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Abstract
Sorption and desorption of phenanthrene (PHE) onto black carbon (BC) extracted from sediments were studied in the presence of three
types of dissolved organic matter (DOM), including L-phenylalanine (L-PH), peptone and citric acid. The nonlinearity of the sorption
isotherms increased in the presence of DOM. The presence of L-PH reduced the sorption capacity and desorption hysteresis because
of the solubilization of PHE in L-PH solution. Peptone at 50–500 mg/L also led to a decrease in sorption attributed to solubilization,
although the sorbed peptone on the BC surface could slightly increase PHE sorption. Unlike L-PH and peptone, citric acid enhanced
the sorption capacity and irreversibility of PHE on BC mainly due to the strong sorption of citric acid on the BC surface. Our results
may help to understand the different impacts of DOM on the distribution and transport of PAH in the environment.
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Introduction

Soil/sediment organic matter (SOM) plays an important
role in the sorption, desorption and degradation processes
of hydrophobic organic compounds (HOCs), which control
the fate, bioavailability and distribution of these contami-
nants in soils and sediments (Accardi-Dey and Gschwend,
2002). It was reported that there are two domains of
physically and chemically heterogeneous SOM, a “soft”
domain, including fulvic acids and humic acids in their
rubbery states, and a “hard” domain, including kerogen,
black carbon (BC) and humic acids in their glassy states
(LeBoeuf and Weber, 1997; Weber et al., 1992, Young
and Weber, 1995). BC, which is a component of SOM
formed during incomplete oxidation of biomass and fossil
fuels, is believed to be a super-sorbent because of its
high specific surface area and relatively reduced chemical
nature (Gustafsson et al., 1997). Indeed, BC materials
such as diesel soot and wood char were shown to exhibit
sorption capacity several times greater than other forms of
natural organic matter (Accardi-Dey and Gschwend, 2002,
2003; Cornelissen and Gustafsson, 2004). For example,
environmental BC was reported to explain 49%–85% of

* Corresponding author. E-mail: hemc@bnu.edu.cn

the total Phen sorption on sediments at a concentration of
1 ng/L (Cornelissen et al., 2004; Zhang and He, 2009). Re-
cent investigations also showed that coal and soot particles
in fact can explain > 90% of the total sorption for organic
compounds (Bucheli and Gustafsson, 2000; Cornelissen
et al., 2005). Likewise, BC was responsible for > 80%
of the total sorption for PAH, PCB and PCDD by harbor
sediments (Lohmann et al., 2005). Therefore, BC plays an
important role in the fate of organic contaminants due to
its very strong sorption affinity.

Dissolved organic matter (DOM) is one kind of widely
existing compounds in soils and sediments, which may
interact with water, solid matrix and other contaminants.
Tremblay et al. (2005) and Céspedes et al. (2006) reported
that DOM can reduce sorption but enhance desorption
of HOC due to the competition with organic compounds
for the sorption sites of soil/sediment surfaces and the
increase in HOC solubility by partitioning them into DOM
solutions. However, according to a prior study of Tremblay
et al. (2005), the sorption of DOM by solid matrices may
increase HOC sorption by partitioning HOC into immo-
bile sorbed DOM. The above two contrasting processes
determine the apparent impacts of DOM on the sorption
and desorption of HOC in soils and sediments. A number
of studies have investigated the influence of DOM on the
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sorption and desorption of organic compounds in soils and
sediments. For instance, the presence of tannic acid at 15–
100 mg/L produced an increase in 3,4-dichloroaniline and
4-bromoaniline sorption but a decrease in imidacloprid
sorption on a typical calcareous soil (Céspedes et al.,
2006). Gao et al. (2007) reported that inherent DOM in
soils impeded phenanthrene (PHE) sorption, but the impact
of exotic DOM extracted from straw waste on sorption was
DOM concentration-dependant. Low levels of exotic DOM
(6 28 mg/L) promoted sorption, but high levels of exotic
DOM (> 52 mg/L) impeded the sorption of PHE on soils.
Moreover, application of DOM extracted from sludge and
straw was able to decrease the chlorotoluron sorption and
increase its desorption capacity from soils (Song et al.,
2008). As reported by Li et al. (2005), addition of DOM
extracted from organic fertilizers reduced the sorption
of naphthalene and chlorpyrifos by soils. However, little
information is available on the effect of DOM on the
sorption and desorption of HOC onto BC, which may help
to predict the fate and transport of HOC in contaminated
soils and sediments, especially for those with high BC
content.

The aims of this study are to: (1) examine the sorption
of DOM (L-phenylalanine (L-PH); peptone; citric acid) on
BC isolated from a sediment sample, and (2) compare the
effects of DOM on the sorption capacity and desorption
hysteresis of PHE onto BC.

1 Materials and methods

1.1 Chemicals

PHE (> 98%, Aldrich Chemical Co.) was selected as a
representative HOC in the sorption and desorption ex-
periments. The aqueous solubility S w at 25°C is 1.29
mg/L, and logKow is 4.57 (Mackay et al., 1992). Three
types of dissolved organic matter (L-PH, peptone and citric
acid) were purchased from Sigma Chemical Company and
used without further treatment. The molecular weight of
L-PH, citric acid and peptone are 165 g/mol, 192 g/mol
and > 2000 g/mol, respectively. Stock solutions of PHE
were prepared in high performance liquid chromatography
(HPLC)-grade methanol. Methanol concentrations in the
aqueous solutions were always less than 0.2%, a level
at which methanol has no measurable effect on sorption
(Wauchope and Koskinen, 1983). L-PH, peptone and citric
acid solutions were dissolved in deionized water.

1.2 Sorbent

One surface (0–20 cm) sediment sample was collected
from the Hunhe River in the Daliaohe River water system,
China, in May 2006. After collection, the sediment was
freezedried (FD-1A, China), passed through a 100-mesh
sieve and stored in a brown glass bottle. The extraction
of BC was performed upon treatment with a combustion
method at 375°C (Gelinas et al., 2001). Briefly, carbonates

in the sediment were first dissolved in 1 mol/L HCl
for 24 hr. Then, the residues were demineralized with 1
mol/L HCl and 10% HF for 5 days, which was repeated
four times. Finally, the residual fraction was heated in a
muffle furnace at 375°C for 24 hr under a constant air
flow of 200 mL/min. The BC sample was washed with
deionized water, freeze-dried, passed though a 100-mesh
sieve, and used for sorption and desorption experiments.
Fourier transform infrared spectroscopy spectrum, 13C
NMR spectrum and scanning electron microscopy analysis
of the BC sample was performed in the previous study
(Zhang and He, 2010).

1.3 Sorption and desorption experiments

Sorption isotherms of PHE and DOM onto the BC sample
were conducted in replicates in 50 mL glass tubes with
Teflon-lined caps. CaCl2 solution of 0.01 mol/L and 200
mg/L NaN3 were added to stock solutions to minimize bi-
ological activity (Cornelissen and Gustafsson, 2004; Kang
and Xing, 2005; Wen et al., 2007). The ratios of water
to solids (20 mL:5 mg) were adjusted to achieve 30%–
80% sorption of PHE. Our preliminary test showed that
apparent sorption equilibrium was reached in less than 7
days. The vials with BC and initial PHE or DOM solutions
(20 mL) were shaken at 125 r/min at (25 ± 0.5)°C for 7
days and then centrifuged at 4000 ×g for 30 min to separate
solid and aqueous phases. PHE in the supernatant was
filtered through a 0.45 µm nylon membrane and analyzed
by HPLC. The sorbed amounts were computed from the
difference of the initial and final solute concentrations.
Two replicates for each point were used in all sorption
experiments. Control reactors prepared similarly but with
no sorbent were run simultaneously to assess loss of solute
to the reactor during sorption. Results showed that average
system losses were consistently less than 4% of the initial
concentration, indicating that microbial degradation and
volatilization during sorption and uptake by the glass walls
were negligible. To determine the effect of DOM on PHE
sorption onto BC, L-PH, peptone and citric acid was added
to the solutions at initial concentrations of 50, 100 and 500
mg/L for L-PH and peptone, and 50 and 100 mg/L for citric
acid. The sorption process and analysis were the same as
the isotherm experiments.

Desorption experiments were conducted immediately
after the adsorption experiments. 10 mL of the centrifuged
supernatant was removed and replaced with the same
volume of fresh 0.01 mol/L CaCl2 and 200 mg/L NaN3
solution. The mixtures were then re-equilibrated for 24 hr
at (25 ± 0.5)°C. Subsequent separation of soil from the
aqueous phase and analysis were conducted as described
above. These steps were repeated five times consecutively.

1.4 Phenanthrene solubilization in DOM

Solubilization of PHE in L-PH, peptone and citric acid
solutions with a range of concentrations of 0–500 mg/L
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was performed in 50 mL glass tubes with Teflon-lined
caps. Duplicate vials with 30 mL DOM solution at a given
concentration containing excess PHE were shaken at 200
r/min for 48 hr at (25 ± 0.5)°C. The tubes were then
centrifuged at 5000 r/min for 30 min to separate the solid
PHE that did not dissolve. The supernatant was diluted and
analyzed for the concentration of PHE by HPLC.

1.5 Determination of PHE and DOM

PHE concentrations were determined using a reversed
phase HPLC (C18 column, 4.6 mm × 25 mm, Waters,
USA) with a fluorescence detector (model Waters 474, UV
excitation/emission wavelengths at 292/366 nm). Isocratic
elution was performed at a flow rate of 1.0 mL/min using
MeOH:water volume ratio (95:5) as the mobile phase.
L-PH and peptone were quantified by UV absorption at
257 nm and 280 nm, respectively. Citric acid concentration
was determined as described in the reference (Chen et al.,
2010) using HPLC.

1.6 Sorption model

The Freundlich empirical model was used to fit the equi-
librium sorption and desorption data:

qe = KFCn
e (1)

log qe = log KF + n log Ce (2)

where, Ce (mg/L) is the liquid phase concentra-
tion, qe (mg/kg) is the solid phase concentration, KF
((mg/kg)/(mg/L)n) is the sorption capacity-related param-
eter, and n is the isotherm nonlinearity index.

The hysteresis index (HI) for the sorption-desorption
isotherm is calculated (Barriuso et al., 1994):

HI = ndes/nads (3)

where, nads and ndes are the Freundlich constants of the
adsorption and desorption isotherms, respectively. The
fitting was processed using SigmaPlot 2000 (SPSS Inc.)
and statistical analysis was performed using SPSS 11.0
(SPSS Inc.).

2 Results and discussion

2.1 Influence of DOM on the sorption of PHE

The influence of L-PH, peptone and citric acid on the
sorption and desorption isotherms of PHE onto BC is
given in Fig. 1. All sorption and desorption isotherms were
nonlinear with the Freundlich parameters listed in Table 1.
The sorption nonlinearity of PHE onto BC increased in
the presence of DOM. The n values of PHE sorption
reduced from 0.330 to 0.258, 0.278 and 0.259, when the
added concentration increased from 0 mg/L to 500 mg/L
for L-PH and peptone, and to 100 mg/L for citric acid,
respectively. This is different from the results in a prior
study. Pan et al. (2007) reported that a H2O2-treated soil
coated with dissolved humic acid showed more linear
sorption for PHE. The main sorption mechanisms of PHE
onto BC were adsorption and pore filling (James et al.,
2005). The increasing nonlinearity in this study suggests
that the apparent sorption is not just the combination of
PHE sorption on sorbed DOM and BC. The sorbed DOM
may modify surface characteristics of the BC, such as
heterogeneity, organic carbon content, hydrophobicity and
functional groups (Chi and Amy, 2004; Gao et al., 2007).

Due to their different chemical structures, molecular
sizes and concentrations, the three types of DOM (L-PH,
peptone and citric acid) exhibited different effects on the
sorption capacity of PHE onto BC. The data in Fig. 1a
and Table 1 showed that the presence of L-PH decreased
the sorption of PHE onto BC. The Kd value (at Ce = 0.05
mg/L) of PHE decreased from 70374 to 69250, 64496 and
59759 mL/g with L-PH concentration increasing from 0
to 50, 100 and 500 mg/L, respectively. Similar to L-PH,
the sorption of PHE onto BC was also reduced in the
presence of peptone (Fig. 1b). When the concentration of
peptone increased from 0 to 50, 100 and 500 mg/L, the
Kd value (at Ce = 0.05 mg/L) of PHE decreased from
70374 to 69370, 66072 and 62571 mL/g, respectively.
Moreover, for both L-PH and peptone, the Kd values of
PHE decreased more sharply at low DOM concentrations
(Ce < 100 mg/L). When the added concentration increased
to 500 mg/L, PHE sorption was slightly reduced. However,
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Fig. 1 Sorption and desorption isotherms of PHE onto BC in the presence of L-PH (a), peptone (b) and citric acid (c).
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Table 1 Freundlich sorption and desorption parameters of PHE onto BC in the presence of different DOM

DOM (mg/L) Sorption Desorption HI
Kd (mL/g)

n KF R2 N Ce = Ce = Ce = n Kf R2 N
0.05 mg/L 0.1 mg/L 0.5 mg/L

Control 0 0.330 ± 0.005 9456 0.992 20 70374 44230 15046 0.091 ± 0.003 7747 0.996 12 0.28
L-PH 50 0.282 ± 0.004 8059 0.991 20 69250 42100 13256 0.103 ± 0.002 7185 0.990 12 0.36

100 0.275 ± 0.004 7350 0.992 20 64496 39020 12149 0.118 ± 0.003 6914 0.989 12 0.43
500 0.258 ± 0.005 6472 0.998 18 59759 35730 10824 0.135 ± 0.005 6269 0.990 12 0.52

Peptone 50 0.297 ± 0.003 8444 0.989 20 69370 42613 13746 0.089 ± 0.004 7343 0.963 12 0.30
100 0.292 ± 0.003 7923 0.987 20 66072 40447 12943 0.111 ± 0.005 7180 0.984 12 0.38
500 0.278 ± 0.004 7195 0.993 20 62571 37934 11868 0.128 ± 0.002 6718 0.978 12 0.46

Citric acid 50 0.281 ± 0.005 9953 0.992 20 85782 52114 16383 0.063 ± 0.003 7990 0.965 12 0.23
100 0.259 ± 0.006 10776 0.990 20 99202 59355 18010 0.051 ± 0.002 8423 0.963 12 0.19

N is the number of data; Kd is the concentration dependent sorption capacity coefficient Kd = KFCn−1
e ; HI is the hysteresis index. Data are expressed as

mean ± standard deviation.
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Fig. 2 Sorption isotherms of peptone and citric acid onto BC.

compared to peptone, the presence of L-PH resulted in
a greater decrease of PHE sorption to BC at the same
added concentration. In contrast to L-PH and peptone, the
presence of citric acid enhanced the sorption of PHE onto
BC. When the added concentration of citric acid increased
from 0 to 50 and 100 mg/L, the Kd value (at Ce = 0.05
mg/L) of PHE was enhanced from 70374 to 85782 and
99202 mL/g, respectively.

In a system with the coexistence of PHE, DOM, BC and
water, the following interactions may occur simultaneous-
ly: (1) competition for active hydrophobic adsorption sites
on the BC surface between PHE and DOM, (2) the sorption
of DOM molecules on BC surfaces, and (3) partition
of PHE among BC hydrophobic adsorption sites, DOM
solutions (i.e. solubilization) and sorbed DOM on BC
surface (Tremblay et al., 2005; Céspedes et al., 2006; Gao
et al., 2007). The apparent sorption of PHE depends on the
extent and competition of each interaction. Therefore, the
different effects of DOM (L-PH, peptone and citric acid)
on PHE sorption mainly depend on their differences in the
above processes.

2.2 Sorption of DOM on BC

Sorption isotherms of peptone and citric acid on BC are
shown in Fig. 2. The sorption capacity of DOM onto BC
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Fig. 3 Solubility of PHE as a function of L-PH, peptone and citric acid
concentration.

follows the order: citric acid > peptone. There was no
sorption of L-PH on the BC surface. Figure 3 shows the
effects of DOM on the solubility of PHE. The presence of
L-PH at 30–500 mg/L increased the solubility of PHE by
about a factor of 1.7. Therefore, considering the lack of
sorption of L-PH on BC, the solubilization of PHE in L-
PH solution was the main reason for the decrease of PHE
sorption in the presence of L-PH. Different from L-PH, the
sorption of peptone on the BC surface was higher, thereby
PHE sorption on sorbed peptone increased. However, the
solubility of PHE was greatly enhanced in the presence
of peptone (Fig. 3). When the peptone concentration
increased from 30 to 500 mg/L, the solubility of PHE in
peptone solution was about two times higher than that in
water. Thus, the strong solubilization of PHE in peptone
solution and the competition of peptone and PHE for
active hydrophobic adsorption site on the BC surface both
reduced the sorption of PHE.

In addition, the presence of peptone leads to a lower
decrease in PHE sorption than L-PH. This may be due
to the presence of sorbed peptone on the BC surfaces on
which more PHE can sorb, resulting in an increase in the
sorption of PHE. Compared to peptone, the sorption of

http://www.jesc.ac.cn


jes
c.a

c.c
n

2382 Journal of Environmental Sciences 2013, 25(12) 2378–2383 / Jinghuan Zhang et al. Vol. 25

citric acid on BC was much higher, since the molecular size
of citric acid is smaller (Fig. 2). As reported by Schreiber
et al. (2005) and Chen et al. (2005), small DOM molecules
are preferentially adsorbed onto activated carbon. This was
explained by the better accessibility of adsorption sites
in pores for small molecules. The sorbed citric acid on
BC can sorb more PHE, which increased the sorption.
Moreover, the presence of citric acid at 30–500 mg/L
had slight effect on the solubility of PHE (Fig. 3). Thus,
the strong sorption of citric acid on the BC surface may
contribute to the increase in the sorption of PHE onto BC.

2.3 Influence of DOM on desorption hysteresis

The HI for the desorption isotherms of PHE from BC in
the presence of L-PH, peptone and citric acid are given in
Table 1. The value of HI reflects the sorption irreversibility
of PHE onto BC. In general, a value of HI close to 1
indicates that the desorption process takes place as quickly
as sorption does, thus, the sorption is reversible. A value
of HI < 1, however, reveals that the rate of desorption
is lower than that of sorption, therefore, hysteresis takes
place (Pusino et al., 2004). In this study, the desorption
of PHE from BC was hysteretic with HI = 0.28 and the
presence of L-PH, peptone and citric acid could affect the
desorption hysteresis. Table 1 shows that the presence of
L-PH strongly reduced the desorption hysteresis of PHE
on BC. The HI value increased from 0.28 to 0.36, 0.43
and 0.52 with L-PH concentration increasing from 0 to
50, 100 and 500 mg/L, respectively. This indicates that
increasing L-PH concentration made the sorption of PHE
highly reversible, which is attributed to the partition of
PHE to L-PH solution. Similar results were observed for
naphthalene sorption and leaching in soils. The presence
of DOM caused a reduction in naphthalene sorption and
an enhancement in the transport of naphthalene in soil
(Li et al., 2005). Similarly, peptone also enhanced the
sorption reversibility or reduced the desorption hysteresis
of PHE on BC. The HI value increased up to 0.46 with
increasing peptone concentration. The increase of the
sorption reversibility was mainly due to the solubilization
of PHE in peptone solution.

However, compared to peptone, the desorption of PHE
was promoted more strongly in the presence of L-PH at the
same concentration. This may be explained by the sorbed
peptone on the BC surface, which can sorb more PHE and
thereby inhibit PHE desorption from BC. Unlike L-PH and
peptone, the desorption of PHE was highly inhibited at
citric acid concentrations of 50 and 100 mg/L, with HI
values decreasing from 0.28 to 0.23 and 0.19, respectively.
This may be due to the “cumulative sorption”, the citric
acid binding to the BC surface, and the association of
PHE with bound citric acid (Gao et al., 2007). Therefore,
we can conclude that citric acid can both enhance the
sorption capacity and sorption irreversibility of PHE on
BC, therefore, effectively making PHE immobile in the

environment, especially for soils with high content of BC
materials. But L-PH and peptone may mobilize PHE by re-
moving sorbed PHE to the aqueous phase in contaminated
soils and sediments.

3 Conclusions

This study reveals that the presence of DOM enhanced the
sorption nonlinearity of PHE onto BC, but had different
effects on the sorption capacity and reversibility. The ap-
parent sorption and desorption of PHE may be largely due
to two contrasting interactions, including the sorption of
DOM on the BC surface, which can increase PHE sorption
capacity, and the partition of PHE in DOM solution, which
may decrease the sorption and promote desorption. With
the increase of L-PH and peptone concentration, PHE
sorption capacity and desorption hysteresis declined. This
may be largely due to the solubilization of PHE in L-PH
and peptone solutions. Different from L-PH, the sorption
of peptone on the BC surface can increase PHE sorption
capacity and inhibit desorption. In contrast, citric acid
enhanced the sorption capacity but reduced the sorption
reversibility of PHE on BC. Sorbed citric acid on BC
surfaces may contribute to the increase of the sorption.
The results can provide insight into the PAH distribution
in three-phase systems including BC, water and DOM.
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