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Abstract
Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis. Accompanying
the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondingly decreased, while the sulfonate group of 4-
PSA was released as sulfate ion. Oxalate and formate were obtained as minor by-products. Additionally, phenol, 1,4-hydroquinone,
hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA. A reaction
pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and
kinetics. It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law. The effects of different Fe ions and
initial concentrations of 4-PSA on the degradation rate were investigated. It was found that the presence of Fe ions could increase
the degradation rate of 4-PSA, while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour. The
disappearance rate of 4-PSA was significantly affected by pH.

Key words: 4-phenolsulfonic acid; destruction; contact glow discharge electrolysis; first-order rate law; Fenton reaction
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Introduction

The continuing emission of hazardous organic compounds
in wastewaters and drainage as a result of industrial
and agricultural human activities is of grave environ-
mental concern (Marye et al., 1993; Ollis et al., 1993).
4-Phenolsulfonic acid (4-PSA) is an important interme-
diate/component of detergents, medicines, agrochemicals,
colouring agents and surfactants. In addition, the com-
pound was used in electrolytic galvanizing baths for tin
plate production and in electrolytic refining for the purifi-
cation of crude tin (Pujara et al., 2007). 4-PSA is found in
most global groundwater sources, due in part to its high
water solubility. Nowadays, it is well known that 4-PSA
is a highly toxic compound and it has been classified as
a “priority pollutant” by the U.S. Environmental Protec-
tion Agency since 1976 (Luise et al., 2000). Considering
the toxicity of 4-PSA toward microbiological processes,
efforts aimed at developing advanced oxidation processes
(AOPs) for the destruction of 4-PSA in water sources are
underway. TiO2 (Pujara et al., 2007) and Fenton reactions
using Fe2+/H2O2 systems (Qu, 2002) have previously
been employed to degrade 4-PSA. In each case, it has

* Corresponding author. E-mail: yanghaiming80@sina.com

been postulated that hydroxyl radical generated under the
reaction conditions might play a crucial role as a potent
oxidizing species.

In a typical electrolysis process – where a thin wire an-
ode is in contact with the electrolyte surface – if the applied
voltage is sufficiently high, one can observe the formation
of a sheath of vapour in the form of a glow discharge
around the electrode through which current flows, even
at atmospheric pressure. This phenomenon is specifically
termed contact glow discharge electrolysis (CGDE) (Hick-
ling and Ingram, 1964; Hickling, 1971; Sengupt and Singh,
1991; Gangal et al., 2009). In anodic CGDE processes,
the ionic species in the gaseous discharge are accelerated
due to the steep potential gradient, and pass into the
solution with a high enough energy distribution to bring
about chemical changes in the solution. In the reaction
zone, ionized and/or activated water molecules resulting
from the collisions of bombarding ions may possibly react
with other water molecules to produce both hydroxyl and
hydrogen radical species. One possible pathway would
involve reaction of two hydrogen radicals, resulting in the
formation of hydrogen. Hydrogen peroxide, an oxidant, is
one of the main products of anodic CGDE in a solution of
inert electrolytes, and is formed by the recombination of
two hydroxyl radicals during the process (Hickling, 1971;
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Mazzocchin et al., 1973; Almubarak and Wood, 1977;
Bullock et al., 1980; Sengupta and Singh, 1994; Sengupta
et al., 1998a, 1998b; Gangal et al., 2010).

On the basis of a series of studies on degradation of
aromatic compounds by anodic CGDE, it was assumed
that hydroxyl radicals would act as the primary species
responsible for breakdown of the benzene nucleus (Tezuka
and Iwasaki, 1997, 1999; Tezuka et al., 2001; Amano et
al., 2004; Amano and Tezuka, 2006; Yang et al., 2009;
Yang and Tezuka, 2011a, 2011b). Since anodic CGDE has
proven to be one of the promising AOPs (Gao et al., 2003a,
2003b; Wang and Jiang, 2008), it appears opportune to
acquire practical knowledge of the aqueous degradation of
4-PSA induced by anodic CGDE. In the present article, the
comprehensive destruction of 4-PSA dissolved in a neutral
phosphate buffer solution by anodic CGDE is described in
terms of both mechanistic and kinetic aspects.

1 Experimental

The reaction apparatus for the anodic CGDE experiments
is illustrated in Fig. 1. A cylindrical glass cell was em-
ployed. The anode, a platinum wire of 0.6 mm diameter
sealed within a glass tube, was introduced into the cell.
The cathode employed was a stainless-steel plate (35 mm
× 10 mm × 2 mm) and placed in another glass tube, with
its lower end plugged by a sintered glass disk of medium
porosity, and immersed in 70 mL of an aqueous phosphate
solution (8.7 mmol/L potassium dihydrogenphosphate and
30.4 mmol/L disodium hydrogenphosphate, pH = 7.4) or

+-

Anode

Electrolytic

solutionCathode

Ice-water bath

Teflon-coated magnetic bar

Magnetic stirrer

Fig. 1 Apparatus for anodic contact glow discharge electrolysis (CGDE).

40 mmol/L sodium sulfate solution.
Because Fe ions precipitated on addition to the phos-

phate solution, sodium sulfate solution was employed in
place of phosphate solution to investigate the effects of Fe
ions on the disappearance rate of 4-PSA. For the source of
Fe ions, either ferrous or ferric sulfate was used.

A voltage of 500 V from a DC power supplier was
applied between the electrodes. The depth of the discharge
electrode (anode) in the solution was ca. 1 mm, and
adjusted so that the average current could be maintained at
approximately 70 mA. The total electricity passed during
CGDE was measured by a digital coulomb-meter. During
CGDE, the solution was gently stirred with a Teflon-coated
magnetic bar and the cell was placed in an ice-water bath
to hold the temperature of the bulk solution at about 20°C.

Reagent-grade 4-PSA was used without further purifi-
cation. Identities of the products, as well as unreacted
starting material, were determined by high-performance
liquid chromatography (HPLC; Shimadzu LC10A). For
the quantification of 4-PSA, a GL Sciences Inertsil ODS-
4V column (5 mm, 4.6 × 150 mm) connected to an
ultraviolet (UV)-Visible detector (Shimadzu SPD-M10A)
was used; the eluent used was 0.1 mol/L ammonium
dihydrogen phosphate, adjusted to pH 2.5 by KOH. A
Shodex Ionpak KC-811 column (8 × 300 mm) with an
eluent composed of 0.5 mmol/L and 15 mmol/L perchloric
acid + acetonitrile (85:15, V/V) were used together with a
conductivity detector (Shimadzu CDD-6A) for the analysis
of formate and oxalate. In addition, a HAMILTON PRP-
X100 column (10 mm, 4.1 × 150 mm) with an eluent of
4 mmol/L p-hydroxybenzoic acid (+2.5% methanol) was
used together with a conductivity detector for the analysis
of sulfate. The amount of total organic carbon (TOC) in
the solution was measured by a TOC analyser (Shimadzu
TOC-VE). In order to identify the minor intermediate
products, the reaction solution after 20 min of CGDE
was extracted with ethyl acetate. The extract was dried
with anhydrous sodium sulfate, filtered, and concentrated
by rotary evaporation at 35°C. Then, the sample was
analysed by gas chromatography-mass spectrometry using
a Shimadzu GC17A/QP5050A GC/MS combination. The
GC17A was equipped with a low polarity (5% phenyl-
siloxane, 95% methyl-siloxane) capillary column (30 m
length, 0.25 mm ID, 0.25 µm film thickness, 10 m length
guard column). The injector temperature was maintained
at 280°C and the transfer interface at 280°C. The oven
temperature was ramped from 60°C to 280°C at a rate of
10°C/min. The QP5050A is an EI quadrupole-based mass
spectrometer with a maximum scan range of 900 amu and
ionizing electron energy of 70 eV. For the determination
of hydrogen peroxide in the absence of 4-PSA, titration
with permanganate was executed; iodometry using sodium
iodide in 2-propanol was adopted for the fractional detec-
tion of hydrogen peroxide in solutions containing 4-PSA,
where iodine liberated through the redox reaction involv-
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ing hydrogen peroxide was back-titrated with thiosulfate.

2 Results and discussions

2.1 Decomposition of 4-PSA

When anodic CGDE was applied to an aqueous phosphate
solution containing 4-PSA (an initial concentration of 5.0
mmol/L, corresponding to 360 mg/L of TOC, as shown
in Fig. 2), both the 4-PSA and TOC concentrations in
the solution were found to decrease over the course of
the reaction. It should be noted that the decrease in
TOC corresponds to the formation of inorganic carbon. In
addition, it was also observed that the sulfonate group of
4-PSA was liberated as sulfate ion.

The course of decomposition of 4-PSA by anodic CGDE
is depicted in Fig. 2; the variations in concentrations of 4-
PSA, TOC, and sulfate ions as a function of discharge time
are indicated. At the beginning of reaction, the concen-
trations of both 4-PSA and TOC decreased monotonously
with discharge time. After 240 min, 4-PSA was completely
consumed and most of the TOC had disappeared. This
observation indicates that anodic CGDE is effective in the
conversion of carbon atoms of the benzene nucleus to IC,
which may then exist in solution as hydrogencarbonate,
or as carbon dioxide in the gas phase. Furthermore, the
sulfonic acid/sulfonate functionality of 4-PSA was almost
quantitatively liberated as the corresponding sulfate ion.
Peroxodisulfate (persulfate) ion was not detected during
degradation of 4-PSA, an observation in good agreement
with the CGDE study of a dilute sulfuric acid solution
(Tezuka, 1993; Amano et al., 2004). The power con-
sumption of CGDE was 35 W and the energy efficiency
for 4-PSA degradation was 1.63 g/kWh calculated by
the equation employed by other researchers (Malik M A,
2010). And these results were better than those observed in
a similar reaction using UV/TiO2 (Pujara et al., 2007), or
at least comparable to them.

The gap between the decay curves of 4-PSA and TOC
is indicative of the presence of organic intermediate prod-
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Fig. 2 Decomposition of 4-PSA (C0: 5.0 mmol/L) by anodic CGDE.

ucts. In the reaction mixture, various organic substances
possessing carboxylate functionalities were detected; how-
ever, because of their lability and low concentrations in
solution, the identities of most of these species have not
been determined. Only oxalate and formate carboxylate
species were formed in amounts worth quantifying. The
variations in oxalate/formate concentration as a function
of discharge time are shown in Fig. 3. The concentration of
oxalate culminated at 60 min, and then decreased gradual-
ly, whereas formate concentration rose in the starting 210
min, and then held steady for the duration of the reaction.
It should be noted that oxalate was formed more rapidly
than formate, while the increase in formate concentration
appeared relatively stable under the conditions. However,
it seems improbable that formate might result from the
decomposition of oxalate, since formate is not obtained in
the CGDE reaction of oxalate alone (Amano and Tezuka,
2006).

The elemental yields of the aforementioned products,
namely inorganic carbon, oxalate, formate, and SO4

2−, as
well as the conversion of 4-PSA, are tabulated in Table 1.
The yield was defined as the percentage of moles of a
certain element (C or SO4

2−) in each product per initial
number of moles of that element in the starting material.
The yields of undetermined intermediates, specified as not
determined, were estimated so as to balance the sum of
yields with respect to 4-PSA conversion. Particularly in
the earlier stage of a run, not determined was noticeable,
but steadily lowered as the conversion went up. It was
ascertained that not determined products associated with
SO4

2− and C declined to 0% and 3%, respectively, at a
discharge time of 240 min.

2.2 Intermediates in anodic CGDE of 4-PSA

It is important to determine intermediate identities to
aid elucidation of the degradation mechanism of 4-PSA.
Emphasis was placed on the search for primary products,
which may be formed only in the initial stages of de-
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Fig. 3 Carboxylates from anodic CGDE of 4-PSA (C0: 5.0 mmol/L).
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Table 1 Elemental yields of products from anodic CGDE of 4-PSA at initial concentration of 5.0 mml/L

Time 4-PSA Product yield (%)
(min) conversion Sulfur Carbon

(%) SO4
2− Not determined Formate Oxalate Inorganic carbon Not determined

30 48 38 10 3 13 17 16
60 71 62 9 4 17 33 17
90 84 82 2 5 15 47 17
120 91 90 1 6 13 57 15
150 96 95 1 6 11 67 12
180 99 97 1 6 9 75 9
210 100 100 0 7 6 81 6
240 100 100 0 7 5 85 3

composition, in the reaction solution at discharge times
of 10–30 min. As a result of the intermediate instability
under the reaction conditions, very few species could be
satisfactorily identified by HPLC (Fig. 4) and GC-MS
analysis (Fig. 5). 1,4-Hydroquinone (2), 1,4-benzoquinone
(3), hydroxyquinol (4), and phenol (1) were detected as
primary intermediates. Compounds (2)–(4) can be de-
scribed as the products formed by the attack of a hydroxyl
radical at the para-position of the phenolic OH group in 4-
PSA; these results confirmed that the species responsible
for oxidation in aqueous media by anodic CGDE was
in fact the hydroxyl radical (Sengupta and Singh, 1994;
Sengupta et al., 1995, 1998a, 1998b; Gangal et al., 2010).
Phenol (1) appears to be the result of reduction of 4-PSA
by a hydrogen radical, generated by anodic CGDE. The
possible formation pathways of (1)–(4) are depicted in
Scheme 1.

Based on a survey of the intermediates, it is hypothe-
sized that degradation of aqueous 4-PSA by anodic CGDE
proceeds in a successive manner as follows: (I) the re-
duction of 4-PSA to form phenol (1) is accompanied by
hydroxylation of the benzene nucleus, giving rise to (2) and
(3); (II) oxidative ring cleavage leads to the formation of

OH

OH

OH
OH

OH
HO

SO3H

4
2

0

0 2 4 6 8 10 12 14 16
Time (min)

Fig. 4 High-performance liquid chromatography of 4-PSA (C0: 5.0
mmol/L) at 30 min.

OH

O

O

OH

SO3H

1

3
0

6 8 10 12 14 16 18 20
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Fig. 5 Gas chromatography results for 4-PSA (C0: 5.0 mmol/L) at 20
min.

carboxylates–oxalate and formate; and (III) mineralization
to IC and SO4

2−. The desulfurization of 4-PSA should take
place through all the steps mentioned above.

2.3 Kinetics of 4-PSA decomposition

Since the decay curves of 4-PSA and TOC (Fig. 2)
appeared to be exponential during the reaction, it was
decided to apply the data associated with this decay to the
integral formula for the first-order rate law (Eq. (1)):

ln(C0/C) = kt (1)

where, C and C0, denote the concentration of 4-PSA or
TOC at the given reaction time and that at reaction time (t)
= 0, respectively, k represents the rate constant.

For each set of data, a straight line with good correlation
was obtained (Fig. 6). This result implies that both 4-PSA
and TOC reacted in accordance with the first-order rate
law. The apparent rate constants, k4-PSA and kTOC, for the
decay of 4-PSA and TOC were calculated from the slope
of each line to be 2.13 × 10−2 min−1 (R2 = 0.996) and 0.72
× 10−2 min−1 (R2 = 0.996), respectively.

The main chemical reactions in the solution during
anodic CGDE in the absence of Fe ions and organics are
described as follows (Hickling, 1971; Gao et al., 2001,
2006; Gong et al., 2008):

H2O
CGDE−−−−→ .H + .OH (2)

.OH + OH −→ H2O2 (3)

.H + .H −→ H2 (4)
2.OH + H2O2 −→ 2H2O + O2 (5)
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Among the oxidants formed during anodic CGDE (Re-
actions (2)–(5)), the hydroxyl radical was the strongest
and thus was proposed to be the main species responsible
for the degradation of organics, as shown in Reaction (6)
(Tezuka and Iwasaki, 1997, 1999, 2001; Amano et al.,
2004; Amano and Tezuka, 2006; Yang et al., 2009; Yang
and Tezuka, 2011a, 2011b).

Organics + ·OH −→ Product (6)

In addition, hydrogen peroxide, a much weaker oxidant,
was simultaneously produced, consuming two hydroxyl
radicals, as shown in Reaction (3). In the first 15 min the
concentration of hydrogen peroxide increased steadily to

4.41 mmol/L at a rate of 4.9 × 10−3 mmol/sec without
4-PSA. Following this, the rate decreased slowly with
increasing reaction time. This result might be explained by
the instability of hydrogen peroxide, as shown in Reaction
(7). When the initial concentration of 4-PSA was set
to 5 mmol/L, the rate of hydrogen peroxide formation
decreased to 3.5 × 10−3 mmol/sec in the first 15 min, with
a measured concentration of 3.24 mmol/L at 15 min. When
the destruction of 4-PSA was allowed to continue for more
than 15 min, the color of the reaction solution became deep
brown. Thus, the concentration of hydrogen peroxide was
difficult to obtain by iodometry.

With regard to hydroxyl radicals generated from hydro-
gen peroxide, Fe ions could possibly affect this generation
reaction via the Fenton reaction. The effect of Fe ions
on the disappearance rate of 4-PSA was investigated by
adding different types and concentrations of Fe ions to the
electrolytic solution. In order to avoid the formation of Fe
ion precipitates, sodium sulfate solution was employed in
place of phosphate solution. The experimental results are
listed in Table 2.

According to the results, the disappearance of 4-PSA
in sodium sulfate solution also followed a first-order rate
law; the disappearance rate constants in two experimental
runs of electrolytic solutions without Fe additives were in
agreement (2.13 × 10−2 min−1 in phosphate solution, 2.15
× 10−2 min−1 in sodium sulfate solution). Remarkably, the
disappearance rate constant was significantly enhanced up-
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Table 2 Effects of Fe ion addition on disappearance rate constant
(k4-PSA) of 4-PSA in sodium sulfate solution

Fe ion added (mmol/L) k4-PSA (×10−2 min−1) R2

Fe2+ 0.00 2.15 0.996
Fe2+ 0.25 3.23 0.997
Fe2+ 0.50 3.31 0.996
Fe2+ 1.00 3.38 0.998
Fe2+ 2.00 3.41 0.997
Fe3+ 2.00* 3.15 0.998
Fe2+ 4.00 3.40 0.996

C0: 5.0 mmol/L.

on addition of Fe2+ ions; however, no significant increase
was observed by increasing the Fe2+ ion concentration.
These results can be explained by chemical reactions
of Fe2+ ions during anodic CGDE (Reactions (8)–(10))
(Davies and Hickling, 1952, 1958; Gao et al., 2001, 2003,
2006; Tomizawa and Tezuka, 2006, 2007; Gong et al.,
2008):

H2O2 −→ 2H2O + O2 (7)

Fe2+ + H2O2 −→ Fe3+ + OH− + ·OH (8)

Fe3+ + H2O2 −→ Fe2+ + H+ + HO2· (9)

Fe2+ + ·OH −→ Fe3+ + OH− (10)

Fe3+ + OH2· −→ Fe2+ + H+ + O2 (11)

Fe3+ + ·H −→ Fe2+ + H+ (12)

The Fe2+ ion is thought to play the role of catalyst
for the regeneration of hydroxyl radicals from hydrogen
peroxide in solution, as shown in Reactions (8)–(9). The
observed increase in the disappearance rate constant of
4-PSA by addition of Fe2+ ion supports the idea that
hydroxyl radicals are probably the main species respon-
sible for 4-PSA degradation during anodic CGDE. Upon
further Fe2+ addition, it is thought that Fe2+ functions as
a consumer of hydroxyl radicals, according to Reaction
(10). When Fe3+ was added in place of Fe2+, an increase
in the disappearance rate constant of 4-PSA could also be
observed (C0: 2.00 mmol/L Fe3+; k = 3.15 × 10−2 min−1),
which was a little less than that of 2.00 mmol/L Fe2+ ion
(3.40 × 10−2 min−1). This result can be rationalized by the
formation of Fe2+ ions from Fe3+ ions through reduction
reactions, as shown in Reactions (9), (11) and (12); subse-
quent hydroxyl radical regeneration would then be able to
occur via the Fenton reaction, using catalytic Fe. In these
processes, the Fe3+ ion was not a catalytic species, but a
precursor of Fe2+ ion. With this in mind, the experimental
results mentioned above could be understood.

In order to get further kinetic information, the degrada-
tion of 4-PSA at various initial concentrations up to 80
mmol/L was examined in detail. The consumption of 4-
PSA for each initial concentration was also determined
to follow the first-order rate law. In addition, the disap-
pearance rate constants were nearly identical, as shown

Table 3 Effects of initial concentration of 4-PSA on k4-PSA in
phosphate solution

C0 (mmol/L) k4-PSA (× 10−2min−1) R2

1 2.15 0.999
5 2.13 0.998
10 2.12 0.997
20 2.15 0.997
40 2.14 0.996
80 2.17 0.996

in Table 3. This means that a greater amount of 4-
PSA could be removed from solutions with higher initial
concentrations. According to other studies (Tomizawa and
Tezuka, 2006, 2007), when the initial 4-PSA concentration
is high enough (above 80 mmol/L), the kinetics for the
decomposition of 4-PSA might be shifted from a first-order
to a zero-order rate law. A thorough investigation of this
change in initial concentration on the impact of 4-PSA
degradation is in progress. The apparent rate constants for
the disappearance of 4-PSA decreased significantly from
2.15 × 10−2, 1.84 × 10−2 to 1.37 × 10−2 with a rise
in pH from 7.4, 9.4 to 12.1, respectively. This may be
interpreted by invoking the fact that the reduction potential
of hydroxyl radicals declines with the basicity of the
solution (Buxton et al., 1988).

3 Conclusions

The exposure of 4-PSA in aqueous solution to anodic
CGDE promoted exhaustive breakdown of the compound,
with most of the TOC eventually converted to IC. The
sulfonate group of 4-PSA was quantitatively liberated as
the corresponding sulfate ion. The initial reaction stages
are hypothesized to involve the attack of a hydroxyl radical
at the phenolic para-position, as well as 4-PSA reduction
by a hydrogen radical. The experimental results could be
rationalized by assuming that the decomposition pathway
of 4-PSA cascades through a sequence of hydrogenation
events, resulting in phenol, and subsequent hydroxylation
of the benzene nucleus to provide the corresponding
hydroquinones and benzoquinones. Subsequent oxidative
ring cleavage would lead to the formation of formate
and oxalate species, followed ultimately by mineraliza-
tion to inorganic carbon, H2O, and SO4

2−. When the
initial concentration of 4-PSA was lower than 80 mmol/L,
consumption of both 4-PSA and TOC obeyed a first-
order rate law. Both Fe2+ and Fe3+ ions were shown to
enhance the disappearance rate constant of 4-PSA due to
the catalytic action of Fe2+ in hydroxyl radical formation
from hydrogen peroxide via the Fenton reaction.
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