CONTENTS

Aquatic environment
Advanced oxidation of bromide-containing drinking water: A balance between bromate and trihalomethane formation control
Yongjing Wang, Jianwei Yu, Po Han, Jing Sha, Tao Li, Wei An, Juan Liu, Min Yang ...................................... 2169
Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter
in reverse osmosis concentrate
Yuhoon Hwang, Hang-Sik Shin ......................................................... 2177
Environmental significance of biogenic elements in surface sediments of the Changjiang Estuary and its adjacent areas
Yu Yu, Jinming Song, Xuegang Li, Huamao Yuan, Ning Li, Liqin Duan ................................................................. 2185
Environmental factors influencing cyanobacteria community structure in Dongping Lake, China
Xuetang Lu, Chang Tian, Haiyan Pei, Wenrong Hu, Jun Xie ................................................................. 2196
Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions
Yanmei Zhao, Feng Xiao, Dongsheng Wang, Mingquan Yan, Zhe Bi ......................................................... 2207
Evaluation of antioxidant enzymes activities and identification of intermediate products during phytoremediation
of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris)
Fatemeh Vafaei, Ali Movafeghi, Ali Reza Khatami ......................................................... 2214
Decrease of NH$_4^+$-N by bacterioplankton accelerated the removal of cyanobacterial blooms in aerated aquatic ecosystem
Xi Yang, Ping Xie, Zhimei Ma, Qing Wang, Huihui Fan, Hong Shen ......................................................... 2223
Spatial and seasonal variability of CO$_2$ flux at the air-water interface of the Three Gorges Reservoir
Le Yang, Fei Lu, Xiaoke Wang, Xiaonian Duan, Lei Tong, Zhiyun Ouyang, Hepeng Li ......................................................... 2229

Atmospheric environment
Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactor
Xinyu Zhang, Ruofei Jin, Guangfei Liu, Xiyang Dong, Jiti Zhou, Aijie Wang ......................................................... 2239

Terrestrial environment
Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil

Environmental biology
Biodegradation of organochlorine pesticide endosulfan by bacterial strain Alcaligenes faecalis JBW4
Lingfen Kong, Shaozhu Liu, Lusheng Zhu, Hui Xie, Kunchang Su, Tongxian Yan, Jun Wang, Jinhua Wang, Fenghua Wang, Fengxia Sun ......................................................... 2257
Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater
Donghui Wen, Jing Zhang, Rulin Xiong, Rui Liu, Lujun Chen ......................................................... 2265
Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters
Jaai Kim, Woong Kim, Changsoo Lee ......................................................... 2272
Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium,
Pseudomonas sp. CBZ-4
Ang Li, Rui Cai, Di Cui, Tian Qiu, Changlong Pang, Jixian Yang, Fang Ma, Nanqi Ren ......................................................... 2281

Environmental catalysis and materials
Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents
Yuru Wang, Daniel C. W. Tsang ......................................................... 2291
Synergistic photocatalytic degradation of pyridine using precious metal supported TiO$_2$ with KBrO$_3$
Fei Tian, Rongshu Zhu, Feng Ouyang ......................................................... 2299
Environmental analytical methods

Simultaneous determination of brominated phenols in soils (Cover story)
Wei Han, Sen Wang, Honglin Huang, Lei Luo, Shuzhen Zhang .................................................. 2306

Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextraction combined with gas chromatography-mass spectrometry
Xichao Chen, Qian Luo, Shengguang Yuan, Zi Wei, Hanwen Song, Donghong Wang, Zijian Wang .................................................. 2313

Benzene, toluene and xylene levels in new and used vehicles of the same model
Joanna Faber, Krzysztof Brodzik, Anna Gola-Kopek, Damian Łomankiewicz .................................................. 2324

Preparation, characterization and application of thiosemicarbazide grafted multiwalled carbon nanotubes for solid-phase extraction of Cd(II), Cu(II) and Pb(II) in environmental samples
Jie Zhang .................................................................................................................................................. 2331

Determination of VOCs in groundwater at an industrial contamination site using a homemade low-density polyethylene passive diffusion sampler
Xu Ma, Zhiqiang Tan, Long Pang, Jingfu Liu ......................................................................................... 2338

Quantification of changes in zero valent iron morphology using X-ray computed tomography
Ping Luo, Elizabeth H. Bailey, Sacha J. Mooney ..................................................................................... 2344

Serial parameter: CN 11-2629/X*1989*m*183*en*P*22*2013-11
CONTENTS

Aquatic environment

Advanced oxidation of bromide-containing drinking water: A balance between bromate and trihalomethane formation control
Yongjing Wang, Jianwei Yu, Po Han, Jing Sha, Tao Li, Wei An, Juan Liu, Min Yang .............................................. 2169

Effects on nano zero-valent iron reactivity of interactions between hardness, alkalinity, and natural organic matter in reverse osmosis concentrate
Yuhoon Hwang, Hang-Sik Shin ........................................... 2177

Environmental significance of biogenic elements in surface sediments of the Changjiang Estuary and its adjacent areas
Yu Yu, Jinming Song, Xuegang Li, Huamao Yuan, Ning Li, Liqin Duan ................................................................. 2185

Environmental factors influencing cyanobacteria community structure in Dongping Lake, China
Xuetao Lu, Chang Tian, Haiyan Pei, Wenzong Hu, Jun Xie ............................................................... 2196

Disinfection byproduct precursor removal by enhanced coagulation and their distribution in chemical fractions
Yanmei Zhao, Feng Xiao, Dongsheng Wang, Mingquan Yan, Zhe Bi ................................................................. 2207

Evaluation of antioxidative enzymes activities and identification of intermediate products during phytoremediation of an anionic dye (C.I. Acid Blue 92) by pennywort (Hydrocotyle vulgaris)
Fatemeh Vafaei, Ali Movafeghi, Alireza Khataee ................................................................................................. 2214

Decrease of \( \text{NH}_4^+ \) by bacterioplankton accelerated the removal of cyanobacterial blooms in aerated aquatic ecosystem
Xi Yang, Ping Xie, Zhimel Ma, Qing Wang, Huilin Fan, Hong Shen ................................................................. 2223

Spatial and seasonal variability of \( \text{CO}_2 \) flux at the air-water interface of the Three Gorges Reservoir
Le Yang, Fei Lu, Xiaoke Wang, Xiaonan Duan, Lei Tong, Zhiyuan Ouyang, Hepeng Li .................................................. 2229

Atmospheric environment

Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactor
Xinyu Zhang, Ruofei Jin, Guangfei Liu, Xiyang Dong, Jiti Zhou, Aijie Wang ................................................................. 2239

Terrestrial environment

Comparison of a plant based natural surfactant with SDS for washing of As(V) from Fe rich soil

Environmental biology

Biodegradation of organochlorine pesticide endosulfan by bacterial strain \( \text{Alcaligenes faecalis} \) JBW4
Lingfen Kong, Shaojun Zhu, Lusheng Zhu, Hui Xie, Kunchang Su, Tongxian Yan, Jun Wang, Jinhua Wang, Fenghua Wang, Fengxia Sun ............................................................... 2257

Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater
Donghui Wen, Jinx Zhang, Ruilin Xiong, Rui Liu, Lujun Chen ................................................................. 2265

Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters
Jaai Kim, Woong Kim, Changsoo Lee ..................................................................................................................... 2272

Characterization and biodegradation kinetics of a new cold-adapted carbamazepine-degrading bacterium, \( \text{Pseudomonas} \) sp. CBZ-4
Ang Li, Rui Cai, Di Cui, Tian Qiu, Changlong Pang, Jixian Yang, Fang Ma, Nanqi Ren ...................................................... 2281

Environmental catalysis and materials

Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents
Yuru Wang, Daniel C. W. Tsang .............................................................. 2291

Synergistic photocatalytic degradation of pyridine using precious metal supported \( \text{TiO}_2 \) with \( \text{KBrO}_3 \)
Fei Tian, Rongshu Zhu, Feng Ouyang .............................................................. 2299
Environmental analytical methods

Simultaneous determination of brominated phenols in soils (Cover story)
Wei Han, Sen Wang, Honglin Huang, Lei Luo, Shuzhen Zhang .......................................................... 2306

Simultaneous determination of ten taste and odor compounds in drinking water by solid-phase microextraction combined with gas chromatography-mass spectrometry
Xichao Chen, Qian Luo, Shengguang Yuan, Zi Wei, Hanwen Song, Donghong Wang, Zijian Wang .................................................. 2313

Benzene, toluene and xylenes levels in new and used vehicles of the same model
Joanna Faber, Krzysztof Brodzik, Anna Gola-Kopek, Damian Łomankiewicz .................................................. 2324

Preparation, characterization and application of thiosemicarbazide grafted multiwalled carbon nanotubes for solid-phase extraction of Cd(II), Cu(II) and Pb(II) in environmental samples
Jie Zhang ........................................................................................................................................... 2331

Determination of VOCs in groundwater at an industrial contamination site using a homemade low-density polyethylene passive diffusion sampler
Xu Ma, Zhiqiang Tan, Long Pang, Jingfu Liu .................................................................................. 2338

Quantification of changes in zero valent iron morphology using X-ray computed tomography
Ping Luo, Elizabeth H. Bailey, Sacha J. Mooney .............................................................................. 2344

Serial parameter: CN 11-2629/X*1989*m*183*en*P*22*2013-11
Simultaneous determination of brominated phenols in soils

Wei Han, Sen Wang, Honglin Huang, Lei Luo, Shuzhen Zhang*

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: ham@163.com

Received 23 January 2013; revised 15 April 2013; accepted 17 April 2013

Abstract
Brominated phenols (BPs), a widely used group of emerging flame retardants, are important environmental contaminants and exhibit endocrine disrupting potential. Method for simultaneous determination of tetrabromobisphenol A (TBBPA), tribromophenol (TBP), dibromophenols (DBPs) and monobromophenols (MBPs) in soils using gas chromatography-mass spectrometry analysis (GC/MS) was successfully developed. Cleanup methods for soil extracts including several solid-phase extraction cartridges and different elution solvents were compared and optimized. Florisil cartridge with dichloromethane as the elution reagent was selected for sample cleanup owing to its high and reproducible recoveries of the target analytes in soils. Derivatization conditions were tested and the optimal conditions were obtained with 20 L silylation reagent at room temperature. The chromatographic separation was optimized with different columns and DB-XLB column was selected for its excellent separation of the analytes. The limits of detection for the target compounds were from 0.04 to 0.19 ng/g. Mean recoveries of the compounds from spiked soils exceeded 84% with a good reproducibility, excepting that the recovery of 2-bromophenol was relatively poor (lower than 55%) due to its instability. The developed method was applied to the determination of the BPs in the soils collected from e-waste sites. The contents of BPs in the soils were at ng/g levels with TBBPA and TBP the most frequently detected. To our knowledge, this is the first report for the simultaneous determination of TBBPA, TBP, DBPs and MBPs in soils.

Key words: brominated phenols; analysis; soil; derivatization; GC/MS
DOI: 10.1016/S1001-0742(12)60298-8

Introduction
Brominated flame retardants (BFRs), which have been used in a variety of commercial and industrial applications worldwide, cause a great concern as persistent organic contaminants (Covaci et al., 2011; Huang et al., 2010; Guerra et al., 2011; Wang et al., 2011). Among them, brominated phenols (BPs) are a widely used group of BFRs because of their high efficiency and low cost. For example, tetrabromobisphenol A (TBBPA) possesses the largest production volume with the global size of 1.7 × 10^5 tons in 2004, covering around 60% of the total BFR market (Covaci et al., 2009). Moreover, its use as flame retardants is currently not restricted in many countries such as USA and China (Guerra et al., 2011). Similarly, tribromophenol (TBP) is also used as a reactive flame retardant to a lesser extent than TBBPA and has been recently classified as one of the novel BFRs to replace the banned compounds (Covaci et al., 2011). Due to their wide applications, both TBBPA and TBP have been detected in various environmental media including water, air, sediment, dust and sewage sludge, together with some biotic samples such as fish, birds and marine and terrestrial mammals (Covaci et al., 2009, 2011; Deng et al., 2010; Haldén et al., 2010). Furthermore, they have also been found to cause adverse health effects such as endocrine disruption, hepatotoxicity and neurotoxicity on humans and other organisms even at environmental levels (Covaci et al., 2009; Deng et al., 2010; Howe et al., 2005; Ezechiaš et al., 2012). Therefore, both TBBPA and TBP are considered as important environmental contaminants with respect to their widely applications and influences on living organisms.

Soil represents a major sink for organic contaminants such as TBBPA and TBP in the terrestrial environment due to their partition ability and low water solubility (Covaci et al., 2009; Hakk and Letcher, 2003). Furthermore, TBBPA and TBP can be partly degraded to lesser brominated analogues in soils mainly due to soil microbe activities and plant-soil interaction (Hakk and Letcher, 2003; Polo et al., 2006; Voordeckers et al., 2002). This not only results in co-contamination of BPs in soils, but also brings additional adverse influences to bear on the environment...
and human health due to their different biological effects compared with their precursor. Therefore, more concern should be given to the environmental presence of TBBPA and TBP together with their possible degradation products of lesser brominated analogues, which firstly necessitates the establishment of analytical methods for simultaneous determination of BPs in soils as well as in other environmental matrices.

Methods for determination of TBBPA and TBP in environmental samples such as water, soil, sediment and air have been established with gas chromatography-mass spectrometry (GC/MS) as the most commonly used analytical tool due to its high selectivity and sensitivity (Covaci et al., 2009; Sánchez-Brunete et al., 2009; López et al., 2009). Simultaneous determination of TBBPA and its degradation products of bisphenol A in sediment and sludge has been established by high performance liquid chromatography-electrospray tandem mass spectrometry (LC-MS/MS) (Chu et al., 2005). However, there are very few validated analytical methods for the determination of simple BPs such as monobromophenols (MBPs) and dibromophenols (DBPs), possible degradation products of TBP in the environment, and no method has been reported for the simultaneous determination of TBBPA, TBP and the lesser BPs in soils. Therefore, the major objective of this study was to develop a fast, selective and sensitive method for the simultaneous determination of BPs including TBBPA, TBP, DBPs and MBPs in soils by GC/MS. In the present work, GC/MS was used due to the reason that in comparison GC/MS is more available although LC-MS/MS method is more robust. Considering the necessity of cleanup and derivatization for sample analysis because of the complex matrices of soils and polarity of the BPs, attentions were mainly paid to optimization of sample cleanup with different solid-phase extraction (SPE) cartridges and derivatization procedure. The established method was verified by analyzing the target compounds in the soils collected from e-waste contaminated sites. To our knowledge, this is the first report for the simultaneous determination of TBBPA, TBP, DBPs and MBPs in soils.

1 Materials and methods

1.1 Chemicals and reagents

The BPs investigated in this study include TBBPA, TBP and MBPs of 2-bromophenol (2-MBP), 3-bromophenol (3-MBP) and 4-bromophenol (4-MBP), and DBPs of 2,4-
dibromophenol (2,4-DBP), 2,5-dibromophenol (2,5-DBP), 2,6-dibromophenol (2,6-DBP) and 2,3,5-tribromophenol (2,3,5-DBP). Their physicochemical properties are provided in Table 1, respectively. TBBPA (> 97%) was obtained from Sigma-Aldrich Chemical Co. (USA). 2,5-DBP was purchased from Accu Standard Co. The other BPs including tetrabromophenol (Tetra-BP) were supplied by Dr. Ehrenstorfer Co. (Germany). However, Tetra-BP was not included in further analysis of the soils due to suitability of the sample pretreatment procedures. 13C-TBBPA and 13C-PCB-208 (> 99%) used as recovery surrogate compound and the internal standard, respectively, were purchased from Cambridge Isotope Laboratories (MA, USA).

Individual standard solutions of the BPs were prepared by dissolving each pure compound in ethyl acetate. Working solutions (10 µg/mL for 2,5-dibromophenol and 16 µg/mL for the others) were prepared by mixing individual stock solutions, followed by serial dilution with ethyl acetate. The dosage of 2,5-DBP used in this study was 60% of that of the other eight BPs without special note. 13C-TBBPA and 13C-PCB-208 were used as the recovery surrogate compound and the internal standard at the concentrations of 50 ng/mL and 25 ng/mL, respectively.

All organic solvents used including hexane, dichloromethane, acetone and ethyl acetate were HPLC-grade and purchased from Fisher Scientific (USA). The 12-port Visiprep SPE Vacuum Manifold and the derivatization reagent (BSTFA: TMCS 99:1) were both purchased from Supelco Co. (USA). Anhydrous sodium sulfate was obtained from Beijing Chemical Factory and pretreated by heating in a muffle furnace at 400°C for 4 hr to remove possible organic contaminants. Glassware was washed with detergent solution, rinsed with pure water, air dried and heated at 400°C for 4 hr in sequence prior to use.

### Table 1 Physicochemical properties of brominated phenols (BPs) (Kuramochi et al., 2008; Howe et al., 2005)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Abbreviation</th>
<th>Chemical formula</th>
<th>Molecular mass</th>
<th>Water solubility (mg/L)</th>
<th>K&lt;sub&gt;ow&lt;/sub&gt;</th>
<th>pH&lt;sub&gt;Ka&lt;/sub&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-Monobromophenol</td>
<td>2-MBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;1&lt;/sub&gt;O</td>
<td>173</td>
<td>–</td>
<td>1.69–2.35</td>
<td>–</td>
</tr>
<tr>
<td>3-Monobromophenol</td>
<td>3-MBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;1&lt;/sub&gt;O</td>
<td>173</td>
<td>–</td>
<td>1.98–2.63</td>
<td>–</td>
</tr>
<tr>
<td>4-Monobromophenol</td>
<td>4-MBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;1&lt;/sub&gt;O</td>
<td>173</td>
<td>17400</td>
<td>1.94–2.63</td>
<td>9.17</td>
</tr>
<tr>
<td>2,4-Dibromophenol</td>
<td>2,4-DBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>252</td>
<td>208</td>
<td>2.55–3.48</td>
<td>7.79</td>
</tr>
<tr>
<td>2,5-Dibromophenol</td>
<td>2,5-DBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>252</td>
<td>–</td>
<td>2.56</td>
<td>–</td>
</tr>
<tr>
<td>2,6-Dibromophenol</td>
<td>2,6-DBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>252</td>
<td>–</td>
<td>2.37</td>
<td>–</td>
</tr>
<tr>
<td>3,5-Dibromophenol</td>
<td>3,5-DBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>252</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tribromophenol</td>
<td>TBP</td>
<td>C&lt;sub&gt;6&lt;/sub&gt;H&lt;sub&gt;4&lt;/sub&gt;Br&lt;sub&gt;3&lt;/sub&gt;O</td>
<td>331</td>
<td>59.61</td>
<td>3.74–4.24</td>
<td>6.08</td>
</tr>
<tr>
<td>Tetrabromobisphenol A</td>
<td>TBBPA</td>
<td>C&lt;sub&gt;13&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;Br&lt;sub&gt;1&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt;</td>
<td>544</td>
<td>0.08–4.16</td>
<td>4.30–5.90</td>
<td>7.5, 8.5</td>
</tr>
</tbody>
</table>

“–”: not available.
1.2 Sample preparation

The soil samples (5–25 cm in depth) were collected from the sites contaminated with e-waste dismantling and recycling activities in Guangdong Province of China. After freeze-dried, the soil samples were ground and passed through a 2-mm sieve and then stored at −20°C in sealed plastic bags before use. The mixture of 2 g soils with 2 g anhydrous sodium sulfate was homogenized and transferred to extraction thimble. Then 20 μL of surrogate compound 13C-TBBPA solution (1 μg/mL) was spiked into the soil samples. After the added organic solvent evaporated (about 2 hr), the samples were soxhlet extracted for 24 hr with 100 mL hexane and acetone mixture (1:1, V/V). The extract was rotary evaporated to 1–2 mL and transferred to 10 mL centrifuge tube with 2 mL hexane and acetone mixture (1:1, V/V) as the rinsing reagent. The extract was then dried with a soft nitrogen flow at room temperature and 1 mL hexane was added to dissolve the residue.

Cartridge purification was performed on SPE Vacuum Manifold. Five kinds of different cartridges were obtained from three manufactures with the detail information as follows: acidic alumina, 2 g/6 mL; florisil, 1 g/6 mL; silica gel-1, 1 g/6 mL; silica gel-2, 500 mg/6 mL; silica gel-3, 500 mg/6 mL. The cartridges were conditioned with 10 mL hexane before use. Then the extract was allowed to pass through the cartridge drop by drop with the gravitational flow rate. The cartridge was washed with 10 mL hexane which was discarded and the analytes were eluted with different solvents (10 mL) for comparison with the flow rate at approximately 1 mL/min.

The collected eluate was concentrated to dryness under a gentle stream of nitrogen and reconstituted in ethyl acetate. The derivative reagent was added and the derivatization conditions (dosage of the derivative reagent and temperature) were optimized. Then the sample with the final volume of 400 μL was filtered through the nylon membrane (0.22 μm) before GC/MS analysis.

1.3 GC/MS analysis

The measurement of the BPs was performed by an Agilent 7890 GC/MS (5975 inert) (USA). Columns of HP-5MS (30 m × 0.25 mm × 0.25 μm) and DB-XLB (30 m × 0.25 mm × 0.25 μm) were compared for separation efficiency. The gas of helium with high purity (99.99%) was applied with the flow rate of 1 mL/min. The volume of injection was 1 μL with the non-split model. The temperature program was set as follows: oven temperature held at 75°C for 1 min, then increased to 150°C at the rate of 20°C/min and held for 7 min, then increased to 300°C with the rate of 35°C/min and held for 6 min. The total running time was 22 min. The temperatures of oven and injection inlet were set at 300°C and 250°C, respectively. The temperatures of ion source, transfer line and quadrupole were maintained at 230°C, 280°C and 150°C, respectively. For mass spectrometry information, the characteristic ions of the target compounds, surrogate compound and internal compound were determined by full scan model. SIM mode was applied in the further analysis. The quantification ions and the retention time to indentify target compounds were also included.

2 Results and discussion

2.1 Optimization of sample pretreatment and analysis

2.1.1 Soil extraction and cleanup

Soxhlet extraction with a mixture of hexane and acetone (volume of 100 mL at 1:1 mixture ratio) has been successfully applied to extract some organic contaminants such as PCBs, PBDEs, TBBPA and HBCD with different polarities in various environmental media such as soils (Huang et al., 2010, 2011; Wang et al., 2011), sediments (Mai et al., 2005), plant (Huang et al., 2010; Wang et al., 2011) and bird tissue samples (He et al., 2010). Therefore it was adopted in the present study. Extract for 24 hr was shown to achieve quantitative recoveries of all the target compounds from soils.

Cleanup step is a key procedure for the determination of target compounds in soils to reduce or eliminate the matrix interferences. Silica, florisil and aluminium oxide are the commonly used adsorbents for the separation of polar phenolic compounds in soils, sediments and other solid matrices (Sánchez-Brunete et al., 2009; López et al., 2009; Chu et al., 2005; Blanco et al., 2006; Liu et al., 2004). Therefore optimization of cartridge with different adsorbent materials is significant in achieving a high and reproducible recovery together with an effective cleanup of sample extract. In this study, five kinds of cartridges with various filling materials provided by different producers were compared for their recoveries. A mixture of the nine BPs (20 ng of each compound) was uploaded onto the cartridges. Different recoveries were obtained after eluting by 10 mL dichloromethane as shown in Fig. 1, which was probably attributed to the differences among the cartridges including packing material properties, size and porosity. The poorest recovery was obtained for the acidic alumina oxide cartridge in which the fillings strongly retained the polar compounds with the recovery less than 40% for all the target compounds at the optimized experimental condition. The florisil cartridge showed the best recoveries (73% for 2-MBP and over 82% for the other BPs) and was therefore used for further analysis, whereas the other cartridges were not suitable for simultaneous determination of all the BPs. The recovery obtained by the relatively lower polar solvent (hexane/dichloromethane, 1:1, V/V, 10 mL) as the elution solvent for the selected cartridge was not satisfactory (data not shown) and consequently dichloromethane was chosen as the elution solvent. Moreover, the soil extracts became clear after purification with
the selected cartridge.

2.1.2 Derivatization

The silylation reagent of BSTFA:TMCS (99:1, V/V) was used to increase the volatility, thermal stability and detector response of the BPs. Heating at 70°C or 60°C has been chosen for derivatization of phenols previously (Liu et al., 2004; Sánchez-Brunete et al., 2009). The impact of heating on derivatization was investigated at the temperature of 26, 40, 60 and 80°C controlled by water bath for 1 hr (256 ng of each compound with enough derivative reagent of 100 µL). The results showed that the increase of temperature did not improve the derivative efficiency. Therefore, heating was unnecessary for the derivatization reaction and room temperature was used in the following experiments with the derivatization time controlled for at least 1 hr.

Different dosages of derivative reagent (10, 20, 40, and 100 µL) were applied to compare the derivatization efficiency. A mixture of nine BPs with each one at the final concentration of 640 ng/mL was used and the derivative time was 1 hr at room temperature. The results showed that the response did not change significantly with the increase of the derivative reagent dosage, and 20 µL was sufficient for complete derivatization and was applied in the following experiments.

2.1.3 Optimization of GC/MS parameters

Considering the polarity differences of the BPs, two different chromatography columns of distinct polarities (non-polarity and weak polarity) were applied to the separation of the nine BPs using the same oven temperature program. HP-5MS capillary column is an excellent non-polarity column coated with (5%-phenyl)-methylpolysiloxane. It has been recommended for the separation of organic contaminants such as PCBs, chlorinated pesticides, phenols and BPDEs (Gu et al., 2011; Huang et al., 2010, 2011; Wang et al., 2011). DB-XLB column has low polarity with unique selectivity and exceptional low bleed. The chromatograms for the separation of the target compounds on the two columns are shown in Fig. 2. Even though HP-5MS column gave symmetrical chromatographic peaks, peaks for 3,5-DBP and 2,6-DBP overlapped seriously. Whereas DB-XLB column showed high resolution and selectivity for the separation of the nine BPs in both the mixed standard solution and soil extracts (Fig. 3). This demonstrates an obvious advantage of DB-XLB column over HP-5MS column for the separation of the DBP isomers. Therefore, the DB-XLB column was selected for the analysis considering its excellent separation potential. The characteristic ions with their abundance percent and retention time of the analytes are listed in Table 2.

2.2 Validation of the method

In order to investigate the recoveries of the target compounds, 2 g subsample of a BP-free soil (Alfisols) collected from an agricultural field in Beijing were added with 0.2 mL of BPs at two different concentrations dissolved in ethyl acetate to reach the final concentration of 2 and 40 ng/g and the solvent was evaporated before extraction. The blank and the control groups were also analyzed.
The results are shown in Fig. 4. The recoveries of the BPs were satisfactory ranging from 84.3% to 121.6% with the relative standard deviations of 0.04%–12.7% with the sole exception of 2-MBP which had a little poor recovery (44.6%–55.7%). The relatively low recovery of 2-MBP was attributed to its poor stability in the treatment process. Compared to the other BPs, 2-MBP had the lowest melting and boiling points (Howe et al., 2005) and a relative weak intermolecular hydrogen bonding interaction. Therefore, it had a weaker stability and a stronger evaporation potential than the others. During preconcentration treatment with nitrogen flow, the loss of 2-MBP was much heavier than other BPs. The average recovery of each analyte from the spiked soils experiencing the whole sample treatment procedure was higher than the one from the cartridge cleanup treatment alone (Fig. 1). This phenomenon was possibly ascribed to the protective effect of the soil matrices on lessening the loss of the target compounds. Overall the recoveries of BPs for the whole procedure were satisfactory.

The detection limits of the method for the target compounds were obtained according to the concentrations of signal to noise equal to three, and the results are listed in Table 3. $^{13}$C-PCB-208 (25 ng/mL) was used as the internal standard to correct the response deviation caused by the instrumental instability. Under the optimized conditions, the response was found to be linear in the validated range from 0 to 200 ng/mL with the correlation coefficient ($R^2$) higher than 0.9960 (Table 3), which demonstrates the robustness and reliability of the method established.

### Table 2

<table>
<thead>
<tr>
<th>Compound</th>
<th>Characteristic ions (m/z) (abundance, %)</th>
<th>Quantitative ion (m/z)</th>
<th>Retention time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-MBP</td>
<td>231 (94), 229 (99), 246 (30)</td>
<td>231</td>
<td>6.38</td>
</tr>
<tr>
<td>3-MBP</td>
<td>231 (99), 229 (99), 244 (51)</td>
<td>231</td>
<td>6.54</td>
</tr>
<tr>
<td>4-MBP</td>
<td>231 (99), 229 (91), 246 (70)</td>
<td>231</td>
<td>6.91</td>
</tr>
<tr>
<td>2,5-DBP</td>
<td>309 (99), 307 (51), 322 (14)</td>
<td>309</td>
<td>11.13</td>
</tr>
<tr>
<td>3,5-DBP</td>
<td>309 (99), 307 (52), 324 (46)</td>
<td>309</td>
<td>11.29</td>
</tr>
<tr>
<td>2,6-DBP</td>
<td>309 (99), 311 (50), 324 (16)</td>
<td>309</td>
<td>11.60</td>
</tr>
<tr>
<td>2,4-DBP</td>
<td>309 (99), 311 (52), 324 (27)</td>
<td>309</td>
<td>12.13</td>
</tr>
<tr>
<td>TBP</td>
<td>387 (97), 389 (99), 404 (22)</td>
<td>389</td>
<td>14.62</td>
</tr>
<tr>
<td>TBBPA</td>
<td>673 (99), 675 (71), 688 (25)</td>
<td>673</td>
<td>21.43</td>
</tr>
<tr>
<td>$^{13}$C-TBBPA</td>
<td>685 (99), 687 (71), 700 (12)</td>
<td>685</td>
<td>21.43</td>
</tr>
</tbody>
</table>

### Table 3

<table>
<thead>
<tr>
<th>Compound</th>
<th>Regression equation</th>
<th>Correlation coefficient ($R^2$)</th>
<th>Method detection limit (ng/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-MBP</td>
<td>$Y = 0.0004X + 0.9778$</td>
<td>0.9990</td>
<td>0.05</td>
</tr>
<tr>
<td>3-MBP</td>
<td>$Y = 0.0003X + 0.5363$</td>
<td>0.9993</td>
<td>0.04</td>
</tr>
<tr>
<td>4-MBP</td>
<td>$Y = 0.0004X + 0.8032$</td>
<td>0.9992</td>
<td>0.05</td>
</tr>
<tr>
<td>2,5-DBP</td>
<td>$Y = 0.0005X – 0.3868$</td>
<td>0.9996</td>
<td>0.07</td>
</tr>
<tr>
<td>3,5-DBP</td>
<td>$Y = 0.0006X – 0.2779$</td>
<td>0.9996</td>
<td>0.07</td>
</tr>
<tr>
<td>2,6-DBP</td>
<td>$Y = 0.0006X + 0.0092$</td>
<td>0.9998</td>
<td>0.06</td>
</tr>
<tr>
<td>2,4-DBP</td>
<td>$Y = 0.0006X + 0.5482$</td>
<td>0.9995</td>
<td>0.06</td>
</tr>
<tr>
<td>TBP</td>
<td>$Y = 0.0007X + 0.7903$</td>
<td>0.9991</td>
<td>0.05</td>
</tr>
<tr>
<td>TBBPA</td>
<td>$Y = 0.0042X + 1.7159$</td>
<td>0.9960</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Fig. 3  Chromatogram of the BPs in a mixture of standard compounds at 50 μg/L (a) and a spiked soil at 10 ng/g (b).
Table 4 Concentrations of the BPs in the e-waste contaminated soils (unit: ng/g)

<table>
<thead>
<tr>
<th>Soil</th>
<th>2-MBP</th>
<th>3-MBP</th>
<th>4-MBP</th>
<th>2,5-DBP</th>
<th>3,5-DBP</th>
<th>2,6-DBP</th>
<th>2,4-DBP</th>
<th>TBP</th>
<th>TBBPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.17</td>
<td>0.72</td>
</tr>
<tr>
<td>2</td>
<td>1.12</td>
<td>–</td>
<td>1.69</td>
<td>–</td>
<td>0.07</td>
<td>1.78</td>
<td>1.99</td>
<td>0.64</td>
<td>5.05</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.86</td>
<td>2.10</td>
<td>2.64</td>
<td>15.34</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.13</td>
<td>0.47</td>
<td>1.97</td>
<td>0.94</td>
<td>16.98</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.07</td>
<td>–</td>
<td>–</td>
<td>0.85</td>
<td>5.15</td>
<td></td>
</tr>
</tbody>
</table>

“–”: below the limit of detection.

Fig. 4 Recoveries of the BPs from a spiked soil at the concentrations of 2 and 40 ng/g.

2.3 Application of the method to real soil sample analysis

The developed method was applied to analyze BPs in the soils collected from e-waste sites. The results (Table 4) suggest that e-waste dismantling and recycling activities resulted in contamination of BPs in the soils. TBBPA and TBP were found in all the soil samples while MBPs and DBPs were only found in some of the soil samples. In addition, TBBPA showed a higher concentration than the others probably owing to its larger usage in electronic devices and appliances (Covaci et al., 2009) than the other BPs. Whereas, 3-MBP and 2,5-DBP in the soils were below the detection limits.

3 Conclusions

A method for simultaneous analysis of nine BPs in soils was successfully developed. Florisil cartridge was adopted in sample purification and DB-XLB GC column was selected for BPs separation. The limits of detection and the recoveries for the compounds were satisfied. Moreover, the linearity of the calibration curves and the repeatability were also robust. The developed method was successfully applied to determine BPs in the soils collected from e-waste sites. The method developed for BP analysis is of great significance for the investigation of environmental behavior and fate of BPs.

Acknowledgments

This work was supported by the National Basic Research (973) Program of China (No. 2014CB441102) and the National Natural Science Foundation of China (No. 21177139).

References


Haldén A N, Nyholm J R, Andersson P L, Holbeck H, Norrgren


# Editorial Board of Journal of Environmental Sciences

## Editor-in-Chief

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hongxiao Tang</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
</tbody>
</table>

## Associate Editors-in-Chief

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jiuhui Qu</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Shu Tao</td>
<td>Peking University, China</td>
</tr>
<tr>
<td>Nigel Bell</td>
<td>Imperial College London, United Kingdom</td>
</tr>
<tr>
<td>Po-Keung Wong</td>
<td>The Chinese University of Hong Kong, Hong Kong, China</td>
</tr>
</tbody>
</table>

## Editorial Board

### Aquatic environment

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baoyu Gao</td>
<td>Shandong University, China</td>
</tr>
<tr>
<td>Maoshong Fan</td>
<td>University of Wyoming, USA</td>
</tr>
<tr>
<td>Ch pipin Huang</td>
<td>National Chiao Tung University, Taiwan, China</td>
</tr>
<tr>
<td>Ng Wu Nern</td>
<td>Nanyang Environment &amp; Water Research Institute, Singapore</td>
</tr>
<tr>
<td>Clark. C. K. Liu</td>
<td>University of Hawaii at Manoa, USA</td>
</tr>
<tr>
<td>H okyong Shon</td>
<td>University of Technology, Sydney, Australia</td>
</tr>
<tr>
<td>Zijian Wang</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Zhiwu Wang</td>
<td>The Ohio State University, USA</td>
</tr>
<tr>
<td>Yuxiang Wang</td>
<td>Queen’s University, Canada</td>
</tr>
<tr>
<td>Min Yang</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
</tbody>
</table>

### Terrestrial environment

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Anderson</td>
<td>Massey University, New Zealand</td>
</tr>
<tr>
<td>Zucong Cai</td>
<td>Nanjing Normal University, China</td>
</tr>
<tr>
<td>X infin Feng</td>
<td>Institute of Geochemistry, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Hongjing Hu</td>
<td>Huazhong Agricultural University, China</td>
</tr>
<tr>
<td>Kin-Chi Lam</td>
<td>The Chinese University of Hong Kong, Hong Kong, China</td>
</tr>
<tr>
<td>Erwin Klump</td>
<td>Research Centre Juelsch, Agrosphere Institute, Germany</td>
</tr>
<tr>
<td>Peijin Li</td>
<td>Institute of Applied Ecology, Chinese Academy of Sciences, China</td>
</tr>
</tbody>
</table>

### Atmospheric environment

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Schloter</td>
<td>German Research Center for Environmental Health, Germany</td>
</tr>
<tr>
<td>Xuejun Wang</td>
<td>Peking University, China</td>
</tr>
<tr>
<td>Lizhong Zhu</td>
<td>Zhejiang University, China</td>
</tr>
<tr>
<td>Jianmin Chen</td>
<td>Fujian University, China</td>
</tr>
<tr>
<td>Abdelwahid Mellouk</td>
<td>Centre National de la Recherche Scientifique, France</td>
</tr>
<tr>
<td>Min Shao</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Min Shao</td>
<td>Peking University, China</td>
</tr>
<tr>
<td>James Jay Schauer</td>
<td>University of Wisconsin-Madison, USA</td>
</tr>
<tr>
<td>Yuesi Wang</td>
<td>Institute of Atmospheric Physics, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Xing Yang</td>
<td>University of Cambridge, UK</td>
</tr>
</tbody>
</table>

### Environmental biology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yong Cai</td>
<td>Florida International University, USA</td>
</tr>
<tr>
<td>Henner Hollert</td>
<td>RWTH Aachen University, Germany</td>
</tr>
<tr>
<td>Jae-Seong Lee</td>
<td>Hanyang University, South Korea</td>
</tr>
<tr>
<td>Christopher Rensing</td>
<td>University of Copenhagen, Denmark</td>
</tr>
<tr>
<td>Bojan Sedmak</td>
<td>National Institute of Biology, Ljubljana</td>
</tr>
<tr>
<td>Lirong Song</td>
<td>Institute of Hydrobiology, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Chuxia Wang</td>
<td>National Natural Science Foundation of China</td>
</tr>
<tr>
<td>Ge Hong Wei</td>
<td>Northwest A &amp; F University, China</td>
</tr>
<tr>
<td>Daqiang Yin</td>
<td>Tongji University, China</td>
</tr>
</tbody>
</table>

### Environmental toxicology and health

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jingwen Chen</td>
<td>Dalian University of Technology, China</td>
</tr>
<tr>
<td>Jinying Hu</td>
<td>Peking University, China</td>
</tr>
<tr>
<td>Guibin Jiang</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Sijin Liu</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Tsuyoshi Nakanishi</td>
<td>Gifu Pharmaceutical University, Japan</td>
</tr>
<tr>
<td>Willie Peijnenburg</td>
<td>University of Leiden, The Netherlands</td>
</tr>
<tr>
<td>Bingsheng Zhou</td>
<td>Institute of Hydrobiology, Chinese Academy of Sciences, China</td>
</tr>
</tbody>
</table>

### Environmental catalysis and materials

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong He</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Junhua Li</td>
<td>Tsinghua University, China</td>
</tr>
<tr>
<td>W enfeng Shangguan</td>
<td>Shanghai Jiao Tong University, China</td>
</tr>
<tr>
<td>Yasutake Teraoka</td>
<td>Kyoto University, Japan</td>
</tr>
<tr>
<td>Ralph T. Yang</td>
<td>University of Michigan, USA</td>
</tr>
</tbody>
</table>

### Environmental analysis and method

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zongwei Cai</td>
<td>Hong Kong Baptist University, Hong Kong, China</td>
</tr>
<tr>
<td>Jiping Chen</td>
<td>Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Minghui Zheng</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Pinjing He</td>
<td>Tongji University, China</td>
</tr>
</tbody>
</table>

### Environmental ecology

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruosong Wang</td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
</tbody>
</table>

## Editorial office staff

<table>
<thead>
<tr>
<th>Role</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Managing editor</td>
<td>Qingcai Feng</td>
<td></td>
</tr>
<tr>
<td>Editors</td>
<td>Zixuan Wang</td>
<td>Suqin Liu</td>
</tr>
<tr>
<td>English editor</td>
<td>Catherine Rice (USA)</td>
<td></td>
</tr>
</tbody>
</table>

Copyright© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

*Journal of Environmental Sciences* is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.
Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
Hongxiao Tang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Associate Editors-in-Chief
Jiuhui Qu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Shu Tao
Peking University, China
Nigel Bell
Imperial College London, United Kingdom
Po-Keung Wong
The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment
Baoyu Gao
Shandong University, China
Maohong Fan
University of Wyoming, USA
Chhipin Huang
National Chiao Tung University, Taiwan, China
Ng Wun Jern
Nanyang Environment & Water Research Institute, Singapore
Clark C. K. Liu
University of Hawaii at Manoa, USA
Hoykong Shon
University of Technology, Sydney, Australia
Zijian Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Zhiwu Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Terrestrial environment
Christopher Anderson
Massey University, New Zealand
Zucong Cai
Nanjing Normal University, China
Xinbin Feng
Institute of Geochemistry, Chinese Academy of Sciences, China
Hongjing Hu
Huazhong Agricultural University, China
Kim-Chi Lam
The Chinese University of Hong Kong, Hong Kong, China
Erwin Klumpp
Research Centre Juelich, Agrospire Institute Germany
Peijun Li
Institute of Applied Ecology, Chinese Academy of Sciences, China

Michael Schloter
German Research Center for Environmental Health, Germany
Xuejun Wang
Peking University, China
Lizhong Zhu
Zhejiang University, China
Jiunnin Chen
Fudan University, China
Abdelwahid Mellouki
Centre National de la Recherche Scientifique, France
Yujing Mu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Min Shao
Peking University, China
James Jay Schauer
University of Wisconsin-Madison, USA
Yuesi Wang
Institute of Atmospheric Physics, Chinese Academy of Sciences, China
Xin Yang
University of Cambridge, UK
Yong Cai
Florida International University, USA
Henner Hollett
RWTH Aachen University, Germany
Jae-Seong Lee
Hanyang University, South Korea
Christopher Rensing
University of Copenhagen, Denmark
Bojan Sedmak
National Institute of Biology, Ljubljana
Limong Song
Institute of Hydrobiology, the Chinese Academy of Sciences, China
Chunxia Wang
National Natural Science Foundation of China
Gehong Wei
Northwest A & F University, China
Daqiang Yin
Tongji University, China
Zhongtang Yu
The Ohio State University, USA

Environmental toxicology and health
Jingwen Chen
Dalian University of Technology, China
Jianying Hu
Peking University, China
Guibin Jiang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Sijin Liu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Tsu Yoshi Nakanishi
Gifu Pharmaceutical University, Japan
Willie Peijnenburg
University of Leiden, The Netherlands
Bingsheng Zhou
Institute of Hydrobiology, Chinese Academy of Sciences, China

Environmental catalysis and materials
Hong He
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Jinhua Li
Tsinghua University, China
Wenfeng Shangguan
Shanghai Jiao Tong University, China
Yasutake Teraoka
Kyushu University, Japan
Ralph T. Yang
University of Michigan, USA

Environmental analysis and method
Zongwei Cai
Hong Kong Baptist University, Hong Kong, China
Jiping Chen
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
Minghui Zheng
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Municipal solid waste and green chemistry
Pinjing He
Tongji University, China

Environmental biology

Environmental ecology

Copyright© Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

*Journal of Environmental Sciences* is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.