Progress and prospects of atmospheric environmental sciences in China

Fahe Chai, Abdelwahid Mellouki, Yujing Mu, Jianmin Chen, Huiwang Gao, Hong Li
CONTENTS

Special Issue: Progress and prospects of atmospheric environmental sciences in China

Preface
Fahe Chai, Abedelwahid Mellouki, Yuying Mu, Jianmin Chen, Huiwang Gao, Hong Li

Haze insights and mitigation in China: An overview
Xuliang Zhang, Yuezi Wang, Hong He, Jiaoguo Liu, Xinyin Wang, Tingyu Zhu, Manfa Ge, Ji Zhou, Guiqian Tang, Jinyu Ma

Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China
Shuxiao Wang, Jun Xing, Bin Zhao, Carey Jung, Jiming Hao

Fast increasing of surface ozone concentrations in Pearl River Delta characterized by a regional air quality monitoring network during 2006–2011
Jinfeng Li, Keding Lu, Wei Lv, Jun Li, Lijiu Zhong, Yubo Ou, Duohong Chen, Xin Huang, Yuanhang Zhang

Hygroscopicity and optical properties of alkylammonium sulfates
Dawei Hu, Chunlin Li, Hui Chen, Jianmin Chen, Xingnan Ye, Ling Li, Xing Yang, Ximing Wang, Abedelwahid Mellouki, Zhongyang Hu

Photochemical properties and source of pollutants during continuous pollution episodes in Beijing, October, 2011
Jian Gao, Yuechong Zhang, Meng Zhang, Jingqiao Zhang, Shulan Wang, Jun Tao, Han Wang, Datong Lao, Fahe Chai, Chun Ren

Dry deposition of PM_{10} over the Yellow Sea during Asian dust events from 2001 to 2007
Han Yan, Xiaohan Liu, Jianhua Qi, Huiwang Gao

Seasonal and diurnal variations of atmospheric peroxyacetyl nitrate, peroxypropionyl nitrate, and carbon tetrachloride in Beijing
Gen Zhang, Yueying Mu, Junfeng Liu, Chenglong Zhang, Yuanyuan Zhang, Yujie Zhang

Spatial and temporal variation of particulate matter and gaseous pollutants in 26 cities in China
Fahe Chai, Jian Gao, Zhenzhen Cheng, Shulan Wang, Yuechong Zhang, Jingqiao Zhang, Hefeng Zhang, Yanyun Yu, Chun Ren

Wintertime peroxyacetyl nitrate (PAN) in the megacity Beijing: Role of photochemical and meteorological processes
Huolong Zhang, Xiaobin Xu, Weili Lin, Ying Wang

Modeling study on seasonal variation in aerosol extinction properties over China
Yi Gao, Meigen Zhang

Compositions and sources of organic acids in fine particles (PM_{2.5}) over the Pearl River Delta region, south China
Xixiying Zhao, Ximing Wang, Xiang Ding, Quanfu He, Zhou Zhang, Tengyu Liu, Xiaoxin Fu, Bo Gao, Yunpeng Wang, Yanli Zhang, Xuejiao Deng, Dui Wu

Carbonyl emissions from heavy-duty diesel vehicle exhaust in China and the contribution to ozone formation potential
Dong Dong, Min Shao, Yue Li, Sihua Lu, Yanjun Wang, Zhe Ji, Dagang Tang

Hygroscopicity of particles generated from photooxidation of o-pinene under different oxidation conditions in the presence of sulfate seed aerosols
Binghong Chen, Kun Wang, Hideato Takekawa, Junhui Li, Wei Zhou, Jingxun Jiang, Qinxing Ma, Hong He, Jiming Hao

Gas separation using porous cement membrane
Wei Qi Zhang, Maria Gaggl, Gregor J. G. Gluth, Frank Behrendt

Characteristics of atmospheric particles and heavy metals in winter in Chang-Zhu-Tan city clusters, China
Tai Zhang, Fahe Chai, Zilong Zheng, Qing Yang, Juanshen Li, Jing Wang, Yujie Zhang

Mechanism and rate constants for complete series reactions of 19 fluoroaldehydes with atomic H
Rui Gao, Xiaoyan Sun, Wanni Yu, Qingzhu Zhang, Wenxing Wang

Emission factors of polycyclic aromatic hydrocarbons from domestic coal combustion in China
Geng Chunmei, Chen Jianhua, Yang Xiaoyang, Ren Lihong, Yin Baohui, Liu Xiaoyu, Bai Zhipeng

Oxidative capacities of size-segregated haze particles in a residential area of Beijing
Zhengquan Sun, Longyi Shao, Yuying Mu, Ying Hu

Impact of emission control on regional air quality: An observational study of air pollutants before, during and after the Beijing Olympic Games
Shulan Wang, Jian Gao, Yuechong Zhang, Jingqiao Zhang, Fahe Cha, Tao Wang, Chun Ren, Wenxing Wang

Mechanism and kinetics study on the ozonolysis reaction of 2,3,7,8-TCDD in the atmosphere
Jing Bai, Xiaomin Sun, Chenxi Zhang, Chen Gong, Jingtian Hu, Jianghua Zhang

Size distribution, characteristics and sources of heavy metals in haze episode in Beijing
Jingchun Duan, Jinhua Tan, Jiming Hao, Fahe Chai

Estimation of PM_{10} in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China
Yu Wang, Jing Li, Liang Cheng, Xiaoxiu Lun, Dezhui Sun, Xingzu Wang

Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications
Shengzhen Zhou, Qi Yuan, Weijun Li, Yaling Lu, Yangmei Zhang, Wenxing Wang

Pollution characteristics and health risk assessment of benzene homologues in ambient air in the northeastern urban area of Beijing, China
Lei Li, Hong Li, Ximin Zhang, Li Wang, Linghong Xu, Xuezhong Wang, Yanting Yu, Yujie Zhang, Guan Cao

CH_4 emission and conversion from A'O and SBR processes in full-scale wastewater treatment plants
Yan Liu, Xiang Cheng, Xiaoxiu Lun, Dezhui Sun

Serial parameter: CN 11-2629/X*1989*m*230*en*P*25*2014-1
Estimation of PM$_{10}$ in the traffic-related atmosphere for three road types in Beijing and Guangzhou, China

Yu Wang1, Jiong Li2, Xiang Cheng1, Xiaoxiu Lun1,*, Dezhi Sun1, Xingzu Wang1

1. College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
2. Beijing Northland Construction Engineering Co. Ltd., 22 Majiapu West Road, Beijing 100068, China

A R T I C L E I N F O

Article history:
Special issue: Progress and prospects of atmospheric environmental science in China

Keywords:
roadside PM$_{10}$
traffic volume
open road
crossroad
street canyon

A B S T R A C T

The levels of roadside PM$_{10}$ in Beijing, China, were investigated in 2011 and 2012 on a seasonal basis to estimate the population exposure to particulates for three road types. The measurements of PM$_{10}$ were also conducted in the southern Chinese megacity of Guangzhou for comparison purposes. The results showed that roadside PM$_{10}$ in Beijing correlated strongly with the PM$_{10}$ background in the urban atmosphere. The levels of PM$_{10}$ in street canyons were markedly higher than those along the open roads and in crossroad areas because of limited ventilation. An elevation of PM$_{10}$ was observed in April, which was possibly due to the sand storms that frequently occur in the spring. Based on these observations, roadside PM$_{10}$ in Beijing could have multiple origins and was to some extent dispersion-governed. In Guangzhou, the roadside PM$_{10}$ did not closely relate to the background values. The PM$_{10}$ pollution was greatly affected by local traffic conditions. The simulation of PM$_{10}$ for different road types was completed during the study period using the Motor Vehicle Emissions Factor Model (MOBILE6.2) as an emission model and the California Line Source Dispersion Model (CALINE4) and Operational Street Pollution Model (OSPM) as dispersion models. The MOBILE6.2/CALINE4 software package was demonstrated to be sufficient for the simulation of PM$_{10}$ in the open roads and crossroad areas in both Beijing and Guangzhou, and the simulation results of roadside PM$_{10}$ in the street canyons by the MOBILE6.2/OSPM package were in close agreement with those of the measurements.

Introduction

Elevated levels of particulate matter (PM) are related to a number of health problems (e.g., mortality, morbidity, respiratory and cardiovascular problems) (Ackermann-Liebrich et al., 1997; de Hartog et al., 2003). The European Air Quality Standards for PM$_{10}$ were released in 1999 (DIRECTIVE 99/30/EC) with a daily maximum of 50 µg/m3 and an annual maximum of 40 µg/m3. In China, ambient air quality standards (GB3095) were established in 1996 with the same limit values as in Europe for the daily mean and annual mean PM$_{10}$ levels.

Beijing, with 19 million residents, is currently one of the most densely populated cities in the world. The economic boom and rapid urbanization have placed great pressure on its municipal construction and environmental aspects. The number of automobiles exceeded 5.00 million in early 2012, almost double the value of 5 years ago (2.73 million in 2007). Vehicular emission has become a major source of air pollution since large manufacturing industries were removed from Beijing before 2008 to improve the ambient air quality for the 29th Olympic Games (Westerdahl et al., 2009). Many measurements have been made in recent years to estimate the effects of the traffic control programs (i.e., stricter emission standards, downtown travel restrictions, odd-even plate restrictions, etc.) by the government on air pollution reduction (Hao et al., 2006; Zhou et al.,...
However, regular measurements of ambient urban air in many cases are not representative of the real population exposure in a specific local area. For example, fuel consumption and exhaust emission of vehicles are highly dependent on road design (Vardoulakis et al., 2002; McAdam et al., 2011). At traffic intersections, air quality is generally poor due to heavy traffic flows and variations in the speed of vehicles as they approach and leave (Pandian et al., 2009). In the last decade, the pollution of roadside particulate matter in urban Beijing has been studied in many aspects. Chan et al. (2005) studied the vertical profiles of PM$_{10}$ in August 2003 and discussed the sources. Wang et al. (2006) studied the physicochemical characteristics of ambient particles settling upon the leaf surfaces of eleven roadside plants at four sites in Beijing. Wang and Xie (2009) selected 12 major roads in the urban area to calculate the concentrations of PM$_{10}$ before and during the Olympic traffic control days with an Operational Street Pollution Model (OSPM) model. Cai and Xie (2011) used an integrated urban air quality modeling system to assess the effects of a short-term odd-even day traffic restriction scheme on traffic-related PM$_{10}$. In 2012, Tian et al. (2012) investigated the chemical compositions and toxicity of ambient particulate matter associated with traffic emissions. These studies undoubtedly broadened our knowledge about roadside PM$_{10}$ in Beijing as a fast-growing metropolitan area. However, the profile of roadside PM$_{10}$ under different traffic and road scenarios was far from well understood.

This article aims to investigate roadside PM$_{10}$ levels for different road types for a better understanding of the population exposure to this particulate matter. PM$_{10}$ estimation using California Line Source (CALINE) 4 and OSPM dispersion models was conducted for comparison with the measurements and for a possible forecast of PM$_{10}$ under different circumstances in the future.

1 Experimental

1.1 Location of sampling sites

The megacities of Beijing (39°56′N, 116°20′E) and Guangzhou (23°07′N, 113°15′E) were selected for a comparison study (Fig. 1a). Beijing, the capital of China, has a typical monsoon-influenced continental climate with hot rainy summers and cold dry winters. Guangzhou is the largest city in Southern China, and has a humid subtropical climate.
climate influenced by the East Asian monsoon.

In Beijing, the sampling sites for crossroad, street canyon and open road were at the crossing of Tsinghua East Road (THE) and Xueyuan Road (XY), in Suzhou Street (SZ) and in Xueyuan Road (XY), respectively (Fig. 1b). In Guangzhou, the sampling sites for the same three road types were in Chigang Road (CG), Shipai East Road (SPE) and Keyun Road (KY), respectively (Fig. 1c and d).

Samples were also collected on the campuses of Beijing Forestry University in Beijing and Jinan University in Guangzhou. The sampling sites were both > 300 m away from the surrounding streets. The meteorological conditions during the period of sampling were recorded.

1.2 Sampling

Samples for PM$_{10}$ measurements were collected on prefired and pre-weighted quartz fiber filters using TH-150C high-volume samplers (100 L/min, Tianhong, China). The level of PM$_{10}$ was determined gravimetrically in accordance with Chinese standard method (HJ/T93-2003) using a balance with a readability of 0.01 mg (Sartorius R200D, Germany). PM$_{10}$ sampling in Beijing was performed in April (5 to 14), October (7 to 16) and December (10 to 20) of 2011 and April (14 to 23) and July (21 to 30) of 2012. In Guangzhou, PM$_{10}$ was sampled in December (11 to 20) of 2011 and July (15 to 24) of 2012. The investigation was conducted on the three types of roads simultaneously at the scheduled times, and all of the samples were taken in duplicate. The samplers were installed in both cases on the pavement at roadsides at 1.5 m above the ground and 1.0 m from the curb. Samples were collected during 4 typical periods each day: 7:30–9:30 (morning), 11:00–13:00 (noon), 14:00–16:00 (afternoon) and 17:00–19:00 (evening). The traffic density was recorded during the sampling of PM$_{10}$.

1.3 Correlation of PM$_{10}$ with six influencing factors

Experimental data were analyzed by Pearson product-moment correlation coefficients (two-tailed) using SPSS package 15.0 (SPSS Inc., Chicago, IL, USA) to evaluate the interrelationships of the PM$_{10}$ levels with six influencing factors, i.e., temperature, humidity, wind speed, atmospheric pressure, traffic density and PM$_{10}$ background.

1.4 PM$_{10}$ simulation

Simulation of roadside PM$_{10}$ was conducted using emission and dispersion models. The Motor Vehicle Emissions Factor Model (MOBILE6.2) was selected for calculating the emission factors of PM$_{10}$ for all road types. The dispersion of PM$_{10}$ was simulated using a CALINE4 for open roads and crossroads and OSPM (by the National Environmental Research Institute, Denmark) for street canyons.

MOBILE6.2 was localized by substituting the traffic and meteorological data of Beijing into the model for better reliability. The revised parameters included vehicle registration distribution, average speed, annual mileage accumulation rate, idle PM emissions, sulfur content and fuel Reid vapor pressure. The distribution of vehicle registration was obtained from the China Statistical Yearbook (NBSC, 2011-2012). The average speed was set at 23 km/hr based on other studies (unpublished data). The sulfur content in the diesel fuel was 50 ppm. The fuel Reid vapor pressure was 88 and 74 kPa in winter and summer, respectively. The calculated emission factor was then modified by considering the effect of dust (E, g/km) re-entrainment. The emission factor of resuspended dust was determined according to Eq. (1) as the US EPA recommended.

$$E = k(sL/2)^{0.65}(W/3)^{1.5}$$

where, k (g/km) is the particle size multiplier (4.6 for PM$_{10}$), sL (g/m2) is the road surface silt loading and W (ton) is the average weight of the vehicles traveling the road. Therefore, the final emission factor of PM$_{10}$ ($C_{PM_{10}}$), is obtained by Eq. (2).

$$C_{PM_{10}} = C_{PM_{10}(Modeled)} + E$$

The CALINE4 package, specifically designed for calculating the concentrations of carbon monoxide near a busy road, was adapted for the analysis of PM$_{10}$ generated by vehicles on open roads and crossroads with the assumption that the dispersion of PM$_{10}$ from traffic and dust re-suspension was similar to the case of CO (Benson, 1992; Gramotnev et al., 2003). Emission factors of PM$_{10}$ for vehicles were substituted using the above addressed values ($C_{PM_{10}}$). Worst-Case Wind Angle was chosen as the run type since the wind direction near ground was highly variable. The aerodynamic roughness coefficient was set to be central business district. The altitudes of Beijing and Guangzhou were 43.5 and 11 m, respectively. The average mixing heights by season in Beijing and Guangzhou were 751.3 and 550 m, respectively (Cheng et al., 1997). The temperature, hourly wind speed, roadway geometry and traffic counts were substituted according to the measured values. The receptor position was set at 1.5 m in height and 1.5 m from the curb.

A special mode of OSPM was employed for the simulation of PM$_{10}$ in street canyons. The input parameters included street configuration, meteorological conditions, traffic density and emission factors. The average height of the buildings, the width and length of the streets, the average wind speed, the traffic density and the fleet composition were obtained from the on-site measurements. The receptor height was set to 1.5 m as in the monitoring experiments. The emission factors of PM$_{10}$ were from the MOBILE6.2 modeled results.
Table 1 Pearson correlation coefficients of PM$_{10}$ with the influencing factors

<table>
<thead>
<tr>
<th>Correlation coefficient (excluding the background)</th>
<th>Beijing</th>
<th>Guangzhou</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>0.312</td>
<td>−0.091</td>
</tr>
<tr>
<td>Humidity</td>
<td>0.097</td>
<td>−0.276</td>
</tr>
<tr>
<td>Traffic counts</td>
<td>0.375*</td>
<td>0.381*</td>
</tr>
<tr>
<td>Wind speed</td>
<td>−0.132</td>
<td>−0.324*</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>−0.395*</td>
<td>0.504*</td>
</tr>
<tr>
<td>PM$_{10}$ background</td>
<td>0.884**</td>
<td>0.448*</td>
</tr>
</tbody>
</table>

**Correlation is significant at the 0.01 level (2-tailed); * correlation is significant at the 0.05 level (2-tailed).

2 Results and discussion

2.1 Correlation of roadside PM$_{10}$ with influencing factors

Table 1 shows the correlation between the roadside PM$_{10}$ levels and the six possible influencing factors, which was based on 204 groups of data from Beijing and 84 groups of data from Guangzhou. The levels of PM$_{10}$ measured in the three types of roads in Beijing showed a significant positive correlation with the background value of PM$_{10}$; the correlations of traffic volume and atmospheric pressure with PM$_{10}$ were weak. In other words, the background PM$_{10}$ level in Beijing strongly affected the PM$_{10}$ concentrations in the streets. This result was in agreement with previous studies (Sun et al., 2004; Cheng et al., 2007; Wang et al., 2008; Zhang et al., 2007), in which the particulate pollution in Beijing was proved to be of multiple origins instead of simply traffic-related. In Guangzhou, the traffic volume, wind speed, atmospheric pressure and PM$_{10}$ background all correlated with the levels of roadside PM$_{10}$ to a certain extent, which suggested that the PM$_{10}$ pollution was influenced by both the sources and meteorological conditions. The results agreed with the observations that the background levels of PM$_{10}$ in Guangzhou (32–129 μg/m3) were much lower than in Beijing (62–245 μg/m3).

In order to focus on the relationship between roadside PM$_{10}$ and road traffic, PM$_{10}$ values were modified by subtracting the background levels. The updated correlation coefficients are shown in Table 1. The level of PM$_{10}$ in the streets in Beijing did not show a significant correlation with either traffic activities or local meteorology; whereas PM$_{10}$ values in Guangzhou strongly correlated with local traffic volume after its background was deducted. The results confirmed the presence of multiple sources of PM$_{10}$ pollutants in Beijing; on the contrary, PM$_{10}$ in Guangzhou in the studied period was more likely to be local traffic-dominated.

2.2 Relation of PM$_{10}$ with road types

Figure 2 presents the variations of roadside PM$_{10}$ (modified) for three road types during different seasons in Beijing in 2011 and 2012. In most cases, the levels of PM$_{10}$ in the street canyon SZ were significantly higher than that in the open road XY and the crossroad THE.

![Fig. 2 Variation of roadside PM$_{10}$ (modified) in Beijing (a) and Guangzhou (b) with different road types.](image-url)
However, the traffic volume in SZ was considerably smaller compared with those in XY and THE areas (e.g., on average 1959 counts/hr in SZ 4508 counts/hr in XY and 5834 counts/hr in THE in April 2011), and the value at each site did not vary significantly during the investigation period. This indicated that elevated levels of PM\(_{10}\) in the street canyon could be attributed to the limited ventilation in the area. Moreover, the PM\(_{10}\) values along XY road were greater than in the THE area. The vehicular density on XY was slightly lower than in the THE area, but the average traveling speed on XY was clearly higher than in the intersection. This result suggested that the high traveling speed could have caused re-entrainment of dust as a secondary pollutant, leading to an increase in the roadside PM\(_{10}\) level (Amato et al., 2012; Kupiainen and Pirjola, 2011). Thus, roadside PM\(_{10}\) was not only influenced by traffic volume but was also related to certain factors, e.g., traffic speed and local ventilation. Marked rises in the levels of PM\(_{10}\) in April were observed for all the road types (Fig. 2a), which could be explained by the frequent sand storms in the spring months in Beijing (Wang et al., 2004; Xie et al., 2005). This was consistent with the fact addressed in Section 2.1 that the PM\(_{10}\) in Beijing was affected more by the local traffic. Compared with PM\(_{10}\) levels in SZ and THE, the PM\(_{10}\) value in XY was less dynamic with season changes except in April. This is because PM\(_{10}\) in XY was more likely influenced by the traffic-induced dust re-entrainment. Similar results were also reported in previous literature. For example, the concentration of PM\(_{10}\) in the open road air decreased by 16.5% during the 2008 Beijing Olympic Games due to the traffic control measures (Liu et al., 2011).

In Guangzhou, the open road KY, with a vehicular intensity of 7902 counts/hr, was a main road connecting the two sides of the Pearl River, which separates the city (Fig. 1d). The busy traffic explained the high levels of roadside PM\(_{10}\) observed on the road (Fig. 2b). SPE is a one-way narrow street (18 m in width) with shops and restaurants and a low traffic volume (1112 counts/hr). However, the level of PM\(_{10}\) in this street was found comparable to that in the CG crossroad area with a considerably higher traffic volume (4633 counts/hr). Because the levels of PM\(_{10}\) in downtown Guangzhou were closely related to the local traffic, the results herein indicated the contribution of the reduced dispersion in SPE, as a street canyon, to the elevated PM\(_{10}\) values. For all three monitoring sites, the PM\(_{10}\) pollution became more severe in the winter season because temperature inversion layers developed easily, especially in SPE where mass and heat exchange were slow.

2.3 Comparison of roadside PM\(_{10}\) pollution in Beijing and Guangzhou

According to the observations of roadside PM\(_{10}\) in Beijing and Guangzhou in December 2011 and July 2012, a conclusion can be drawn that the patterns of PM\(_{10}\) pollution in the two megacities were apparently different. The PM\(_{10}\) values in July 2012 in Guangzhou were markedly lower than in December 2011; whereas similar results were not observed in Beijing (Table 2). The improved air quality in the summer in Guangzhou was also reflected by the reduced PM\(_{10}\) background. Busy roads in Guangzhou, such as KY, showed a significant rise in the level of roadside PM\(_{10}\) due to increased emissions of particulates with high traffic volumes. In the street SPE with a small vehicular density, the PM\(_{10}\) values decreased, although the limited ventilation in the canyon could cause an accumulation of pollutants. In the case of Beijing, the most polluted site of PM\(_{10}\) was not where the greatest traffic density was found (THE), but instead in a street canyon (SZ) with fewer vehicles and poor air circulation. This revealed that the PM\(_{10}\) in Beijing was more dispersion-governed than in Guangzhou.

The difference in the pattern of PM\(_{10}\) pollution in the two cities can be further demonstrated by the percentages of the background values in the total PM\(_{10}\) level: 66%–92% for Beijing and 26%–59% for Guangzhou. The results were in agreement with the correlation studies addressed in Section 2.1.

2.4 Simulation of roadside PM\(_{10}\)

Table 3 shows the emission factors of PM\(_{10}\) for different types of vehicles from the MOBILE6.2 calculation. Except for the light duty gasoline vehicle/truck, the emission factors of PM\(_{10}\) had a small decrease from 2011 to 2012.

Table 2 Comparison of the PM\(_{10}\) and traffic volumes in Beijing and Guangzhou

<table>
<thead>
<tr>
<th>Date</th>
<th>Road type</th>
<th>Beijing</th>
<th>Guangzhou</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PM(_{10}) (µg/m(^3))</td>
<td>Traffic volume (counts/hr)</td>
<td>PM background (µg/m(^3))</td>
</tr>
<tr>
<td>Dec, 2011</td>
<td>Street canyon</td>
<td>162 ± 59</td>
<td>2011 ± 195</td>
</tr>
<tr>
<td></td>
<td>Crossroad</td>
<td>125 ± 41</td>
<td>6556 ± 730</td>
</tr>
<tr>
<td></td>
<td>Open road</td>
<td>171 ± 22</td>
<td>5030 ± 671</td>
</tr>
<tr>
<td>Jul, 2012</td>
<td>Street canyon</td>
<td>319 ± 42</td>
<td>2240 ± 215</td>
</tr>
<tr>
<td></td>
<td>Crossroad</td>
<td>225 ± 16</td>
<td>6712 ± 710</td>
</tr>
<tr>
<td></td>
<td>Open road</td>
<td>121 ± 19</td>
<td>4812 ± 750</td>
</tr>
</tbody>
</table>
Taking secondary dust into consideration, the emission factors of PM$_{10}$ for all the vehicles increased sharply by more than an order of magnitude (Table 3). Therefore, dust re-entrainment was one of the major sources of roadside PM$_{10}$ in Beijing. This was similar to the results of some studies performed in both China and other countries (Amato et al., 2009). The results highlighted the necessity of calculating secondary dust, especially for megacities with severe air pollution and heavy traffic. Based on the fleet compositions, the final emission factors of PM$_{10}$ for vehicles in Beijing were determined to be 0.588 g/km (0.947 g/mile) in 2011 and 0.587 g/km (0.946 g/mile) in 2012.

The values of roadside PM$_{10}$ calculated by CALINE4 showed a good agreement with those measured in the XY and THE areas in Beijing (Fig. 3a and b), indicating the applicability of the MOBILE6.3/CALINE4 software package to PM$_{10}$ simulation. CALINE4 had previously been demonstrated to successfully predict the propagation of fine and ultra-fine particle aerosols (Gramotnev et al., 2003; Zhang and Batterman, 2010). The present study further showed the flexibility of the software package.
in modeling PM$_{10}$ dispersion. This finding was probably due to the high proportions of fine particulates in the total PM$_{10}$ content in the urban atmosphere of Beijing as reported elsewhere (Artiñano et al., 2004). Satisfactory agreement was also observed when applying CALINE4 to Guangzhou, where the PM$_{10}$ pollution pattern was different (Fig. 3c and d). Thus, the CALINE4 package based on local measurements in the USA was also useful for Chinese megacities with much greater traffic densities and, consequently, higher pollution levels. As for the PM$_{10}$ levels in street canyons, the OSPM-calculated results closely agreed with those from onsite measurements in both Beijing and Guangzhou (Fig. 3e and f). Therefore, the MOBILE6.2/OSPM package was also validated as a sufficient tool to predict the average levels of roadside PM$_{10}$ in street canyons, regardless of the large differences in its correlation with the local traffic conditions.

3 Conclusions

This article investigated the pollution of PM$_{10}$ in the traffic-related atmosphere of urban Beijing and Guangzhou for comparison. The results indicated that the levels of roadside PM$_{10}$ in Beijing strongly correlated to the PM$_{10}$ background, whereas in the southern megacity of Guangzhou, the correlation was not significant. Roadside PM$_{10}$ in Beijing could be attributed to multiple sources and was mostly dispersion-governed. In contrast, the pollution of PM$_{10}$ in Guangzhou was likely of local origin and was more affected by the traffic conditions. Although the patterns of PM$_{10}$ pollution in the two cities differed greatly from each other, the MOBILE6.2/CALINE4 package was demonstrated to be sufficient for PM$_{10}$ simulation in the open road and crossroad areas in both Beijing and Guangzhou, and the MOBILE6.2/OSPM package worked well in predicting roadside PM$_{10}$ in the street canyons in the two Chinese megacities.

Acknowledgments

This work was supported by the Forestry Public Welfare Project of China (No. 20130430104), the National Natural Science Foundation of China (No. 51008025), the Fundamental Research Funds for the Central Universities (No. TD2011-22) and the National Undergraduate Training Programs for Innovation and Entrepreneurship (No. 201210022078).

References

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
- **Hongxiao Tang**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Associate Editors-in-Chief
- **Jiuhui Qu**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Shu Tao**
 Peking University, China
- **Nigel Bell**
 Imperial College London, United Kingdom
- **Po-Keung Wong**
 The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment
- **Baoyu Gao**
 Shandong University, China
- **Maohong Fan**
 University of Wyoming, USA
- **Chihpin Huang**
 National Chiao Tung University, Taiwan, China
- **Ng Wun Jern**
 Nanyang Environment & Water Research Institute, Singapore
- **Clark C. K. Liu**
 University of Hawaii at Manoa, USA
- **Hokyong Shon**
 University of Technology, Sydney, Australia
- **Zijian Wang**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Zhiwu Wang**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Xiaojun Wang**
 Peking University, China
- **Zhejiang Zhu**
 University of Hawaii, USA
- **Jianmin Chen**
 Fudan University, China
- **Adelwahid Mellouki**
 Centre National de la Recherche Scientifique, France
- **Min Shao**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Atmospheric environment
- **Yong Cai**
 Florida International University, USA
- **Yue Shi**
 University of Wisconsin-Madison, USA
- **Yueli Wang**
 Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- **Jianping Chen**
 China University of Mining and Technology, China
- **Chonghong Zhu**
 University of Illinois at Urbana-Champaign, USA
- **Lei Sun**
 Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- **Xin Yang**
 University of Cambridge, UK
- **Min Li**
 Beijing Normal University, China
- **Ziwen Wang**
 The Ohio State University, USA
- **Jinwu Wang**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Michael Schloter**
 German Research Center for Environmental Health, Germany
- **Xuejun Wang**
 University of Science and Technology, Beijing, China
- **Zhejiang Zhu**
 Peking University, China
- **Hong He**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Junhua Li**
 Tsinghua University, China
- **Yuesi Wang**
 Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- **Wenfeng Shangguan**
 Shanghai Jiao Tong University, China
- **Min Shao**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Terrestrial environment
- **Christopher Anderson**
 Massey University, New Zealand
- **Zaocugn Cai**
 Nanjing Normal University, China
- **Xinbin Feng**
 Institute of Geochemistry, Chinese Academy of Sciences, China
- **Houqiang Hu**
 Huazhong Agricultural University, China
- **Lin-Chen Lam**
 The Chinese University of Hong Kong, Hong Kong, China
- **Erwin Klump**
 Research Centre Juelich, Agroscope Institute
- **Ji-Ling Li**
 Institute of Applied Ecology, Chinese Academy of Sciences, China
- **Yong Cai**
 Florida International University, USA
- **Yue Shi**
 University of Wisconsin-Madison, USA
- **Chonghong Zhu**
 University of Illinois at Urbana-Champaign, USA
- **Lei Sun**
 Institute of Atmospheric Physics, Chinese Academy of Sciences, China

Environmental biology
- **Yong Cai**
 Florida International University, USA
- **Jae-Soon Lee**
 Hanyang University, South Korea
- **Christian Kensing**
 University of Copenhagen, Denmark
- **Bojan Sedmak**
 National Institute of Biology, Ljubljana
- **Linrong Song**
 Institute of Hydrobiology, Chinese Academy of Sciences, China
- **Ning Xiong**
 University of Wisconsin-Madison, USA
- **Hong He**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Yuesheng He**
 Institute of Hydrobiology, Chinese Academy of Sciences, China
- **Zhongtang Yu**
 The Ohio State University, USA
- **Zhifeng Yang**
 Beijing Normal University, China
- **Ziwen Wang**
 The Ohio State University, USA
- **Jianjun Hu**
 Institute of Atmospheric Physics, Chinese Academy of Sciences, China
- **Jiaojun Li**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental toxicology and health
- **Jingwen Chen**
 Dalian University of Technology, China
- **Jianying Hu**
 Peking University, China
- **Guoqiang Jiang**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Sijin Liu**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Tosushi Nakanishi**
 Gifu Pharmaceutical University, Japan
- **Willie Peijnenburg**
 University of Leiden, The Netherlands

Environmental catalysis and materials
- **Hong He**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Jiaojun Li**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Yuesheng He**
 Institute of Hydrobiology, Chinese Academy of Sciences, China
- **Zhongtang Yu**
 The Ohio State University, USA
- **Wenfeng Shangguan**
 Shanghai Jiao Tong University, China
- **Yasutake Terao**
 Kyushu University, Japan

Environmental analysis and method
- **Zongwei Cai**
 Hong Kong Baptist University, China
- **Jiaying Wang**
 University of Hong Kong, China
- **Ralph T. Yang**
 University of Michigan, USA

Municipal solid waste and green chemistry
- **Pinjing He**
 Tongji University, China
- **Min Shao**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
- **Wenfeng Shangguan**
 Shanghai Jiao Tong University, China
- **Yasutake Terao**
 Kyushu University, Japan

Environmental ecology
- **Rusong Wang**
 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Editorial office staff
- **Managing editor**
 Qingcai Feng
- **Editors**
 Zixuan Wang, Suqin Liu, Zengang Mao
- **English editor**
 Catherine Rice (USA)

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office. Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.