CONTENTS

The 5th International Symposium on Environmental Economy and Technology (ISEET-2012)

Sensitive voltammetric and amperometric responses of respiratory toxins at hemin-adsorbed carbon-felt
Yasushi Hasebe, Yue Wang ... 1055

 Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis
Haiming Yang, Baigang An, Shaoyan Wang, Lixiang Li, Wenjie Jin, Lihua Li .. 1063

 Nitrous oxide emissions from black soils with different pH
Lianfeng Wang, Huachao Du, Zuoqiang Han, Xiulin Zhang ... 1071

Coulometric determination of dissolved hydrogen with a multielectrolytic modified carbon felt
electrode-based sensor
Hiroaki Matsuura, Yosuke Yamawaki, Kosuke Sasaki, Shunichi Uchiyama .. 1077

Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides
with phenylboronic acid in water/alcoholic solvents
Ben Li, Cuiping Wang, Guang Chen, Zhiqiang Zhang ... 1083

Aquatic environment

Organic matter produced by algae and cyanobacteria: Quantitative and qualitative characterization
Maud Leloup, Rudy Nicolau, Virginie Pallier, Claude Yepremian, Genevieve Feuillade-Cathalifauf .. 1089

Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation:
Kinetics and mechanism
Junfeng Niu, Lilian Zhang, Yang Li, Jinbo Zhao, Sidan Lv, Keqing Xiao .. 1098

Irrigation system and land use effect on surface water quality in river, at lake Dianchi, Yunnan, China:
Takashi Tanaka, Takahiro Sato, Kazuo Watanabe, Ying Wang, Dan Yang, Hiromo Inoue, Kunzhi Li, Tatsuya Inamura .. 1107

Temporal and spatial changes in nutrients and chlorophyll-α in a shallow lake, Lake Chaohu, China:
An 11-year investigation
Libiao Yang, Kun Lei, Wei Meng, Guo Fu, Weijin Yan ... 1117

Phosphorus speciation in the sediment profile of Lake Erhai, southwestern China: Fractionation and 31P NMR
Runyu Zhang, Liying Wang, Fengchang Wu, Baolan Song ... 1124

Effect of ammonium on nitrous oxide emission during denitrification with different electron donors
Guangxue Wu, Xiaofeng Zhai, Chengai Jiang, Yuntao Guan ... 1131

Adsorption of 2-mercaptobenzothiazole from aqueous solution by organo-bentonite
Ping Jing, Meifang Hou, Ping Zhao, Xiaoyan Tang, Hongfu Wan ... 1139

Differences in rheological and fractal properties of conditioned and raw sewage sludge
Hui Jin, Yili Wang, Ting Li, Yujing Dong, Junqing Li ... 1145

Competitive sorption between 17α-ethinyl estradiol and bisphenol A/ 4-n-nonylphenol by soils
Jianzhong Li, Lu Jiang, Xi Xiang, Shuang Xu, Rou Wen, Xiang Liu ... 1154

Terrestrial environment

Determination of estrogens and estrogenic activities in water from three rivers in Tianjin, China:
Kaifeng Rao, Bingli Lei, Na Li, Mei Ma, Zijian Wang ... 1164

Adsorption and desorption characteristics of diphenylarsenicals in two contrasting soils
Anan Wang, Shixin Li, Ying Teng, Wuxin Liu, Longhua Wu, Haibo Zhang, Yujuan Huang, Yongming Luo, Peter Christie .. 1172

Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from
contaminated soils in Hai-Pu, Taiwan
Jyoti Prakash Maity, Yuh Ming Huang, Cheng-Wei Fan, Chien-Cheng Chen, Chun-Yi Li,
Chun-Mei Hsu, Young-Fo Chang, Ching-I Wu, Chen-Yen Chen, Jiin-Shuh Jean .. 1180
Environmental biology

Vertical diversity of sediment bacterial communities in two different trophic states of the eutrophic Lake Taihu, China (Cover story)
Keqiang Shao, Guang Gao, Yongping Wang, Xiangming Tang, Boqiang Qin 1186
Abundance and diversity of ammonia-oxidizing archaea in response to various habitats in Pearl River Delta of China, a subtropical maritime zone
Zhixin Li, Wenbiao Jin, Zhaoyun Liang, Yangyang Yue, Junhong Lv ... 1195

Environmental catalysis and materials

Effect of pretreatment on Pd/Al₂O₃ catalyst for catalytic oxidation of o-xylene at low temperature
Shaoyong Huang, Changbin Zhang, Hong He ... 1206
Efficient visible light photo-Fenton-like degradation of organic pollutants using in situ surface-modified BiFeO₃ as a catalyst
Junjian An, Lihua Zhu, Yingying Zhang, Heqing Tang .. 1213
Basic properties of sintering dust from iron and steel plant and potassium recovery
Guang Zhan, Zhancheng Guo .. 1226
Degradation of direct azo dye by Cucurbita pepo free and immobilized peroxidase
Nabila Boucherit, Mahmoud Abouseoud, Lydia Adour ... 1235

Environmental analytical methods

Determination of paraquat in water samples using a sensitive fluorescent probe titration method
Feihu Yao, Hailong Liu, Guangquan Wang, Liming Du, Xiaofen Yin, Yunlong Fu 1245
Chemically modified silica gel with 1-f4-{(2-hydroxy-benzylidene)amino}phenylgethanone:
Synthesis, characterization and application as an efficient and reusable solid phase extractant for selective removal of Zn(II) from mycorrhizal treated fly-ash samples
R. K. Sharma, Aditi Puri, Anil Kumar, Alok Adholeya ... 1252

Serial parameter: CN 11-2629/X*1989*m*207*en*P*25*2013-6
Palladium-phosphinous acid complexes catalyzed Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid in water/alcoholic solvents

Ben Li, Cuiping Wang, Guang Chen, Zhiqiang Zhang*

School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China

Abstract
Highly active, air-stable and water-soluble palladium-phosphinous acid complexes have been applied to Suzuki cross-coupling reaction of heteroaryl bromides under mild conditions in water/alcoholic solvents. Suzuki cross-coupling reaction of heteroaryl bromides with phenylboronic acid occurred efficiently using palladium phosphinous acid complexes (POPd) and phase transfer catalyst (tetrabutylammonium bromide and polyethylene glycol) in water/ethanol mixture, water/propanol mixture and neat water respectively, the corresponding yields of cross-coupling heteroaryl-aryls were satisfied. The tert-butyl substituted ligand di-tert-butylphosphino in combination with POPd was found to be more active than the same family derived catalysts dipalladium complexes POPd1 and POPd2, and other two kinds of Pd-catalysts Pd(PPh3)4 and Pd2(dba)3. The mechanism of Suzuki cross-coupling reaction between heteroaryl bromides and phenylboronic acid in water was proposed with respect to the key role of phase transfer catalyst on the transmetallation step. Compared with other solid phase transfer catalysts, TBAB was tested as the ideal one. The alkalinity of base and the molar proportion between POPd and TBAB were investigated in water and alcoholic solvents. Notably, in the presence of TBAB adding alcoholic solvents into water enhanced the yields of target products. However in terms of the liquid phase transfer catalyst of PEGs, mixing water into PEGs could slightly decrease the yields with respect to the water free PEGs bulk phase, which was probably due to the homogenous liquid conditions in pure PEGs and weak interactions between PEGs and heteroaryl bromide molecules in water depending on their molecular chain lengths.

Key words: POPd; Suzuki cross-coupling reaction; heteroaryl bromides; phase transfer catalyst; water

DOI: 10.1016/S1001-0742(12)60132-6

Introduction
Pd-catalyzed Suzuki cross-coupling reaction of organoboronic reagents with organic halides has been proven as a highly efficient and versatile synthetic method to afford new C–C bond between molecules (Miyaura and Suzuki, 1995; Suzuki, 1999), and awarding the laurel of the 2010 Nobel Chemistry Prize can be deemed as a milestone for the development of Suzuki cross-coupling reaction in last 20 years. Developing stable and highly active ligands for palladium catalysts have received tremendous interests for performing the Suzuki cross-coupling reaction in both organic and aqueous mixtures. Various ligands including aminophosphine- (Wolfe et al., 1999), diamine- (Zhou et al., 2009), P-O coordinated complex (Lerebours and Wolf, 2005; Ghosh et al., 2010), organic frameworks (Ding et al., 2011; Huang et al., 2011), graphite oxide (Scheuermann et al., 2009) have been widely studied. Among these ligands, phosphinous acid complexes (t-Bu)2P(OH)2 was reported as a highly effective and environmental friendly Pd-catalyst for Suzuki cross-coupling reaction of (hetero) aryl halides and arylboronic acids (Khanapure and Garvey, 2004; George, 2002; Wolf and Ekoue-Kovi, 2006). POPd and its family derivatives [(t-Bu)2P(OH)PdCl2]2 (POPd1) and [((t-Bu)2PO···H···OP(t-Bu)2]PdCl2]2 (POPd2) are typically characterized by air-stable, good water solubility, high reactivity, and easy separation from the organic mixtures, their steric molecular frameworks are depicted in Fig. 1 (Li, 2002). The Suzuki cross-coupling reaction is often used to form the unsymmetrical biaryl compounds using aryloborane reagents as partner. The development of water-based organic transformations is growing in importance in chemistry. Its low cost and lack of inflammable, explosive, mutagenic and carcinogenic properties makes water the most suitable solvent for the production of fine chemicals (Shaughnessy and Booth, 2001). In addition, several synthetic advantages are expected using water as the solvent. Among others, phase
separation is easier because most organic compounds are lipophilic and are easily separated from the aqueous phase. Hence, Pd-catalyzed Suzuki cross-coupling reactions of (hetero-)aryl halides with arylboronic acids performed in water and water/alcoholic solvents have been intensively studied in last decade (DeVasher et al., 2004; Arcadi et al., 2003; Badone et al., 1997; Bussolari and Rehborn, 1999; Bedford et al., 2003; Wang et al., 2009; He et al., 2012; Milde et al., 2012). Moreover, water could also improve the selectivity and catalytic performance (Genet and Savignac, 1999).

In general, Suzuki cross-coupling reaction of aromatic compounds with organoboronic reagents is impossible to take place in neat water due to the immiscible properties between organic and water phase. To solve the problem of immiscible inter-phases for Suzuki cross-coupling reaction between organic and water phase, using phase transfer catalysts (PTCs) can bridge the gap between these two impossible phases. Figure 2a, b shows that in the absence of PTCs, Suzuki cross-coupling reaction is impossible to occur in water due to the failure of molecular interactions between two phases. However, with adding PTCs such as tetrabutylammonium bromide (TBAB) and polyethylene glycol (PEG) into the immiscible mixture, an interlayer phase boundary will be formed between these immiscible phases in liquid mixture, then PTC molecules can transport reactant molecules from the organic phase (e.g., heteroaryl bromides) to the aqueous phase (Pd-catalyst and phenylboronic acid), vice versa. Hence, direct interactions among molecules in the mixture could be realized leading to the transmetallation between heteroaryl bromides and phenylboronic acid via transporting functions of PTC. In Figure 2, TBAB used as a PTC on a model experimental, and a possible reaction mechanism using PTC (Snelders et al., 2009) between immiscible phases is proposed in Fig. 2c.

We have reported the environmental friendly Suzuki coupling reaction using a variety of aryl halides in water by palladium-catalyzed (Wang et al., 2009). Herein we report palladium-catalyzed heterogeneous Suzuki cross-coupling reaction in water and its mixtures (Fig. 3).

Impact of proportion between POPd and PTC was initially investigated in aqueous mixtures with a model reaction of 2-bromothiophene and phenylboronic acid. Effects of alkaline properties and other alcoholic solvents upon Suzuki cross-coupling reaction of 2-bromothiophene, 2-bromothiazole and 2-bromopyridine with phenylboronic acid were also performed. High yields of target products could be obtained using proper amount of POPd, TBAB and moderate bases such as K₂CO₃. The ratio between POPd and TBAB is also a key factor for deciding the distribution between the target products and by-products in the mixture. Experimental findings showed higher reactivity of 2-bromothiazole and 2-bromopyridine in alcoholic solvents than those in neat water.

Inspired by the interesting aqueous phase Suzuki cross-coupling findings using TBAB, heterogeneous Suzuki cross-coupling reactions with another PTC, namely PEGs were performed in parallel. Because of liquid properties,
PEGs could be directly used as a potential solvent except for the phase transferring functions. Hence, bulk phase Suzuki cross-coupling reaction of 3-bromopyridine and phenylboronic acid in the absence of water and in water/PEGs mixtures were both experimentally investigated, and remarkably different experimental tendencies were observed.

1 Experimental

All chemicals including Pd(PPh3)4 and Pd2(dba)3 were purchased from Aldrich and Acros, and used without any further treatment. A series of palladium-phosphinous catalysts were kindly supported by Combiphos Catalysts, USA. 1H and 13C NMR spectra were recorded on a 500 MHz Bruker nuclear magnetic resonance (NMR) using CDCl3 as solvent and tetramethylsilane (TMS) as the internal standard substance. High-resolution mass spectra were analyzed by Agilent 1100 LC-MS equipped with electrospray and atmospheric pressure chemical ionization source. Melting points were measured on an X-6 melting point apparatus (Beijing Tech Instrument Co., Ltd., China). The separation of the target product from the organic residue was accomplished with flash chromatography (200–300 mesh silica gel) using the binary mixture of petroleum ether and ethyl acetate as the eluting solvent. Thin layer chromatography (TLC, silica gel 60 F254) was used to trace the elution of target products with UV detector.

1.1 Typical procedure for heterogeneous Suzuki coupling reaction

A mixture of 2-bromothiophene (1.0 mmol), phenylboronic acid (1.2 mmol), K2CO3 (3.0 mmol), (n-Bu)4NBrN (0.3 mmol), POPd (0.002 mmol) and 3 mL water was magnetically stirred and heated to reflux in a Schlenk bottle under nitrogen for 2 hr. The organic layer was firstly extracted with ethyl acetate (5 mL × 3), each collected organic part was dried with anhydrous magnesium sulfate, and then the solvent was removed from the mixture by rotating evaporation. Then, the concentrated crude product was selectively separated by flash chromatography (silica gel packed column, eluting solvent: a mixture of petroleum ether and ethyl acetate) and the target products dissolved in the elution mixtures were collected.

1.2 NMR and MS analysis of heteroaryl-aryl products

2-Phenylthiophene: 1H NMR (TMS, CDCl3) δ: 7.13 (m, 1H), 7.32 (t, 1H), 7.37 (t, J = 0.67 Hz, 1H), 7.42 (t, J = 7.79 Hz, 2H), 7.67 (t, J = 7.34 Hz, 2H); 13C NMR (TMS, CDCl3) δ: 123.16, 124.88, 126.03, 127.54, 128.08, 128.96, 134.48, 144.50; [M]+ = 160.9 m/z.

2-Phenylpyridine: 1H NMR (TMS, CDCl3) δ: 7.12 (m, 1H), 7.36 (t, J = 7.00 Hz, 3H), 7.42 (t, J = 7.50 Hz, 2H), 7.62 (t, J = 8.00 Hz, 2H), 7.67 (d, J = 7.00 Hz, 1H); 13C NMR (TMS, CDCl3) δ: 120.56, 122.13, 126.96, 128.79, 129.01, 136.77, 139.42, 149.68, 157.44; [M]+ = 156.0 m/z.

3-Phenylpyridine: 1H NMR (TMS, CDCl3) δ: 7.25 (m, 1H), 7.32 (t, J = 7.32 Hz, 1H), 7.39 (t, J = 7.67 Hz, 2H), 7.49 (d, J = 7.35 Hz, 2H), 7.76 (d, J = 7.85 Hz, 1H), 8.56 (d, J = 4.21 Hz, 1H), 8.84 (d, J = 1.09 Hz, 1H); 13C NMR (TMS, CDCl3) δ: 123.61, 127.11, 128.15, 129.09, 134.43, 136.65, 137.66, 148.06, 148.22; [M]+ = 156.0 m/z.

2-Phenylthiazole: 1H NMR (TMS, CDCl3) δ: 7.28 (d, 3.00 Hz, 1H), 7.39 (t, J = 7.50 Hz, 3H), 7.85 (d, J = 3.00 Hz, 1H), 7.62 (d, J = 7.00 Hz, 2H); 13C NMR (TMS, CDCl3) δ: 118.86, 126.62, 129.00, 130.04, 133.61, 143.70, 168.44; [M]+ = 161.9 m/z.

2 Results and discussion

Due to the enhancement of steric electron atmosphere density around phosphinous ligands under proper alkaline conditions, POPd has high catalytic activity compared with other Pd-catalysts such as Pd(PPh3)4. Under alkaline conditions, the -OH group on the ligands is subject to lose H+ ion and form hydroxyl ion in situ, the hydroxyl ion could strengthen the electron atmosphere density around Pd atom and eventually enhance the Pd catalytic activity (Fig. 4).

Table 1 shows that the Suzuki cross-coupling yields are moderate in neat water using TBAB at refluxing conditions. Suzuki cross-coupling reaction of 2-phenylthiophene with phenylboronic acid was initially performed as a model reaction in neat water with various bases and Pd-catalysts to investigate the effect of alkalinity upon the heterogeneous Suzuki cross-coupling reaction and the reactivity of Pd-catalysts. Among these...
As expected, Suzuki cross-coupling reaction of 2-bromothiophene and phenylboronic acid completely failed to occur in neat water in the absence of TBAB. Gradual increase of TBAB concentration could significantly increase the yield, indicating TBAB could accelerate the cross-coupling reaction of 2-bromothiophene with phenylboronic acid rather than the homo-coupling of phenyl-boronic acid molecules. In Fig. 5a, the yield of 2-phenylthiophene pronouncedly decreases with reducing the amount of TBAB using the same amount of POPd. Alternately, in Fig. 5b, the amount of TBAB set as constant, higher yields of 2-phenylthiophene were obtained by moderate molar concentration of POPd compared to the high molar concentration. Such effect was not pronounced when POPd performed at extremely low molar concentration of 0.001 mmol.

As discussed aforementioned, the aqueous PTC system is promised to be an effective media for carrying out Suzuki cross-coupling reactions of heteroaryl bromides with phenylboronic acid. Coupling findings in Table 2 shows that the highest yield of 82.4% obtained in the presence of TBAB. However, the yield drastically decreasing to 15.4% in the presence of cetyltrimethyl ammonium bromide (CTAB), and 8.0% in the presence of tetramethylammonium bromide (TMAB), it was also observed that in the absence of any PTCs into the aqueous system, no cross-coupling product was observed except for homo-coupling biphenyls, which proved the transporting role of PTC in the proposed aqueous Suzuki coupling reaction mechanism (Fig. 2). The huge difference for the coupling reaction yields of 2-phenylthiophene in the presence of TBAB, CTAB and TMAB could attribute to the lipophilic properties corresponding to their chain structures, the longer chain length it contains, the higher lipophilicity it has. Hence, the molecular interactions between heteroaryl molecules and PTC molecules were strengthened with longer chain length. Although CTAB has a chain with 16 carbon atoms and other three chains with single carbon atom, Suzuki cross-coupling reaction yield is the lowest compared to the other two kinds of PTCs. This situation was probably due to its structural steric hindrance in liquid mixture imposed by the 16 carbon atom chain.

According to the above findings, we further studied the heterogeneous cross-coupling reactions of 2-bromothiazole and 2-bromopyridine with phenylboronic acid in water, alcohols and water/alcohol mixtures, respectively (Table 3). Both components showed quite poor activities in water, the coupling yield of 2-phenylpyridine coupling reaction of 2-bromothiophene and phenylboronic acid in water-TBAB mixtures using different bases and Pd-catalysts.

Table 1

<table>
<thead>
<tr>
<th>Base</th>
<th>Pd catalyst</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K₂CO₃</td>
<td>POPd</td>
<td>82.4</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>POPd</td>
<td>81.0</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>POPd</td>
<td>76.0</td>
</tr>
<tr>
<td>K₃PO₄</td>
<td>POPd</td>
<td>75.4</td>
</tr>
<tr>
<td>CH₃COOK</td>
<td>POPd</td>
<td>54.5</td>
</tr>
<tr>
<td>N(C₂H₅)₃</td>
<td>POPd</td>
<td>47.5</td>
</tr>
<tr>
<td>KOH</td>
<td>POPd</td>
<td>45.2</td>
</tr>
<tr>
<td>NaOH</td>
<td>POPd</td>
<td>44.0</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>POPd</td>
<td>75.9</td>
</tr>
<tr>
<td>K₂CO₂</td>
<td>POPd</td>
<td>74.0</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>Pd[PPh₃]₃</td>
<td>73.1</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>Pd₂[db]₃</td>
<td>55.7</td>
</tr>
</tbody>
</table>

As discussed in literature (Leadbeater and Marco, 2003), the specific role of PTC such as TBAB in heterogeneous Suzuki cross-coupling reaction are generally twofold. On one hand, it facilitates the solvation of organic substrates in water, but on the other hand it could enhance the rate of the coupling reaction by activating the arylboronic acid via the transition formation of [ArB(OH)]⁺ [Bu₄N]⁺ (Fig. 2c). The concentration of PTC in water also played a pivotal role for the coupling product distribution. A higher TBAB concentration could accelerate the coupling reactions. In addition, TBAB molecules can co-exist in both organic and water phase, continuously transfer between phases and facilitate coupling reaction. As expected, Suzuki cross-coupling reaction of 2-bromothiophene and phenylboronic acid completely failed to occur in neat water in the absence of TBAB. Gradual increase of TBAB concentration could significantly increase the yield, indicating TBAB could accelerate the cross-coupling reaction of 2-bromothiophene with phenylboronic acid rather than the homo-coupling of phenyl-boronic acid molecules. In Fig. 5a, the yield of 2-phenylthiophene pronouncedly decreases with reducing the amount of TBAB using the same amount of POPd. Alternately, in Fig. 5b, the amount of TBAB set as constant, higher yields of 2-phenylthiophene were obtained by moderate molar concentration of POPd compared to the high molar concentration. Such effect was not pronounced when POPd performed at extremely low molar concentration of 0.001 mmol.

As discussed aforementioned, the aqueous PTC system is promised to be an effective media for carrying out Suzuki cross-coupling reactions of heteroaryl bromides with phenylboronic acid. Coupling findings in Table 2 shows that the highest yield of 82.4% obtained in the presence of TBAB. However, the yield drastically decreasing to 15.4% in the presence of cetyltrimethyl ammonium bromide (CTAB), and 8.0% in the presence of tetramethylammonium bromide (TMAB), it was also observed that in the absence of any PTCs into the aqueous system, no cross-coupling product was observed except for homo-coupling biphenyls, which proved the transporting role of PTC in the proposed aqueous Suzuki coupling reaction mechanism (Fig. 2). The huge difference for the coupling reaction yields of 2-phenylthiophene in the presences of TBAB, CTAB and TMAB could attribute to the lipophilic properties corresponding to their chain structures, the longer chain length it contains, the higher lipophilicity it has. Hence, the molecular interactions between heteroaryl molecules and PTC molecules were strengthened with longer chain length. Although CTAB has a chain with 16 carbon atoms and other three chains with single carbon atom, Suzuki cross-coupling reaction yield is the lowest compared to the other two kinds of PTCs. This situation was probably due to its structural steric hindrance in liquid mixture imposed by the 16 carbon atom chain.

According to the above findings, we further studied the heterogeneous cross-coupling reactions of 2-bromothiazole and 2-bromopyridine with phenylboronic acid in water, alcohols and water/alcohol mixtures, respectively (Table 3). Both components showed quite poor activities in water, the coupling yield of 2-phenylpyridine

Table 2

<table>
<thead>
<tr>
<th>PTC</th>
<th>Time (hr)</th>
<th>Catalyst</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBAB</td>
<td>3.5</td>
<td>POPd</td>
<td>82.4</td>
</tr>
<tr>
<td>TMAB</td>
<td>3.5</td>
<td>POPd</td>
<td>15.4</td>
</tr>
<tr>
<td>CTAB</td>
<td>3.5</td>
<td>POPd</td>
<td>8.0</td>
</tr>
<tr>
<td>Without PTC</td>
<td>3.5</td>
<td>POPd</td>
<td>0</td>
</tr>
</tbody>
</table>
was only 32.0% and none of 2-phenylthiazole was obtained, but the amount of homo-coupling by-product biphenyl substantially increased. However, both of their yields were significantly increased to 60.8% and 69.3% in ethanol respectively, the yield of biphenyl sharply decreased in the mixture. Moderate yields of 2-phenylpyridine and poor yields of 2-phenylthiazole were obtained in iso-propanol, water/ethanol mixture and water/ethylene glycol mixture.

Intrigued by these aforementioned findings using TBAB in aqueous solvents, PEGs were used as a liquid PTC to perform heterogeneous Suzuki cross-coupling reaction. PEGs ranged from 400 to 4000 were performed to test their phase transfer performances, the subscript number value means the value of the polymerization degree. Two different trends of the yields of 3-phenylpyridine were observed (Fig. 6). In PEGs water free bulk phase, a M-shape decreasing tendency of 3-phenylpyridine was observed, and some yields (PEG 400, PEG 600 and PEG 2000) are apparently higher than those in PEGs/water mixtures, but not including PEG 1000 and PEG 4000. When PEGs mixed with water, the yields of 3-phenylpyridine was obviously decreased to 40.0% and varied slightly from PEG 400 to PEG 4000. To our knowledge, two factors caused this situation, weak interactions of molecules in the water/PEGs mixtures with respect to the bulk PEGs solvents and irregular spacing distribution in the liquid PEGs mixture. The decrease of the yield of 3-phenylpyridine after adding water to PEGs was also considered as an evidence to Fig. 2a. For the time being, we observed using short chain length PEGs could afford relatively high yield of 3-phenylpyridine with respect to using long ones, this can be explained by steric hindrance imposed on the POPd, more experimental studies will be performed to further confirm this irregular phenomenon.

Table 3
Suzuki cross-coupling reaction of 2-bromothiophene and 2-bromopyridine with phenylboronic acid in water/alcoholic solvents and TBAB mixtures.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Product yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-Phenylpyridine</td>
</tr>
<tr>
<td>H(_2)O</td>
<td>32.0</td>
</tr>
<tr>
<td>Ethanol</td>
<td>60.8</td>
</tr>
<tr>
<td>H(_2)O/Ethanol (2/1, V/V)</td>
<td>47.8</td>
</tr>
<tr>
<td>H(_2)O/Ethylene glycol (2/1, V/V)</td>
<td>57.4</td>
</tr>
<tr>
<td>iso-Propanol</td>
<td>56.3</td>
</tr>
</tbody>
</table>

3 Conclusions

Suzuki cross-coupling reaction of 2-bromothiophene, 2-bromothiazole, 2-bromopyridine and 3-bromopyridine with phenylboronic acid using palladium-phosphinous acid complexes and other Pd-catalysts in water/alcoholic solvents was reported. The proportion between POPd and PTC imposes as a key factor for controlling the product distribution in heterogeneous Suzuki cross-coupling reaction. The target product yield could be enhanced with the increase of PTC concentration, and decreased with the increase of POPd amount due to the high reactivity of POPd triggering potential homo-coupling reaction of phenyl boronic acid molecules. Moderate alkalinity and POPd were tested as the ideal components for aqueous Suzuki cross-coupling reaction. Higher yields of both 2-phenylthiazole and 2-phenyl pyridine were obtained in ethanol than those in water. In PEG/water mixture, the target product yields are higher in PEG bulk phase conditions than that in PEG/water mixed conditions, which could be attributed to the dilution of PEG concentration in presence of water and consequently decrease the reaction rate. M-shape decreasing trend in PEGs could be explained by...
irregular spacing distribution in the liquid PEGs mixture and steric hindrance of chain length, and more experimental studies will be performed to further confirm it.

In summary, we have demonstrated that the water-surfactant palladium-phosphinous acid complexes can accomplish the Suzuki cross-coupling in milder and more environmentally friendly conditions. Further experimental Suzuki cross-coupling reaction of heteroaryl bromides containing either electron-withdrawing or electron-donating groups using short and long chain structural phase transfer catalyst will also be reported in due course.

Acknowledgments

This work was supported by the Natural Science Foundation of Liaoning Education Department (No. 2008T094). The support of Pd-catalysts from Combiphos Catalysts was gratefully acknowledged.

References

Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.