is small
enough to be neglected. Besides the potential reaction of
ANT and ANT+ with HOCl, the rapid increase of kobs
could be explained by the form of Cl2 (Reactions (3)) and
high reactivity between Cl2 and PPCPs has been reported
(Acero et al., 2010; Deborde et al., 2004; Rebenne et al.,
1996).

HOCl + Cl− + H+
K1←→ Cl2 + H2O (3)

2.4 Products identification in ANT chlorination

Products from ANT chlorination were investigated by
GC/MS at 1.0 mg/L chlorine dosage, pH 7.0. The total
ion chromatograms (TICs) of mass spectra (Fig. 4) at
different reaction times showed that a main product (m/z
222) was formed in chlorination at 55.6 min. Sampling at
the triggering of the reaction was missed because of the
rapid chlorination of ANT, and the TIC at 0 sec slightly
lagged behind the beginning of reaction.

Matching with the NIST library, the product at
m/z 222 was identified as a monochlorine substitution
product (4-chloro-1,2-dihydro-1,5-dimethyl-2-phenyl-3H-
pyrazol-3-one) with 66% probability (Fig. 5). As a
two-electron electrophile, FAC can react with some
electron-rich organic moieties, and mainly results in sub-
stitution and addition reactions (Lee and von Gunten,
2010). In the process of ANT chlorination, free chlorine
can attack ANT to bring about halogenation (Reaction (4)).
As shown in Fig. 4, the peak area of the m/z 222 product
increased with time at first, and then decreased. This
indicated that the m/z 222 product was further chlorinated
by FAC and is a main intermediate in the ANT chlorination
reaction.
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Fig. 4 Total ion chromatograms (TIC) of ANT chlorination at different reaction time (0 sec, 1 min, 30 min, 240 min).
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Fig. 5 Mass spectrogram of byproduct (m/z 222) and the reference standard from NIST.

The variation of TOC over 21 hr reaction was less than
0.4% (data not shown). It can be inferred that FAC is
transforming ANT into other compounds instead of miner-
alizing ANT due to the lower oxidation-reduction potential
of free chlorine. From the result of UV-Vis spectroscopy
scans over 190 to 600 nm (Fig. 6a), the absorption in
the range from 250 to 280 nm was notably weakened
with reaction time while the absorption band from 300
to 390 nm appeared and was enhanced with time. The
peak around 250–280 nm at 0 sec suggests that there exist
chromogenesis groups, including conjugations of phenyl
and between carbonyl and double bonds of carbon. The
intensity of this peak diminished with time and a new peak
over 300–390 nm appeared. This indicates that a chlorine
substitution reaction occurs in ANT chlorination, and cre-
ates a stronger conjugation between carbonyl and double
bonds of carbon because hydrogen atoms are replaced by
chlorine atoms as auxochromic groups.

The samples over 21 hr reaction were also analyzed by
RRLC/UV and the chromatograms at 242 nm show that
ANT transformed into some unknown compounds, and
one of them is the main intermediate (ANT byproduct 1,
Fig. 6b) which was identified via qualitative analysis by
GC/MS. Figure 6b further illustrates that ANT byproduct

1 was a main intermediate, and byproducts 2, 3 were
also intermediates. After 8 hr of reaction, the generated
amount of all byproducts was close to constant on account
of the limitation of residual oxidant. It is difficult to
determine whether byproducts 4, 5 were intermediates or
not. Identification of all products and the specific pathway
of chlorination require further investigation.

3 Conclusions

This investigation shows ANT can be removed effectively
by free available chlorine oxidation and exhibits rapid
reactivity with free chlorine in an ultrapure water system.
As might be expected, the removal efficiency of ANT
increases with decreasing initial ANT concentration and
increasing chlorine dosage. Moreover, low pH is favorable
for increasing the ANT removal efficiency and kobs. With
the increase in pH, kobs decreases to 0.034 sec−1 (pH
9.0) from 0.247 sec−1 (pH 1.5). The main intermediate
product of ANT in chlorination is identified as a chlorine
substitution product by GC/MS, which can be further
chlorinated by free chlorine. Moreover, ANT was found
to be difficult to be mineralized by chlorine with TOC
analysis.
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