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Abstract
Knowledge of the oxygen mass transfer of aerators under operational conditions in a full-scale wastewater treatment plant (WWTP) is
meaningful for the optimization of WWTP, however, scarce to best of our knowledge. Through analyzing a plug flow aeration tank in
the Lucun WWTP, in Wuxi, China, the oxygenation capacity of fine-bubble aerators under process conditions have been measured in-
situ using the off-gas method and the non-steady-state method. The off-gas method demonstrated that the aerators in different corridors
in the aeration tank of WWTP had significantly different oxygen transfer performance; furthermore, the aerators in the same corridor
shared almost equal oxygen transfer performance over the course of a day. Results measured by the two methods showed that the oxygen
transfer performance of fine-bubble aerators in the aeration tank decreased dramatically compared with that in the clean water. The loss
of oxygen transfer coefficient was over 50% under low-aeration conditions (aeration amount < 0.67 Nm3/hr). However, as the aeration
amount reached 0.96 Nm3/hr, the discrepancy of oxygen transfer between the process condition and clean water was negligible. The
analysis also indicated that the non-steady-state and off-gas methods resulted in comparable estimates of oxygen transfer parameters
for the aerators under process conditions.
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Introduction

Oxygen transfer is an important part of wastewater treat-
ment and accounts for as much as or even higher than
60% of energy consumption in the activated sludge process
in full-scale wastewater treatment plants (WWTPs) (Jiang
et al., 2012; Krause et al., 2003); therefore, the exact
measurement of oxygen transfer parameters is essential
and helpful in recognizing the influence of oxygen transfer
on sewage quality and process operating conditions, as
well as seeking the optimum operational parameters for
an aeration system. Aeration systems transfer oxygen into
liquid by either diffusing gas through a gas-liquid interface,
or dissolving gas into the liquid solution using a semi-
permeable membrane (Rosso et al., 2006). In the case of
diffused aeration, aerator-related variables including the
orifice diameter, bubble diameter, material of construction,
depth of submergence, airflow rate per aerator, layout, aer-
ator density, wetting property and fouling nature influence
clean water oxygen transfer (Mahendraker et al., 2005a).
Fine-bubble aeration is a subsurface form of diffusion in

* Corresponding author. E-mail: hanchang@mail.tsinghua.edu.cn

which air is introduced in the form of very small bubbles
to aid or enhance the treatment of wastewater. It has be-
come the most common aeration technology in wastewater
treatment in the Organization for Economic Co-operation
and Development countries, and usually exhibits higher
efficiencies per unit energy consumed (Rosso et al., 2006).

Based on a large number of studies on oxygen transfer
in clean water, the American Society of Civil Engineers
(ASCE) standard was established to measure the oxygena-
tion capacity of aeration devices in clean water (ASCE,
1992). The impacts of physical variables such as temper-
ature, pressure, reactor geometry, mixing, surface tension
and viscosity on oxygen transfer in clean water are well
documented. Thus the mass transfer of oxygen is well
understood in clean water; however, this is not the case
under process conditions.

As pointed out by the ASCE guidelines for In-Process
Oxygen Transfer Testing (ASCE, 1996), three methods
of measuring the oxygen transfer parameters of oxy-
genation devices under process conditions can be taken
into account: the steady-state oxygen uptake rate method,
the non-steady-state method and the off-gas method. The

http://www.jesc.ac.cn
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major limitation of the steady-state oxygen uptake rate
method is the requirement of a steady-state process condi-
tion, which is particularly difficult to achieve in full-scale
WWTPs (Mahendraker et al., 2005a). For the non-steady-
state method, the change in oxygen concentration can
be achieved by changing power levels, adding hydrogen
peroxide or aerating with pure oxygen. The non-steady-
state method is commonly used in bench or pilot scale
oxygen transfer testing under process conditions (Pratt et
al., 2004; Mahendraker et al., 2005a, 2005b); however,
its employment to evaluate the oxygenation capacity of
aeration devices in full-scale operation has been scarce
in previous literatures because the non-steady-state condi-
tions are hard to achieve and maintain in WWTPs.

The off-gas method shows the most feasible charac-
teristics for the determination of oxygen transfer rates in
bioreactors operated at lab-scale or full-scale, such as the
aeration tank in WWTPs (Redmon et al., 1983; Krause et
al., 2003; Rosso et al., 2005; Schuchardi et al., 2007). This
method offers the advantages of differentiation in location
and time and the abandonment of respiration tests. It is
performed at real in-process conditions without shutting
off the inlet and effluent of the aeration tank (Krause
et al., 2003). However, due to lack of comparison with
other methods, the validity of the off-gas method in the
determination of oxygen transfer parameters in a full-scale
WWTP is still questionable. Moreover, the impacts of
factors under operational conditions, which are different
from those in clean water, on aeration performance need
more experimental verification.

This work evaluates a newly-established full-scale aer-
ation tank in the Lucun WWTP in Wuxi, China, which
provides us opportunities to obtain first-hand and valuable
engineering data used in non-steady-state testing. The non-
steady-state and off-gas methods were used to determine
the oxygen transfer parameters of aerators under process
conditions in the tank for comparison, including the vol-
umetric mass transfer coefficient (KLa), oxygen transfer
rates (OTR) and oxygen transfer efficiency (OTE). The
α factor (ratio of process water to clean water transfer
coefficients) of fine-bubble aerators located in different
corridors of the aeration tank and at various sampling
times was investigated. The results aim to offer basic
statistics and guidance on the operation and optimization
of WWTPs in terms of aeration system design and its
energy-saving solution.

1 Materials and methods

1.1 Aeration system in wastewater treatment plant

The Lucun WWTP in Wuxi, China is operated in
anaerobic-anoxic-oxic (A2/O) process mode with treat-
ment capacity of 100,000 tons per year. Two sets of
identical A2/O bioreactors are the main biological treat-
ment processes supplied with separate influent. Taking
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Fig. 1 Aeration system in Lucun WWTP, where the dashed lines stands
for aeration pipes; arrows stand for wastewater flow direction; stripes
stand for distribution positions of aerators and location indicated by the
asterisk stands for the position of on-line oxygen meter.

one set of A2/O processes as the target, the aeration tank
was operated in plug flow and divided into nine corridors
according to its physical structure as shown in Fig. 1. In
each corridor, three zones designated the front aeration
area, the middle plug flow area and the back aeration
area were defined along the water flow direction. The
aeration generated by the air blower was distributed into
nine corridors through five ball valves and fine-bubble
aerators were evenly installed. The aerators are GY·Q-type
spherical fine-bubble ceramic aerators produced by Yixing
Shihua Environmental Protection Company, China. The
external diameter of an aerator is 240 mm with a height
of 94 mm and a thickness of 12 mm. The service area is
0.4–0.6 m2/unit for a water depth of 4–6 m and air flow
rate of 2–6 m3/hr for a single aerator.

1.2 Oxygen transfer testing methods under process
conditions

1.2.1 Off-gas method
In the testing, the oxygen transfer capability of aerators
was estimated by means of a gas phase mass balance over
the aerated volume (Redmon et al., 1983). The oxygen
transfer capacity, presented by the parameters of volumet-
ric mass transfer coefficient (KLa, hr−1), oxygen transfer
rate (OTR, kg/hr) and oxygen transfer efficiency (OTE, %)
of aerators under process conditions are determined from
the molar ratios of the inlet and outlet gas fractions in the
aerobic tank described by ASCE (1996) as follows:

KLa =
ρ × Q(Yin − Yout)

V(C∗s −C)
(1)
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OTR =
KLa ×C∗s × V

1000
(2)

OTE =
OTR
Gs
× 100% (3)

where, ρ is the oxygen density, equal to 1.33 kg/m3 at
20°C with 50% relative humidity; Q (m3/hr) is the air flow
rate; V (m3) is the aeration volume; Y in, Yout are the molar
ratios of inlet and outlet gas fractions, respectively; Cs

∗

(mg/L) is the saturated oxygen concentration in the aerobic
tank attained at infinite time and C (mg/L) is the average
oxygen concentration in the aerobic tank; Gs (kg/hr) is the
total oxygen mass supplied. If the test conditions are not at
20°C, KLa can be amended using Eq. (4):

KLa(20oC) = KLa(T ) × 1.024(20−T ) (4)

where, T (°C) is temperature.
A portable hood with the dimensions of 1 × 1 m2 was

immersed in the liquid with a depth of about 10 mm in the
aeration tank and captured the gas bubbles that reached the
surface. In the testing, the hood was moved in the aeration
tank along the nine corridors. The measuring points of
corridor-1, -2, -4, -6 and -9 were set in the middle plug
flow area, while the measuring points of corridor-3, -5 and
-7 were located in the front aeration area. Furthermore, the
oxygen transfer testing in corridor-2 was performed at 9:00
a.m., 12:00 a.m. and 5:00 p.m. over the course of a day to
observe the oxygenation change of aerators with time.

The gas flowed through an analyzer (Z1100, ESC Com-
pany) that measures the oxygen molar ratio, Yout. Q was
read through the flow meter mating with the ball valve. C
was measured by a portable oxygen meter (LDO TM HQ,
HACH Company). The oxygen molar ratios and C were
measured for three minutes and the mean values were used
for calculation. One liter mixed activated sludge liquid was
taken from the aerated tank and aerated over 24 hr until the
dissolved oxygen concentration remained constant. This
saturated concentration for Cs

∗ was then recorded.

1.2.2 Non-steady-state method
The testing involved measuring the oxygen concentrations
over time in the tank after elevating it by increasing
aeration from the steady-state normal operating conditions
and analyzing the data as follows (ASCE, 1996):

KLa =
1

t − t0
ln(

C∗s −C0

C∗s −C
) (5)

where, t (hr) is the time and subscript zero means the
starting time when the aeration power level was not
changed. Expressions of OTR, OTE and the relationship
of KLa with temperature are similar to Eqs. (2)–(4) in the
off-gas method.

During the non-steady-state method, the objective aer-
ation tank was cut off from its inlet and outlet, and

continuously aerated for several hours until the oxygen
concentration in the tank remained stably high, indicating
that the activated sludge reached the endogenous respira-
tion process. At this point, the aeration was stopped to
make the oxygen concentration decrease to a low level.
Then the non-steady state was achieved by increasing the
changeable power levels in the tank. At four power levels,
the increases in oxygen concentrations in corridor-1, -5 and
-8 were recorded by the on-line oxygen meters (Fig. 1) and
used for the calculation of oxygenation performance.

2 Result and discussion

2.1 Oxygenation performance of fine-bubble aerators
in clean water

According to the non-steady-state oxygen transfer test-
ing report of the GY·Q spherical fine bubble aerator in
clean water presented by the National Quality Control
and Inspection Center of Ministry of Construction for
Water Supply and Discharge Equipment (China), under
the conditions of the service area of 1 m2/unit, effective
depth of 6 m and the testing water temperature of 23.6–
23.7°C, the relationship between oxygenation performance
and aeration amount is shown in Table 1. Large studies
have revealed that the oxygenation parameters of aerators
under the same service area were a power function of the
aeration amount (ASCE, 1992, 1996; Zamouche et al.,
2007; Schuchardi et al., 2007). Therefore, a quantitative
relationship between the oxygenation performance param-
eters of the GY·Q fine bubble aerator and aeration amount
was derived and presented as follows:

KLa(20oC) = 1.787 × Q0.877 (6)

OTR = 0.128 × Q0.877 (7)

OTE = 0.459 × Q−0.12 (8)

2.2 Oxygenation performance of fine-bubble aerators
under process conditions measured by off-gas
method

The service area and aeration amount of a single aerator
in the aeration tank of Lucun WWTP were 0.9 m2 and
0.59–0.74 Nm3/hr, respectively, with effective depth of
aeration of 6 m. During the measurement, the testing
temperature remained at (20 ± 2)°C. The oxygen saturation
concentration C∗s in the mixed liquid at 20°C was 8.25

Table 1 Oxygenation performance of fine bubble aerator in clean water

Aeration amount OTR OTE
(Nm3/hr) (kg/hr) (%)

2.55 0.293 41.1
3.82 0.415 38.8
5.11 0.541 37.8

OTR: oxygen transfer rate; OTE: oxygen transfer efficiency.
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mg/L, lower than the 12 mg/L value for clean water. The
oxygenation performance parameters of the fine-bubble
aeration system in the WWTP are shown in Table 2, where
KLa was converted to KLa(20°C) according to Eq. (4).

According to the results shown in Table 2 as well as the
oxygenation parameters calculated at the average aeration
amount of 0.65 m3/hr in clean water, α factors for the ratio
of process water to clean water in different corridors in the
plug-flow aeration tank are shown in Fig. 2.

In Fig. 2, it can be easily seen that the oxygenation
performance of fine bubble aerators in different corri-
dors of aeration tank varied significantly. Since KLa is
proportional to OTR, the trends of the two parameters
as well as OTE in different corridors are similar. In the
corridors which shared the same main aeration pipe, the
front aeration area had better oxygen transfer performance
than the middle plug flow area (α factors in corridor-2, -4
and -6 were smaller than those in the corridor-3, -5 and
-7). Although a large number of studies have testified that
α of fine-bubble aerators under process conditions can be
influenced by water quality, organic load, aeration amount,

Table 2 Oxygenation performance of fine bubble aerator in aeration
tank measured by off-gas method

Number C Yout KLa(20°C) OTR OTE
(mg/L) (%) (hr−1) (kg/hr) (%)

Oxygenation performance for different corridors
Corridor-1 2.86 17.4 0.77 0.053 15.0
Corridor-2 2.14 18.7 0.38 0.026 8.1
Corridor-3 1.55 16.2 0.86 0.059 20.4
Corridor-4 1.22 17.5 0.62 0.043 14.2
Corridor-5 1.32 16.9 0.76 0.052 17.0
Corridor-6 1.95 17.8 0.72 0.049 12.7
Corridor-7 3.11 16.8 1.23 0.084 17.9
Corridor-9 2.61 18.6 0.48 0.033 8.7

Oxygenation performance at corridor-2 over a day
9:00 a.m. 1.87 17.9 0.49 0.033 20.8
12:00 a.m. 0.27 17.5 0.45 0.031 19.4
5:00 p.m. 0.45 17.9 0.39 0.027 17.1
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Fig. 2 α factors of fine bubble aerator in the different corridors of the
plug-flow aeration tank measured by the off-gas method.

operational type of aeration tank and fouling of the aerators
(ASCE, 1992, 1996), we attributed the better oxygenation
performance to the differences in aeration intensity caused
by the uneven distribution of aerators in the tank. Among
all the fine-bubble aerators, the oxygenation performance
parameters of those located in the middle of the plug
flow aeration tank in corridor-5 were the closest to the
average values. Compared to the oxygenation performance
in clean water (KLa(20°C), OTR, and OTE were calculated
to be 1.23 hr−1, 0.088 kg/hr and 48.3%, respectively, at
the aeration amount for a single aerator of 0.65 Nm3/hr),
KLa(20°C). OTR and OTE of fine-bubble aerators under
process conditions account for 31%–100%, 29%–96%,
and 33%–86% of those in clean water. Moreover, the
average values of KLa(20°C), OTR and OTE for the fine-
bubble aerators decrease by 41%, 43% and 42% in the
actual sewage treatment plant.

Furthermore, α factors in corridor-2 over the course of
a day are shown in Fig. 3. It can be concluded that the
aerators at the same position in the tank almost shared
the same oxygenation capacity in one day with a slight
difference of morning > noon > evening. According to
the water quality analysis at the testing point (Table 3),
COD and NH4

+-N concentrations at noon were the highest.
Previous studies have revealed that higher organic load
always led to weaker oxygen transfer capability (ASCE,
1992, 1996). However, possibly due to the influence of air
and water temperatures, aeration performance at noon was
not the worst during the whole day.
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Fig. 3 α factors of fine-bubble aerator in corridor-2 over one day.

Table 3 Water quality in the corridor-2 of aeration tank

Time COD (mg/L) NH4
+-N (mg/L)

9:00 a.m. 190 1.7
12:00 a.m. 282 2.7
5:00 p.m. 233 1.4
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2.3 Oxygenation performance of fine-bubble aerators
under process conditions measured by the non-
steady-state method

After three hours’ aeration with inlet and outlet shut off in
the tank, the dissolved oxygen concentration reached about
9–10 mg/L. After the aeration stopped, the reductions
measured by the on-line oxygen meters in corridor-1, -5
and -8 are presented in Fig. 4. The temperature in the tank
was (13 ± 2)°C. The respiration rates of microorganisms in
corridor-1, -5 and -8 were calculated to be 3.66, 3.78 and
3.48 mg/(L·hr), respectively, with the specific respiration
rates of 1.09–1.43 mg/(g MLSS·hr) at the activated sludge
concentration of 3 g MLSS/L in the tank. Zhang et al.
(2003) have concluded that the microorganisms reached
the endogenous respiration process when the specific res-
piration rate decreased to 3.33 mg/(g MLSS·hr). Therefore,
the values measured in this study demonstrated that the
endogenous respiration process was reached in the tank
after three hours’ aeration. Furthermore, low temperature
and lack of metabolic storage substances contained in the
cells are both likely to lead to a low endogenous respiration
rate. Figure 4 also indicates that the dissolved oxygen
was distributed relatively uniformly in the tank during the
endogenous respiration process, especially in corridor-1
and -5.

In the non-steady-state testing, the oxygenation per-
formance parameters of the fine-bubble aeration system
in WWTP were calculated at variable aeration intensities
(Table 4). The aerator service area of the aerators was
0.9 m2/unit and the effective depth was approximately 6
m. The KLa was converted to KLa(20°C) using Eq. (4).
Furthermore, the values of KLa, OTR and OTE in clean
water at different aeration intensities (0.29–1.03 m3/hr)
were calculated according to Eqs. (6)–(8). The α factors in
different corridors in the plug-flow aeration tank are shown
in Fig. 5.

As shown in Fig. 5, the oxygenation performance of
different corridors was different, similar to the results
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Fig. 4 Oxygen depletion measured by the on-line oxygen meters at
corridor-1, -5 and -8 of aeration tank.

Table 4 Oxygenation capability of fine bubble aerator in the activated
sludge tank measured by non-steady-state testing

Number Q KLa(20°C) OTR OTE
(Nm3/hr) (hr−1) (kg/hr) (%)

Corridor-1 0.29 0.006 0.00036 0.3
Corridor-5 0.140 0.00904 11.6
Corridor-8 0.004 0.00027 0.4
Mean 0.055 0.00355 4.5
Corridor-1 0.64 0.629 0.04066 20.5
Corridor-5 0.908 0.05873 31.9
Corridor-8 0.838 0.05421 28.9
Mean 0.751 0.04857 25.8
Corridor-1 0.79 1.257 0.08132 33.7
Corridor-5 1.187 0.07680 34.7
Corridor-8 1.048 0.06777 29.5
Mean 1.082 0.07003 30.6
Corridor-1 1.03 1.746 0.11295 36.9
Corridor-5 1.955 0.12650 42.1
Corridor-8 1.257 0.08132 27.1
Mean 1.641 0.10617 35.2
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Fig. 5 α factors of fine-bubble aerator in corridor-1, -5, -8 of activated
sludge tank measured by non-steady-state method.

measured by the off-gas method. Under the four aeration
conditions, corridor-5 possessed the best performance.
Since the inlet of the aeration tank was closed during
the non-steady-state measurement, the aeration tank was
almost fully mixed. Therefore, the difference of the oxy-
genation performance is likely due to the variable gas
pressure allocation and blocking levels of aerators in
different corridors.

The oxygen transfer performance of the fine-bubble
aerators under process conditions decreased compared
with the oxygenation in clean water. The α factors in KLa,
OTR and OTE values increased with the increased aeration
intensity. At the low aeration amount of 0.29 Nm3/hr, the
average value of KLa, OTR and OTE along the whole tank
dropped by 91%, 92% and 91% compared to clean water
conditions. However, the discrepancies decreased to 11%,
19% and 23% when the aeration amount increased to 1.03
Nm3/hr.

The relationships of aeration intensity and oxygenation
performance under process conditions, which were also
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proved to be in accord with the power curves similar to
those in clean water in previous studies (ASCE, 1992,
1996; Zamouche et al., 2007; Schuchardi et al., 2007):

KLa(20◦C) = 1.925 × Q2.775 (9)

OTR = 0.422 × Q1.708 (10)

OTE = 0.125 × Q−2.774 (11)

From the simulation results, it can be easily seen that
the loss of oxygen transfer coefficient was over 50% under
the low-aeration conditions (Q < 0.67 Nm3/hr). However,
the increase rates in oxygenation parameters under process
conditions were faster than those in clean water. As the
aeration amount reached 0.96 Nm3/hr, the discrepancy of
KLa(20°C) between the process condition and clean water
was negligible.

2.4 Comparison of oxygenation performance of fine
bubble aerator in WWTP measured by non-steady-
state method and off-gas method

We have noticed the fact that a common feature in the eval-
uation of oxygen transfer testing methods in the previous
studies is that each one yields different results. Mahendrak-
er et al. (2005a) indicated that steady-state oxygen uptake
rate and off-gas methods resulted in comparable estimates
of oxygen transfer parameters; however, the validity of the
non-steady-state method to measure the oxygen transfer
under process conditions was questionable. Pratt et al.
(2004) found that the off-gas method resulted in the highest
KLa of oxygen for a given reactor, while the non-steady
state method resulted in the lowest KLa. However, in the
study of oxygen transfer testing procedures in full-scale
membrane bioreactors (Krause et al., 2003), using non-
steady state methods and the off-gas method resulted in
the same average value of OTR. Consequently, this incon-
sistency also increases the demand for more experimental
comparison between these methods. In our study of the off-
gas testing, the average aeration amount was 0.65 Nm3/hr,
approximately equal to the average aeration amount of
0.64 Nm3/hr of the second stage in the non-steady-state
method. Under the same aeration amount, the oxygenation
performance parameters of the two methods, shown in
Fig. 6, indicate that the results obtained by the two methods
were relatively comparable. There is no doubt that the
off-gas method is superior for the oxygen transfer testing
of aerators under full-scale process conditions, as it does
not require changing the power level of the aeration tank,
which makes it a good and economical testing option for
WWTPs in operation.

3 Conclusions

(1) The oxygenation performance parameters of fine-
bubble aerators in different corridors of an aeration tank
varied significantly as measured by the off-gas method,
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Fig. 6 Oxygenation performance parameters measured by the off-gas
method and non-steady-state method.

however, the oxygen transfer capacity varied only slightly
over the course of a day. (2) Results measured by the off-
gas method and non-steady-state method of the oxygen
transfer performance of the fine-bubble aerators in the
aeration tank are almost corresponding and comparable.
(3) At the measured aeration intensities, the loss of oxy-
gen transfer coefficient was over 50% under low-aeration
conditions (Q < 0.67 Nm3/hr); however, the discrepancy
of KLa(20°C) between the process condition and clean
water was negligible as the aeration amount reached 0.96
Nm3/hr.
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