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Abstract
Three identical sequencing batch reactors (SBRs) were operated to investigate the effects of various idle times on the biological
phosphorus (P) removal. The idle times were set to 3 hr (R1), 10 hr (R2) and 17 hr (R3). The results showed that the idle time of
a SBR had potential impact on biological phosphorus removal, especially when the influent phosphorus concentration increased. The
phosphorus removal efficiencies of the R2 and R3 systems declined dramatically compared with the stable R1 system, and the P-
release and P-uptake rates of the R3 system in particular decreased dramatically. The PCR-DGGE analysis showed that uncultured
Pseudomonas sp. (GQ183242.1) and β-Proteobacteria (AY823971) were the dominant phosphorus removal bacteria for the R1 and R2
systems, while uncultured γ-Proteobacteria were the dominant phosphorus removal bacteria for the R3 system. Glycogen-accumulating
organisms (GAOs), such as uncultured Sphingomonas sp. (AM889077), were found in the R2 and R3 systems. Overall, the R1 system
was the most stable and exhibited the best phosphorus removal efficiency. It was found that although the idle time can be prolonged to
allow the formation of intracellular polymers when the phosphorus concentration of the influent is low, systems with a long idle time
can become unstable when the influent phosphorus concentration is increased.
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Introduction

The discharge standards for nitrogen and phosphorus
are becoming increasingly stringent, due to the role of
these chemicals in causing the worsening problem of
eutrophication. High phosphorus levels are a major con-
tributing factor to algal growth (Sibrell et al., 2009),
and reducing its content in water bodies is an important
aspect of preventing eutrophication. Currently, the process
of biological phosphorus removal using polyphosphate-
accumulating organisms (PAOs) to remove phosphorus
from wastewater is becoming widely applied. However,
glycogen-accumulating organisms (GAOs) become a lim-
iting factor to the accumulation of PAOs, because GAOs
increase the volatile fatty acids (VFA) requirement but
do not contribute to phosphorus removal (Saunders et al.,
2003). The cultivation and enrichment of PAOs can be pro-
moted by facilities with flexible and reliable controls for
alternating between the anaerobic and aerobic operation
stages.

* Corresponding author. E-mail: gaodw@nefu.edu.cn

Nutrients, such as VFA, are stored as polymers within
bacterial cells. It is likely that the formation of intracellular
polymers occurs only when the steady state is disrupted
(Van Loosdrecht et al., 1997). Under anaerobic conditions,
the mechanism of biological phosphorus removal by PAOs
leads to the breakdown of intracellular polyphosphate, to
produce energy and to synthesize intracellular polymers
(such as poly-β-hydroxybutyrate, PHB). Alternatively, un-
der aerobic conditions, PAOs degrade the PHB to obtain
energy for cell growth, glycogen synthesis and the up-
take of excess phosphorus. Phosphorus removal from the
system can therefore be achieved by the discharge of the
excess aerobic sludge. Sequencing batch reactors (SBRs)
can achieve alternating anaerobic and aerobic conditions
by controlling the operational process, and consequently
biological phosphorus removal using SBRs has drawn
increasing attention worldwide (Cassidy and Belia, 2005;
Pierson et al., 2000; Lin et al., 2003).

However, there have been few detailed or convincing
studies regarding the ideal idle time of a SBR for efficient
phosphorus removal or the effects of idle times on the
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growth of PAOs, which impacts the efficiency of the
biological phosphorus removal process. In particular there
have been no reports regarding the effect of idle time on
the composition of the microbial communities within the
system.

The purpose of the research was to investigate the effect
of idle time on biological phosphorus removal systems.
The combined technique of PCR-DGGE was used to
analyze the microbial communities of the different systems
to provide a theoretical basis for the initiation and stable
operation of SBR biological phosphorus removal systems.

1 Experimental materials and methods

1.1 Operating conditions of the SBR systems

This study was conducted using three identical SBR sys-
tems (R1, R2 and R3), which were made of Plexiglas and
had a volume of 12 L. The entire process, including water
feeding (10 L), anaerobic phase, aeration (0.2 m3/hr),
settling and decanting (10 L) was controlled by a timer.
The running period was set at 7 hr for each cycle: 3 hr
anaerobic and 4 hr aerobic. The three reactors R1, R2 and
R3 were run for three, two or one cycle every day, with
idle times (include settling time, feeding, and decaning)
of 3, 10 and 17 hr, respectively. The concentration of the
inoculated sludge was 3–3.5 g/L mixed liquor suspended
solids (MLSS), and the sludge retention time was set to 8–
10 days. This study was mainly divided into three phases,
namely phase I (low phosphorus concentration start-up),
phase II (stable phase) and phase III (high phosphorus
concentration). In phase I and phase II, the phosphorus
concentration of the influent was 8 mg/L. In phase III,
phosphorus concentration of the influent was increased to
16 mg/L.

1.2 Sewage and sludge

The seeding sludge was taken from the secondary settling
tank of the Harbin Wenchang Wastewater Treatment Plant,
China, and was fed into the SBR reactors after a period
of acclimation. A synthetic wastewater with the following
composition was used: chemical oxygen demand (COD)
(C6H12O6) 200–300 mg/L, NH4

+-N (NH4Cl) 15 mg/L,
PO4

3−-P (KH2PO4) 8–16 mg/L, MgSO4·7H2O 50 mg/L,
KCl 18 mg/L, alkalinity (CaCO3) 60 mg/L; trace element
solution 1.0 mL/L. The composition of the trace element
solution was FeCl3 1.5 g/L, CuSO4 0.03 g/L, MnSO 4 0.16
g/L, KI 0.18 g/L, ZnSO4·7H2O 0.12 g/L, CoSO4 0.32 g/L,
and EDTA 10 g/L. The temperature of the reactor was
maintained at (24 ± 1)°C. The dissolved oxygen (DO) and
pH were continuously monitored.

1.3 Analytical methods

Water samples were collected daily. All samples were
filtered through qualitative filter paper. The COD PO4

3−-P,
MLSS, mixed liquid volatile suspended solids (MLVSS),

and sludge volume (SV) were measured according to the
standard methods (APHA, 2005).

1.4 Molecular biology methods

The biomass for bacterial population analysis was
sampled from the reactor on the 120th cycle. Specific
bacterial primer GC-338 (primer 338 plus a GC clamp
attached at its 57 end, underlined below) and a reverse
universal primer 518 supplied by Shanghai Songon
Biology Engineering Technology & Services Co.
Ltd. (China), were used in this study to amplify
bacterial 16S rDNA. The nucleotide sequence of
the primers was as follows: Primer GC-BSF: 5′-
CGCCCGCCGCGCCCCGCGCCCGTCCCGCCGCCCC
CGCCCGCCTACGGGAGGCAGCAG-3′; primer 518: 5′-
ATTACCGCGGCTGCTGG-3′. Genomic DNA extraction
and PCR conditions were the same as described previously
(Ovres et al., 1997) except that the annealing temperature
of the touchdown PCR was 55°C. The PCR products
were verified in 1% agarose gel. DGGE analysis of PCR
products was performed with a Bio-Rad D-Code System
(Bio-Rad Laboratories, Mississauga, Ontario, Canada).
PCR samples were concentrated and 300 ng were
loaded onto a 8% (W/V) polyacrylamide gel containing
a 30%–60% gradient of denaturant (80% denaturant
corresponding to 5.6 mol/L urea and 32% (V/V) deionized
formamide). Bands of interest were reamplified, purified
and sequenced using the Gel Recovery Purification Kit
(Watson Biotechnologies Inc., Shanghai, China) according
to the manufacturer’s instruction. The DNA sequences
were determined using the chain termination method in
an ABI 3730 stretch sequencing system by a commercial
service (Sangon, China), and submitted for comparison to
the GenBank database using BLAST algorithms.

2 Results and discussion

2.1 Effect of idle time on the start-up

When the phosphorus concentration of the influent was
low, 8 mg/L, the three systems showed no significant
difference in their performance over the first four days of
acclimation, in terms of anaerobic phosphorus release or
aerobic phosphorus removal (Fig. 1). This implies that a
period of “accumulation time” is required when starting
SBR phosphorus removal systems (Wang et al., 2008;
Seviour et al., 2003; Jeon, 2003). By the fifth day a low
level (1.14 mg/L) of anaerobic phosphorus release was
detected in R1. However by the tenth day, the phosphorus
removal efficiency of R1 had gradually increased from
26.2% to 53.28%. A low level (less than 1 mg/L) of
anaerobic phosphorus release was also detected for R2 by
the fifth day. However, in the later stages of the start-up
period, the phosphorus release and phosphorus removal of
R2 was substantially higher. In contrast, almost no anaer-
obic phosphorus release was observed for R3 within the

http://www.jesc.ac.cn


jes
c.a

c.c
n

2398 Journal of Environmental Sciences 2013, 25(12) 2396–2402 / Dawen Gao et al. Vol. 25

0

20

40

60

80

100

0

5

10

15

20

25

30

1                5                10               15               20               25               30               35               40               45

R
m

o
v

al
 e

ff
ic

ie
n
cy

 (
%

)

P
h
o
sp

h
o
ru

s 
re

le
as

e 
in

 a
n
ae

ro
b
ic

 s
ta

g
e 

(m
g
/L

)

Time (day)

R1 R2 R3

R1 R2 R3

End of anaerobic stage:

Removal efficiency:

Fig. 1 Phosphorus removal under low phosphorus influent.

first ten days, although the system’s phosphorus removal
efficiency was consistently around 30%. After fifteen days
of operation, anaerobic phosphorus release began to be
detected in R3 (2.18 mg/L). Figure 1 shows that the
changes in the phosphorus removal efficiency of the R1
system were relatively stable, with a gradual increase in
phosphorus release. This was because R1 had less idle time
than either R2 or R3, which had a corresponding effect on
the PAOs in the system. However the changes for R2 and
R3 exhibited greater fluctuation. The specific phosphorus
release rate (SPRR) and the specific phosphorus uptake
rate (SPUR) are fully accepted methods for determining
PAO mass in sludge (Panswad et al., 2003). The SPRR
were 9.92, 7.74 and 4.29 mg/(g VSS·hr) in R1, R2 and R3,
respectively. Meanwhile, the SPUR were 7.79, 4.19 and
2.18 mg/(g VSS·hr) in R1, R2 and R3, respectively. In the
later stages of the start-up period, the phosphorus removal

efficiency and the amount of phosphorus released by all
three systems showed an overall increase.

2.2 Effect of idle time on the stable phase of SBR
biological phosphorus removal systems

2.2.1 Anaerobic phosphorus release
All the SBR systems considered in the study achieved a
good level of phosphorus removal during the stable phase.
In terms of phosphorus release, the amount for each of
the three systems was maintained at a stable level for R1,
R2, and R3 respectively (Fig. 2). This was because the
bacteria at this stage are engaged in an adaptive process.
The PAOs with poor adaptability are eliminated, while the
concentration of the organic matter available for microbial
growth remains constant (Wang et al., 2008). However,
the three different operation cycles resulted in different
populations of PAOs in the three systems and accounted
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Fig. 2 Phosphorus removal during the stable phase.
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for the different amounts of phosphorus released.

2.2.2 Aerobic phosphorus uptake
During the aerobic phase of stable operation, the effluent
phosphorus concentrations of the three SBR systems were
maintained at 1 mg/L or less. The phosphorus removal
efficiencies of the three systems all reached 90% and the
three systems facilitated a stable removal of phosphorus
(Fig. 2).

2.2.3 Secondary phosphorus release
Secondary phosphorus release occurred regardless of low
or high phosphorus concentration in the influent, or
whether the start-up phase or the stable phase of the
process was considered. Based on instantaneous sampling
after feeding water to the reactor, the phosphorus con-
centration of mixed liquid in R1 was almost the same as
the phosphorus concentration of the influent, whereas for
R2 and R3 the phosphorus concentrations of mixed liquid
were higher than the influent. This indicates that the R2
and R3 systems exhibited secondary phosphorus release.
The secondary phosphorus release is not accompanied by
the absorption of organic compounds. This indicates that
the inclusion of a higher idle time caused an extended
anaerobic period in the system, which results from the
endogenous respiration of bacteria, causing the hydrolysis
of polyphosphates within their cells.

During the start-up phase of the reactors, the secondary
phosphorus release from R2 and R3 was 1 and 2 mg/L,
respectively (Fig. 3). In the stable phase, the secondary
release of phosphorus for R2 and R3 stabilized at 2 and 3
mg/L, respectively. When the concentration of phosphorus
in the influent was high, the secondary phosphorus release
of R2 and R3 also increased to 2.5 and 4 mg/L, respec-
tively. The amount of phosphorus released, and the rate of
phosphorus release and uptake for R2 and R3 were lower
than those of R1, due to the secondary phosphorus release
in the stable phase. When the phosphorus concentration of
the influent was high, the slow growth of PAOs could not
meet the demands of phosphorus removal. However with
a progressively stronger release of secondary phosphorus,
more intracellular polyphosphate hydrolysis occurs.

The alternation of an anaerobic/aerobic cycle stimulates
the growth of PAOs in SBRs. However, the inclusion of
an idle time prevents the PAOs from entering an aerobic
state for long periods, forcing the PAOs into a depressed
state caused by an extended PolyP decomposition phase,
in the absence of a synthesis phase. This ultimately results
in the reduction of the diversity of the PAO population
and inevitably leads to a deterioration of the phosphorus
removal performance.

2.3 Effect of changing phosphorus concentration on the
performance of systems

When the phosphorus concentration of the influent was
increased two-fold, to 16 mg/L, with no additional COD,
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Fig. 3 Secondary phosphorus release at different stages.

the three systems responded differently, as shown in Fig. 4.
It was found that R1 was still able to operate stably,
and produced an accompanying increase in its release
of phosphorus, from 16.5 mg/L under low phosphorus
conditions up to 36.44 mg/L when phosphorus was high.
Furthermore, at the end of the aerobic stage, the PO4

3−-P
remaining was less than 1 mg/L, correlating to a removal
efficiency > 90%. In contrast, the R2 and R3 systems
were negatively affected. By the eighth day, the anaerobic
phosphorus released for R2 decreased to 6.52 mg/L, pro-
ducing a corresponding drop in the phosphorus removal
efficiency from 90% to 66.38%. R2 and R3 also showed
signs of deterioration and the inability of their bacterial
populations to absorb the anaerobic phosphorus released
during the aerobic stage, resulting in a decrease in their
overall phosphorus removal capacity. The SPRR were
9.1, 3.48 and 2.09 mg/(g VSS·hr) in R1, R2 and R3,
respectively. Meanwhile, the SPUR were 8.11, 2.56 and
1.83 mg/(g VSS·hr), in R1, R2 and R3, respectively.

http://www.jesc.ac.cn


jes
c.a

c.c
n

2400 Journal of Environmental Sciences 2013, 25(12) 2396–2402 / Dawen Gao et al. Vol. 25

0

20

40

60

80

100

0

10

20

30

40

50

60

82                         85                       88                        91                        94                        97                       100

R
em

o
v
al

 e
ff

ic
ie

n
cy

 (
%

)

P
h
o
sp

h
o
ru

s 
re

le
as

e 
in

 a
n
ae

ro
b
ic

 s
ta

g
e 

(m
g
/L

)

Time (day)

R1 R2 R3

R1 R2 R3

End of anaerobic stage:

Removal efficiency:

Fig. 4 Phosphorus removal under high phosphorus influent.

The PHB synthesized in the cells of the bacteria was
insufficient to take up the excess phosphorus and resulted
in an increase in the concentration of phosphorus in the
effluent. The anaerobic COD conversion was partially
generated by the PAOs, in order to form intracellular
storage materials related to phosphorus removal. However,
the remaining portion was consumed by other bacteria for
the storage of materials unrelated to phosphorus removal.
Alternatively, COD might become attached to the outside
of the cells and used for cell growth in the aerobic phase
(Morgenroth et al., 2000).

Under aerobic conditions, the entire microbial commu-
nity is engaged in cell synthesis, so the phosphorus uptake
rate is generally higher than the phosphorus release rate
(Thongchai et al., 2003). The further illustrates that an
increase in the idle time reduced the number of PAOs at
higher influent phosphorus, creating a disadvantage for the
PAOs and favoring the survival of other bacteria unrelated
to phosphorus removal, which disrupted the process of
phosphorus removal.

2.4 Composition of microbial communities in SBRs
with different idle times

The diversity of the microbial community differed between
the three SBR systems. The PCR-DGGE analysis (Fig.
5) revealed that the three systems shared some common
species (bands 2, 3, 9, 13, 14, 17, 18), but also had
system-specific species (bands 4, 5, 6, 7, 8, 9, 10, 11,
12, 15, 16). The R2 and R3 systems shared several
species, including band 6 and band 15, which were not
present in R1. This observation indicates that these two
strains were anaerobic bacteria, and are a result of the
longer idle time. In the R3 system, the dominant PAO
was uncultured γ-Proteobacteria. In contrast, the dominant
PAOs in systems R1 and R2 were Pseudomonas sp.

and uncultured β-Proteobacteria (AY823971). In addition
to these PAO species, an uncultured Sphingomonas sp.
(AM889077), known to be a GAO (Beer et al., 2004;
Oehmen et al., 2006), was also found in both R2 and
R3 systems. Similar to PAOs, GAOs absorb carbon in
the anaerobic stage, obtaining energy for PHA synthesis
by the decomposition of glycogen, while the energy for
glycogen synthesis is obtained in the aerobic stage by the
decomposition of PHA. However, no phosphorus release
or uptake occurs during the metabolic process of GAOs.
It has been reported previously that stable EBPR systems
can contain large populations of GAOs, which can become
strong competitors of the PAOs if the water quality or
operating conditions change, and may cause the failure
of the phosphorus removal function (Wang et al., 2002;
Jeon et al., 2003; Whang and Park, 2002). In addition,
the competition of GAOs can result in damage to the
growth environment of PAOs, causing the PAOs to become
weak competitors within the system, and leading to a
deterioration of the phosphorus removal capacity.

3 Conclusions

The idle time of SBRs impacts the biological phosphorus
removal increasingly with rising phosphorus concentration
in the influent. The systems that had a long idle time (R2
and R3) exhibited slow bacterial growth, which was insuf-
ficient to remove the high concentrations of phosphorus.
The hydrolysis of polyphosphates due to the secondary
phosphorus release contributed to the deterioration of the
phosphorus removal capacity of the R2 and R3 systems.
Based on the PCR-DGGE analysis, the presence of GAOs
in systems R2 and R3 and the change of the PAO pop-
ulation were important reasons for the decrease in their
phosphorus removal efficiency.
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Band                       Closest relatives (accession number) Identity  Putative division 

1 Uncultured γ-proteobacterium (EU434903.1）           100% γ-Proteobacteria  

2 A. denitrificans (X82138)                              88% Pseudoalteromonas 

3 Uncultured bacterium (AB479711.1)                           95% -  

4 Uncultured bacterium (EU285323)                 95% -  

5 Uncultured bacterium (EF565162)                  98% -  

6 Uncultured bacterium (AB280304.1)                97% -  

7 Uncultured Nitrosomonas sp. (FM997833)                    
99% Nitrosomonas 

8 Uncultured bacterium (AB158718)                 95% -  

9 Uncultured Pseudomonas sp. (GQ183242.1)                100%   Pseudomonas 

10 Uncultured bacterium (AB205989)                 96% -  

11 Uncultured bacterium (EU192196.1 )               98% -  

12 Aeromonas hydrophila (EF669478)                          90% Aeromonas 

13 Uncultured β-Proteobacterium (AY823971）           99% β-Protebacteria

14 Uncultured bacterium (AB447697.1)                94% -  

15 Uncultured Sphingomonas sp. (AM889077)                 100% Sphingomonas 

16 Uncultured bacterium (AB487476.1)                97% - 

17 Uncultured Anaerofilum sp. (FJ823903)                     92%  Anaerofilum

18 Uncultured bacterium (AB106418.1)  93% - 

Fig. 5 Sequence analysis and identification of bacteria from DGGE bands. “–”: unknown bacteria.
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