Aquatic environment

Removal of Cd\(^{2+}\) from water by Friedel’s salt (FS: 3CaO·Al\(_2\)O\(_3\)-CaCl\(_2\)-10H\(_2\)O): Sorption characteristics and mechanisms
Juanjuan Zhang, He Zhao, Hongbin Cao, Heping Li, Zhibao Li ... 1719

Cr(VI) removal from aqueous solution with bamboo charcoal chemically modified by iron and cobalt with the assistance of microwave
Wei Wang, Xuejiang Wang, Xin Wang, Lianzhen Yang, Zhen Wu, Siqing Xia, Jianfu Zhao 1726

Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor
Yiming Su, Yalei Zhang, Xuefei Zhou, Ming Jiang .. 1736

Removal of anaerobic soluble microbial products in a biological activated carbon reactor
Xiaojing Dong, Weili Zhou, Shengbing He ... 1745

Identification of key factors governing chemistry in groundwater near the water course recharged by reclaimed water at Miyun County, Northern China
Yilei Yu, Xianfang Song, Yinghua Zhang, Fandong Zheng, Ji Liang, Dongmei Han, Ying Ma, Hongmei Bu .. 1754

Evaluation of zeolite-sand mixtures as reactive materials protecting groundwater at waste disposal sites
Fronczyk Joanna, Garbulewski Kazimierz .. 1764

A model to determine the lake nutrient standards for drinking water sources in Yunnan-Guizhou Plateau Ecoregion, China
Danfeng Ji, Beidou Xi, Jing Su, Shouliang Hao, Li He, Hongliang Liu, Queping Yang .. 1773

Effect of sediment size on bioleaching of heavy metals from contaminated sediments of Izmir Inner Bay
Duyusen E. Guven, Gorkem Akinci ... 1784

Formation of THMs and HANs during bromination of Microcystis aeruginosa
Yunzhu Pu, Lingzhao Kong, Xin Huang, Guoji Ding, Naiyun Gao ... 1795

Characteristics of volatile compounds removal in biogas slurry of pig manure by ozone oxidation and organic solvents extraction
Yujun Wang, Lianshuang Feng, Xiaosong Zhao, Xiulan Ma, Jingmin Yang, Huiqing Liu, Sen Dou, Miping Zhou, Zhonglei Xie .. 1800

Atmospheric environment

Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion
Guofeng Shen, Miao Xue, Siye Wei, Yuanchen Chen, Qiuyue Zhao, Bing Li, Haisuo Wu, Shu Tao 1808

Homogeneous and heterogeneous reactions of anthracene with selected atmospheric oxidants
Yang Zhang, Jinian Shu, Yuanxun Zhang, Bo Yang ... 1817

Evolution of chemical composition of fogwater in winter in Chengdu, China
Hongling Yin, Zhixiang Ye, Yingchun Yang, Wei Yuan, Changyan Qiu, Huaweii Yuan, Min Wang, Shiping Li, Changwu Zou ... 1824

Removal of PCDD/Fs and PCBs from flue gas using a pilot gas cleaning system
Xiaoqing Lin, Yuqi Jin, Hailong Wu, Tong Chen, Xiaodong Li, Shengyong Lu, Xuguang Jiang, Jianhua Yan ... 1833

Incorination of kitchen waste with high nitrogen in vortexing fluidized-bed incinerator and its NO emission characteristics
Feng Duan, Chiensong Chyang, Jiuruei Wen, Jim Tso ... 1841

Terrestrial environment

Seasonal exports of phosphorus from intensively fertilised nested grassland catchments
Ciaran Lewis, Rashad Rafique, Nelius Foley, Paul Leahy, Gerard Morgan, John Albertson, Sandeep Kumar, Gerard Kiely ... 1847

Mercury transportation in soil via using gypsum from flue gas desulfurization unit in coal-fired power plant
Kelin Wang, William Omdorff, Yan Cao, Weiping Pan ... 1858

Effect of two biogas residues’ application on copper and zinc fractionation and release in different soils
Miao Chen, Yanshan Cui, Fan Bai, Jiaojiao Wang ... 1865
Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River
Pengfu Hou, Ganghua Li, Shaohua Wang, Xin Jin, Yiming Yang, Xiaoting Chen,
Chengqiang Ding, Zhenghui Liu, Yanfeng Ding .. 1874

Numerical study of regional environmental carrying capacity for livestock and poultry farming based on
planting-breeding balance
Lihong Peng, Yu Bai .. 1882

Environmental biology
Dissolution of different zinc salts and Zn uptake by Sedum alfredii and maize in mono- and co-cropping
under hydroponic culture
Cheng’ai Jiang, Qitang Wu, Shucai Zeng, Xian Chen, Zebin Wei, Xinxian Long .. 1890
Antibacterial potency of housefly larvae extract from sewage sludge through bioconversion
Chaocheng Zheng, Lixiang Zhou .. 1897
Biodegradation by bioaugmentation of dairy wastewater by fungal consortium on a bioreactor lab-scale and on a pilot-scale
Hayet Djelal, Abdeltif Amrane .. 1906
Occurrence and infection risk of waterborne pathogens in Wanzhou watershed of the Three Gorges Reservoir, China
Guosheng Xiao, Zhaodan Wang, Ji’an Chen, Zhiqun Qiu, Yanjie Li, Junsheng Qi, Wenyi Liu, Weiqun Shu .. 1913

Environmental health and toxicology
Effect of humic acids and sunlight on the cytotoxicity of engineered zinc oxide and titanium dioxide nanoparticles
to a river bacterial assemblage
Thabitha P. Dasari, Huey-Min Hwang .. 1925
Combined effects of cadmium and fluoranthene on germination, growth and photosynthesis of soybean seedlings
Qiushuang Li, Yonglong Lu, Yajuan Shi, Tieyu Wang, Kun Ni, Li Xu, Shijie Liu, Lin Wang, Qinli Xiong, John. P Giesy .. 1936
Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana
Haifeng Qian, Xiaofeng Peng, Xiao Han, Jie Ren, Liwei Sun, Zhengwei Fu .. 1947

Serial parameter: CN 11-2629/X*1989*m*237*en*P*27*2013-9
Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor

Yiming Su, Yalei Zhang*, Xuefei Zhou*, Ming Jiang

State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China. E-mail: su_yi_ming@126.com

Received 06 November 2012; revised 01 February 2013; accepted 06 February 2013

Abstract
This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6–0.8 mg O₂/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO₃-N/g SS.

Key words: anoxic-aerobic system; low dissolved oxygen; filamentous bulking; low nitrate concentration; nitrate-storing capacity

DOI: 10.1016/S1001-0742(12)60228-9

Introduction

Problems related to bulking sludge are commonly reported in biological nutrient removal (BNR) systems (Eikelboom et al., 1981; Jenkins et al., 1993). This has been estimated to affect at least 60% of activated sludge plants in the USA, resulting in 50% of plants failing to consistently meet effluent discharge standards (Michael, 2003). Over 30 years, the causes and controls of filamentous bulking have been extensively studied (Marten and Daigger, 1997; Ekama et al., 1996; Kruit et al., 2002), since Eikelboom and van Buijsen (1981) first published their identification guide to filamentous bacteria. It has been widely accepted that filamentous bulking does not completely depend on BNR conditions, but may be caused by other overlooked factors. Many operating parameters in BNR systems, such as low levels of dissolved oxygen (DO) (Guo et al., 2010, 2012; Martins et al., 2003b; Tian et al., 2011) and low food/microorganism (F/M) values (Casey et al., 1994, 1999) have been extensively investigated.

Apart from the two factors mentioned above, the presence of nitrate and/or nitrite at the time of transitions between anoxic and aerobic conditions may also have an influence on filamentous bulking, and this aspect has not yet received sufficient attention. Some studies have focused on the association between filamentous microorganism proliferation and nitrate/nitrite levels at the time of transition from anoxic to aerobic conditions. filamentous bulking is induced and ameliorated in laboratory BNR systems with high (> 5 mg) and low (< 1 mg NOx-N/L) concentrations of nitrate or nitrite during the transition from anoxic to aerobic conditions (Lakay et al., 1999; Musvoto et al., 1999). In some other studies, when nitrate and/or nitrite were present at the transition from anoxic to aerobic conditions, episodes of poor sludge settlement have been observed several times (Beeharry et al., 2001; Cronje et al., 2000).

Although it has received some attention in literature that nitrate and/or nitrite’s presence at the time of transition from anoxic to oxic conditions would influence the proliferation of filamentous bacteria, the possibility that nitrate’s presence at the time of transition from aerobic
to anoxic conditions might affect filamentous proliferation under low DO condition has acquired even less attention. Several recent reports (Ma et al., 2009; Tian et al., 2011; Zeng et al., 2010; Musvoto et al., 1999) have shown that the value of the sludge volume index (SVI) increases with the decrease of nitrate concentration within certain periods of time. Therefore, there is a stable relationship between SVI and the content of filaments (Schuler and Jassby, 2007; Gulez and De Los Reyes, 2009). It might be an appealing strategy for controlling filamentous bulking via controlling the nitrate concentrations during the transition from aerobic to anoxic conditions. However, up to now, research of the effect of nitrate concentration on filamentous bulking under low level of DO is scarce, and a comprehensive study about this effect will lend new insight into the design of wastewater treatment systems and the operation of wastewater treatment plant systems that want to minimize aeration costs.

The objective of this study is to demonstrate that low nitrate concentrations would affect sludge settle ability greatly in a laboratory-scale airlift inner circular anoxic-aerobic reactor. Batch tests were performed during the operating period to investigate the sludge’s denitrification. The mechanism responsible for the filamentous bulking was also explored.

1 Materials and methods

1.1 New airlift inner circular anoxic-aerobic reactor

This investigation involved the use of a laboratory-scale airlift inner circular anoxic-aerobic reactor with the reaction volume being 10 L (Fig. 1). The reactor is derived and modified from the wastewater treatment Bioreactor (Zhao et al., 2006). The reactor was inoculated with mixed liquor that was obtained from a secondary clarifier from the Quyang Wastewater Treatment Plant (anoxic/oxic) (Shanghai, China). The feed flow rate was controlled by a pump to achieve 9 hr hydraulic retention time, while the aeration rate was controlled by an airflow meter to retain DO concentration at 0.6–0.8 mg O$_2$/L. Temperature in the reactor was kept at (20 ± 1)°C by means of a heater and thermostat. The sludge retention time was maintained at 12–15 days by wasting an appropriate amount of settled sludge. The mixed liquor suspended solid concentration was 3000 mg/L, to achieve the value of food/microorganism at 0.13 g COD/g suspended solid.

1.2 Batch tests for exploring the mechanism of filamentous bulking

With the exception of the third test, the sludge used in batch tests was collected from the parent reactor. Firstly, a 1.5 L mixture was collected from the aerobic zone and centrifuged; the supernatant fluid was discarded before adding 1.5 L synthetic wastewater that did not contain any C, N, P or DO. Secondly, this new mixture was immediately filled to an airtight column container and a certain amount of sodium acetate was added to provide a shock concentration of HAc (0.185 g CH$_3$COONa). During the 2 hr anaerobic stage, a sample was collected every 15 min during the first hour, after which samples were taken every 30 min until the end. After the completion of the anaerobic stage, a certain volume of nitrate solution was added to create an anoxic condition (0.091 g NaNO$_3$). For batch tests 1 and 2, samples were taken every 15 min within the first 30 min of anoxic stage, followed by every 30 min until the third hour. For batch tests 3 and 4, additional three samples were collected at the eighth, twelfth and eighteenth hours. The concentrations of HAc, phosphorus, nitrate, intracellular nitrate, nitrite and mixed liquor suspended solids were monitored. For verifying tests, another two laboratory-scale reactors were seeded with the same sludge but cultivated with different nitrate concentrations in influent (reactor a, with 5 mg N/L; reactor b, without nitrate). However, the concentration of total nitrogen (TN) was kept at 40 mg N/L through changing NH$_4^+$-N content. Other components in influent and operating parameters were the same as those in Section 1.1.

1.3 Synthetic wastewater composition

The novel reactor was supplied with synthetic wastewater containing sodium acetate (125 mg/L), glucose (250 mg/L), ammonium chloride (36 mg NH$_4^+$-N/L), sodium nitrate (4 mg NO$_3^-$-N/L) and KH$_2$PO$_4$ (10 mg PO$_4^{3-}$-P/L). Other components consisted of MgSO$_4$-7H$_2$O (150 mg/L), CaCl$_2$-2H$_2$O (35 mg/L), EDTA (5 mg/L) and trace elements (1 mL/5 L). The composition of the trace element solution was composed as that described by Martins et al. (2003a).

Fig. 1 Schematic structure of airlift inner circular anoxic-aerobic reactor.
1.4 Analytical methods

The DO was measured by a WTW oxi340i oxygen probe (Germany). Chemical oxygen demand (COD), mixed liquor suspended solids, mixed liquor volatile suspended solids, SVI, and all nitrogen-containing compounds were measured according to standard methods (APHA, 1998). In order to measure intracellular nitrate concentration, several freeze-thaw cycles in liquid nitrogen were applied to break the cells. In addition, PO₄³⁻-P concentrations were analyzed according to Guo et al. (2010), and acetate content was measured by gas chromatography, according to Smolders et al. (1994). Olympus CX31-32C02 was employed to do microscopic examination.

1.5 PCR-DGGE analysis of the filamentous bacteria in activated sludge

Bacterial genomic DNA of activated sludge was first extracted as following steps: First, samples collected from the reactor were centrifuged and the supernatant was removed. Second, the settling was washed by sterile water and the mixture was recentrifuged. Third, the Fast DNA Spin Kit for soil (QBIogene, Carlsbad, USA) was used to extract total DNA from approximately 0.3 g settling.

The 16S rRNA genes from the mixed bacterial DNA were PCR-amplified with the primer set of 8f and 1492r as described by Bossard et al. (2000), and the 16S rDNA variable V3 region of extracted DNA was amplified with primers 341f with a GC-clamp and 534r according to the methods of Muyzer et al. (1993). PCR-amplification was also carried out according to the methods of Muyzer et al. (1993)

The PCR products were electrophoresed on 8% polyacrylamide gel with gradients ranged from 40% to 60% (100% denaturant: 7 mol/L urea and 40% (V/V) deionized formamide) in 1X TAE buffer at a constant voltage of 100 V for 10 hr at 60°C using a Dcode Universal Mutation Detection System (BioRad). After electrophoresis, DNA was stained with ethidium bromide and viewed with a BioRad Gel Documentation system. Bright bands were then excised from the gel and cleaned. Then the covered DNA was reamplified, purified, cloned top MD19-Tvector (TaKaRa, Japan) and sequenced via an ABIPRISM3730 automated DNA sequencer (Applied Biosystems, USA). The sequence from this study had been submitted to the GenBank data base under accession number JX178709, and the closest matching sequence was analyzed according to the result of Martins et al. (2003b). In addition, the 16S rDNA sequence from GenBank was FJ750467.1, and the identity was 100%, and it existed during the whole bulking period. Thus it was likely that the proliferation of *Thiothrix* sp. caused the increase of SVI, and this result was consistent with the result of Martins et al. (2003b).

1.6 Statistical analysis

All tests were performed in triplicate, and analysis of variance was used to test the significance of results and $p < 0.05$ was considered to be statistically significant.

2 Results and discussion

2.1 Performance of integrated nutrient removal by the reactor and the relationship between nitrate concentration and SVI

During more than two months’ operation period, the values of SVI and the removal rates of COD, TN, TP and NH₄⁺-N were recorded (Fig. 2). The entire operation process is divided into three parts, namely start, mid-run and end of run. Figure 2 illustrates the maintenance of the relatively high integrate nutrient removal rates under the condition of SVI values less than 300 mL/g, with the removal rates of COD, TN, TP and NH₄⁺-N at approximately 90%, 80%, 70% and 98% respectively. Furthermore, integrate nutrient removal rates within the limited bulking period were somewhat higher than those in normal period. The results were in line with other reports (Ma et al., 2009; Zeng et al., 2010; Tian et al., 2011). However, when the SVI value exceeded 300 mL/g, pollutant removal efficiency declined accordingly due to the marked proliferation of filamentous bacteria (Fig. 2). Moreover, according to the result of PCR-DGGE (Fig. 3), the newly appeared band 1 in sample S2 and S3 was *Thiothrix* sp. (the closely related sequence from GenBank was FJ750467.1, and the identity was 100%), and it existed during the whole bulking period. Thus it was likely that the proliferation of *Thiothrix* sp. caused the increase of SVI, and this result was consistent with the result of Martins et al. (2003b). In addition, the microscope images of nonbulking and bulking sludge in Fig. 4 also were in line with the DGGE result.

During the entire operation process, a strong association between nitrate concentration and filamentous bulking was also observed (Fig. 5). It was obvious that the values of SVI increased when nitrate concentrations in the aerobic zone fell below 4 mg/L (the dash line in Fig. 5), where nitrite in the reactor was beyond the detection limit, the phenomenon of which appeared four times (Fig. 5). Nev-
Nevertheless, the SVI values remained relatively stable while nitrate concentration was above 4 mg/L. This indicates that excellent sludge settleability could be maintained as long as nitrate concentration kept above certain level, such as 4 mg/L. In conclusion, the optimal nitrate concentration in the aerobic zone is decided to be slightly higher than 4 mg/L in a continuous-flow reactor with a completely mixed mode when operated under low DO conditions.

It was not accidental that a remarkably relationship was noted between nitrate concentration and SVI. A similar relationship between SVI and nitrate concentration has been observed in previous studies (Ma et al., 2009; Zeng et al., 2010; Tian et al., 2011). Currently the most widely-accepted theory explaining the morphology and ecology of bulking sludge is that, under non-bulking operation conditions, filamentous organisms grow inside the sludge floc, forming the backbone of the activated sludge aggregates (Krhutková et al., 2002). However, under conditions of low substrate availability, they would gain easy access to the limited substrate because of their preferential growth in one or two directions (Martins et al., 2003). It can therefore be assumed that filamentous organisms are also present in well-settled sludge and the uncontrollable proliferation of such organisms is mainly due to their morphological advantage stimulated and enlarged by unexpected continuously substrate-limited conditions. When nitrate concentration dropped below 4 mg/L, for whatever reason, a substrate-limited condition was created in the reactor. The reason that filamentous bacteria proliferate under low nitrate concentration condition will be further discussed in detail in the following sections. Nevertheless, with the removal of the stimulating condition, the growing advantage of the filamentous bacteria was simultaneously
lost, thus, the SVI value stopped increasing.

2.2 Exploring the mechanism of bulking sludge under low nitrate concentration conditions

To investigate the mechanisms underlying the association between nitrate concentration and filamentous bulking, anaerobic-anoxic batch tests with insufficient (batch 1) and sufficient (batch 2) carbon substrate were performed. After incubating with acetate anaerobically, the sludge (SVI of 200 mL/g) was exposed to anoxic conditions. For batch 2, it was given another spike of acetate at the beginning of the anoxic phase (0.095 g CH$_3$COONa). The results, summarized in Fig. 6, indicated that the different quantities of carbon source at the initial anoxic phase had different influences on the denitrification performance of the bulking sludge. During the anoxic stage, the difference between batch 1 and 2 was significant. In batch 2, nitrate was fully denitrified, with the additional acetate acting as an electron donor. However, in batch 1, not only was denitrification incomplete because of the lacking of an electron provider, but also occurred an unusual phenomenon, that was, nitrate was released twice. With these two specific phases (i.e., 2–2.25 hr and 4.5–5 hr, Fig. 6a), very little consumption of nitrite was observed, thus excluding the transforming of nitrate from nitrite. Therefore, the first release may have derived from the release of excessively absorbed nitrate, at the initial anoxic stage, by non-filamentous bacteria. According to the chemiosmotic theory (Peter, 1961), these bacteria produce a certain number of electrons during the synthesis of polyhydroxyalkanoates in the anaerobic stage. Once nitrate appears in the mixture, a large amount of nitrate would be immediately transported across the membrane. This theory was clearly affirmed by the big difference between theoretical (10 mg N/L) and actual (5 mg N/L) values of nitrate at the initial anoxic stage. The filamentous bacteria might also contribute to this discrepancy due to their absorbance of nitrate under low nitrate conditions, competing with nonfilamentous denitrifiers. Nonetheless, during the subsequent lacking of electron donors, the absorbed nitrate could not be denitrified and was thus released. In the opinion of the author, the second increase was mainly caused by the filamentous bacteria, which is to be discussed in more detail.

To explore the fundamental cause of the second increase (Fig. 6a), another series of tests were conducted. Batch tests (3 and 4) were set up for a long experimental time, up to 18 hr. The denitrification performances of wastewater treatment plant sludge (SVI 90 mL/g) and serious bulking sludge (SVI 450 mL/g) are illustrated in Fig. 7. During the anaerobic stage, acetate was taken up and transformed into polyhydroxalkanoates by bacteria such as polyphosphate accumulating organisms, glycogen accumulating organisms, or by other denitrifiers in the nonbulking sludge, with very little amount or no acetate utilized by filamentous bacteria in the bulking sludge. Moreover, the other main difference between batch 3 and 4 was identified related to their performance under anoxic conditions. In batch 3 (Fig. 7a), nitrate could be fully denitrified while in batch 4 (Fig. 7b) it could not be fully denitrified. What is more, the maximum increment of intracellular nitrate of two different sludges existed a large discrepancy. The intracellular nitrate content of nonbulking sludge increased by 1.43 mg N/g SS while it of bulking sludge increased by 6.1 mg N/g SS. It was much likely that filamentous bacteria had a nitrate-storing capacity. In batch 4, with the decrease of the acetate concentration to less than 10 mg/L, the nitrate concentration dropped from 7.2 to 1.7 mg N/L within half an hour. Meanwhile, intracellular nitrate content increased from 4.6 to 5.8 mg N/g SS. However, when the acetate concentration was above 10 mg/L, nitrate concentration only fell by 3.4 mg N/L and intracellular nitrate content remained stable within an hour. It was thus not likely that the filamentous bacteria used nitrate for denitrification but rather absorbed and stored nitrate when carbon substrate was limited. After 3 hr incubation
in the anoxic phase, the nitrate concentration was only 1.2 mg N/L, but with further incubation of another 6 hr and 12 hr, it reached levels of 2.4 and 5.6 mg N/L, respectively, which may have resulted from the release of excess absorbed nitrate, under carbon-limited conditions, by the filamentous bacteria. This speculation was well supported by the decline of the intracellular nitrate content from 5.8 to 0.08 mg N/g SS at the same time. It can thus be hypothesized that, when the carbon source was sufficient, filamentous bacteria would denitrify preferentially, but when carbon was limited they would preferably absorb and store nitrate. Based on this summary, together with the data of Fig. 6a, Fig. 8 schematically illustrated the nitrate’s dynamic transfer among different substances in batch 1 under anoxic condition.

It was reported previously that, certain types of the filamentous bacteria were able to use nitrate as an electron acceptor, reducing it to nitrite, like M. parvicella (Rossetti et al., 2002), S. natans (Pellegrin et al., 1999), and Thiothrix spp. (Shao and Jenkins, 1989; Williams and Unz, 1985). In the present study, nitrate was denitrified, but nitrite did not accumulate during the operation and the batch tests, which may suggest that filamentous bacteria or other denitrifying microorganism used nitrite as electron acceptors. This speculation, however, does not concur with previous studies, such as Casey et al. (1994) who proposed that floc-forming organisms were able to reduce nitrate to nitrogen gas, but filamentous bacteria were hypothesized to only be capable of reducing nitrate to nitrite. In addition, from the published data, the denitrification rate of the filamentous bacteria analysed so far (Type021N and Thiothrix spp.) was much lower (more than 80 times) than that of floc-forming bacteria (Zoogloea ramigera) (Shao and Jenkins, 1989). But in our batch tests 3 and 4, the maximum denitrification rates of bulking sludge were almost identical to those of the non-bulking sludge when a sufficient source of carbon was available. A significant difference with respect to substrate utilization performance was also noted between non-bulking and bulking sludge. During the anaerobic phase, non-bulking sludge had the capacity to store carbon source, which was not the case for bulking sludge. During the anoxic stage, non-bulking sludge had the capacity to utilize the stored carbon during denitrification while bulking sludge was only able to carry out denitrification when the carbon source was sufficient. When the carbon source was limited, it was likely that bulking sludge would preferably absorb nitrate. To the best of our knowledge, this is the first observation of a nitrate-storing phenomenon in a wastewater treatment system. Since nitrate-accumulating phenomena has been reported in association with sulphur oxidizing filamentous bacteria (Sweerts et al., 1990),
nitrate-accumulating sulphide-oxidizing, sulfur-oxidizing and sulphide-oxidizing filaments have also been discovered in freshwater, or marine, sediment surfaces and intensively examined (McHatton et al., 1996; Sayama, 2001; Sayama et al., 2005). Because of their capability to store nitrate, these filamentous bacteria could survive under carbon- and oxygen-limited conditions. In this study, the operating conditions of the BNR system were similar to those of the filaments in their natural habitat, thus, favoring for the growth of these bacteria. Their presence in the BNR system had a significant effect on the total nitrogen removal rate and on sludge settleability. Hence, it was worth studying at length.

2.3 Verifying the effect of low nitrate concentration on filamentous bulking

To verify the hypothesis that low nitrate concentration could cause filamentous bulking, another two laboratory-scale reactors were seeded with the same sludge but cultivated with different nitrate concentration in influent (reactor a with 5 mg N/L, Fig. 9a; reactor b without nitrate, Fig. 9b). However, the concentration of TN was kept at 40 mg N/L through changing NH$_4^+$-N content. During the 10-day processing time, the nitrate concentration in return sludge was kept below 4 mg N/L, with the nitrate load in the anoxic zone thus much smaller than 2.7 mg N/g SS. Results, in Fig 9a, indicated that the SVI value was retained below 150 mL/g and the intracellular nitrate content was about 2.1 mg N/g SS, meanwhile, in Fig. 9b, the SVI value increased steadily from 80 to 350 mL/g accompanied by the increase of intracellular nitrate content from 1.8 to 4.8 mg N/g SS. This confirmed our hypothesis that the minimum nitrate load in the anoxic zone should be 2.7 mg NO$_3^-$-N/g SS. The bulking process was also clearly illustrated in Fig. 10 under nitrate limited condition. In the aerobic zone, the diffusional limitation of oxygen in the floc facilitated the development of an internal anoxic microenvironment (Andreadakis et al., 1993). In addition, filamentous bacteria had the capacity to store a substantial amount of nitrate in anoxic microenvironment, due to the limited carbon source condition. When these filamentous bacteria rich in nitrate reached the anoxic zone with the influent, two very possibilities occurred, depending on specific environmental conditions. If the nitrate load in the anoxic zone was high, the filamentous bacteria would not acquire a competitive survival advantage, but if the nitrate load was low, then the filamentous bacteria would use newly-entering readily biodegradable COD and their interior nitrate to perform denitrification, while other bacteria were unable to carry out such reactions due to a lack of electron acceptors. Hence filamentous bacteria could prevail in the anoxic zone.

3 Conclusions

This laboratory research has investigated a cause of filamentous bulking under low dissolved oxygen conditions. The results showed that low nitrate concentrations played a significant role in the bulking process. When the food/microorganism value and DO concentrations were kept at 0.13 g COD/g SS and 0.6–0.8 mg O$_2$/L, respectively, and once the concentrations of nitrate in the aerobic zone was below 4 mg/L, or the nitrate load in the anoxic zone was below 2.7 mg NO$_3^-$-N/g SS, then the filamentous bacteria gained a competitive advantage.

![Fig. 10 Schematic diagram of bulking process.](image-url)
over other bacteria because of their nitrate-storing capacity. When these filamentous bacteria richen in nitrate arrived at the anoxic zone, where had high carbon source but limited nitrate was available, denitrification would occur, while denitrification by non-filamentous bacteria was restrained due to a lack of nitrate. Therefore, in such conditions, the filamentous bacteria would proliferate.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51313009, 41072172), the National Key Technology R&D Program (No. 2012BAJ25B04), the Program for New Century Excellent Talents in University (No. NCET-11-0391), and the Project of Shanghai Science and Technology Commission (No. 11QH1402600).

References

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
Hongxiao Tang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Associate Editors-in-Chief
Jiuhui Qu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Shu Tao
Peking University, China
Nigel Bell
Imperial College London, United Kingdom
Po-Keung Wong
The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment
Baoyu Gao
Shandong University, China
Maohong Fan
University of Wyoming, USA
Chhipin Huang
National Chiao Tung University, Taiwan, China
Ng Wun Jern
Nanyang Environment & Water Research Institute, Singapore
Clark C. K. Liu
University of Hawaii at Manoa, USA
Hokyong Shon
University of Technology, Sydney, Australia
Zhili Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Zhiwu Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental toxicology and health
Jingwen Chen
Dalian University of Technology, China
Jianying Hu
Peking University, China
Guibin Jiang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Atmospheric environment
Jiannin Chen
Fudan University, China
Abdelwahid Mellouki
Centre National de la Recherche Scientifique, France
Yujing Mu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Min Shao
Peking University, China

Environmental catalysis and materials
Tsuyoshi Nakanishi
Gifu Pharmaceutical University, Japan
Willie Peijnenburg
University of Leiden, The Netherlands
Bingsheng Zhou
Institute of Hydrobiology, Chinese Academy of Sciences, China

Environmental analysis and method
Zongwei Cai
Hong Kong Baptist University, Hong Kong, China
Jiping Chen
Hong Kong Baptist University, Hong Kong, China

Municipal solid waste and green chemistry
Yuesi Wang
Institute of Atmospheric Physics, Chinese Academy of Sciences, China

Environmental biology
Yong Cai
Florida International University, USA
Henner Holkert
RWTH Aachen University, Germany

Environmental ecology
Ruonong Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Editorial office staff
Managing editor
Qingcai Feng
English editor
Catherine Rice (USA)
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.