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a b s t r a c t

Insights from the adverse effect of humic acid (HA) on arsenate removal with hydrous ferric
oxide (HFO) coprecipitation can further our understanding of the fate of As(V) in water treatment
process. The motivation of our study is to explore the competitive adsorption mechanisms of humic
acid and As(V) on HFO on the molecular scale. Multiple complementary techniques were used
including macroscopic adsorption experiments, surface enhanced Raman scattering (SERS), extended
X-ray absorption fine structure (EXAFS) spectroscopy, flow-cell attenuated total reflectance Fourier
transform infrared (ATR-FTIR) measurement, and charge distribution multisite complexation (CD-
MUSIC) modeling. The As(V) removal efficiency was reduced from over 95% to about 10% with the
increasing HA concentration to 25 times of As(V) mass concentration. The SERS analysis excluded
the HA-As(V) complex formation. The EXAFS results indicate that As(V) formed bidentate binuclear
surface complexes in the presence of HA as evidenced by an As-Fe distance of 3.26–3.31 Å. The in
situ ATR-FTIR measurements show that As(V) replaces surface hydroxyl groups and forms inner-
sphere complex. High concentrations of HA may physically block the surface sites and inhibit the
As(V) access. The adsorption of As(V) and HA decreased the point of zero charge of HFO from 7.8
to 5.8 and 6.3, respectively. The CD-MUSIC model described the zeta potential curves and adsorption
edges of As(V) and HA reasonably well.

Introduction

Arsenic removal using coagulation/filtration process has
been demonstrated as the best available technology for
large water treatment systems (US EPA, 2000). Because
arsenite (As(III)) is more toxic and mobile than arse-
nate (As(V)), pre-oxidation of As(III) to As(V) is a
conventional practice in water treatment facilities (US
EPA, 2000). Ferric chloride is an effective and commonly
used coagulant to remove arsenic from water, resulting in

∗Corresponding author. E-mail: cyjing@rcees.ac.cn (Chuanyong Jing);
zxm581212@163.com (Yongli Zhang)

the formation of amorphous hydrous ferric oxide (HFO)
containing coprecipitated arsenic (Mercer and Tobiason,
2008).

Dissolved organic matter (DOM) is ubiquitous in sur-
face and groundwater and its concentration ranges from
1–60 mg C/L in most fresh waters (McDonald et al., 2004).
Humic substances usually comprise 50%–75% of DOM
in aquatic system (McDonald et al., 2004), which may
influence arsenic adsorption on metal oxide surfaces by
several mechanisms (Grafe et al., 2001; Wang and Mul-
ligan, 2009). Research has demonstrated that humic acid
(HA) and As(V) would compete for available adsorption
sites because they are both anions (Grafe et al., 2001).
Predominate As(V) species, H2AsO−4 and HAsO2−

4 , as well
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as HA, are negatively charged in the pH range 3–11. As(V)
adsorbs on iron oxides mainly through the formation
of inner-sphere surface complexes with a predominantly
bidentate configuration, along with a minor monodentate
contribution, by ligand exchange with hydroxyl groups
at oxide surfaces (Sherman and Randall, 2003). Ligand
exchange between hydroxyl groups of DOM and iron
oxide surfaces is also the predominant DOM adsorption
mechanism at acidic conditions (Gu et al., 1994). How-
ever, limited knowledge is available about As(V) surface
complex structure on the molecular scale in the presence
of HA during HFO coprecipitation at environment relevant
concentrations. Insights from molecular-level mechanisms
of HA-As(V)-HFO interactions can further our under-
standing of the fate of As(V) in water treatment process
and in the environment.

Previous studies suggest that As(V) could be bound
to HA through a ternary metal complexation mechanism:
As(V)-metal cation-HA (Redman et al., 2002; Lin et al.,
2004), and such complexes could be within colloidal size
(Ritter et al., 2006). Recently, similar with As(III)-HA
complex (Liu and Cai, 2012), direct association of aqueous
As(V) and HA has been reported through covalent binding
mechanisms (Warwick et al., 2005; Buschmann et al.,
2006). Warwick et al. (2005) concluded the formation of
HA-As(V) complexes is favorable in the pH range 8–
10 with 1500 mg/L Aldrich HA and 7.5 mg/L As(V).
Using an equilibrium dialysis method, Buschmann et al.
(2006) suggest that about 10% of As(V) may bound to
HA through phenolate functional groups in HA. However,
the findings of Lin et al. (2004) show that no As(V)-DOM
complexes is formed in extract of compost free of metals,
whereas 30%–50% As(V) is associated with DOM in the
presence of metals.

The objective of this study was to investigate the effect
of HA on As(V) removal with HFO coprecipitation. Sur-
face enhanced Raman scattering (SERS) was used to study
aqueous As speciation in the presence of HA. The local
coordination environment of As obtained with extended
X-ray absorption fine structure (EXAFS) spectroscopy
and Fourier transform infrared (FT-IR) spectroscopy was
employed as a molecular-level constraint in the charge
distribution multisite complexation (CD-MUSIC) model.
The model was used to predict As(V) adsorption behaviors
including adsorption edge and zeta potential under the HA
competition.

1 Materials and methods

1.1 Materials

A 1000 mg/L As(V) stock solution was prepared by dis-
solving 0.4165 g of Na2HAsO4·7H2O (Alfa Aesar, USA)
in 100 mL ultrapure deionized (DI) water (18.2 MΩ, Milli-

Q). Fe(III) stock solution containing 1000 mg/L Fe and
0.1% HClO4 was prepared using FeCl3 (Aldrich, USA)
and trace metal grade HClO4 (Fisher, USA). HA was
purchased from Aldrich in sodium form. The treatment of
HA is essentially the same as described by Buschmann
et al. (2006). In brief, 100 mg of HA was dissolved in 1
L DI water. The pH was adjusted to 10 with NaOH and
the solution was then filtered through a 0.45 µm cellulose
nitrate filter. The DOC concentration was determined using
a Phoenix 8000 total organic carbon (TOC) analyzer
(Tekmar-Dohrmann, USA). Stock solutions were stored
in the refrigerator at 4°C. A background electrolyte of
0.04 mol/L NaClO4 prepared by dissolving HPLC grade
NaClO4 (Fisher, USA) in DI water, was used in the
experiments.

1.2 Batch adsorption experiments

Suspension samples containing 100 µg/L As(V), 1.0 mg/L
Fe, 0–5 mg/L HA, and 0.04 mol/L NaClO4 were prepared
in 100 mL polypropylene bottles. Three contact orders
were used in the ternary adsorption system (Ko et al.,
2007): (1) pre-equilibration As(V)-HA for 24 hr before the
addition of Fe; (2) pre-equilibration HA-Fe for 24 hr before
the addition of As(V); and (3) pre-equilibration As(V)-
Fe for 24 hr before the addition of HA. Then, the ternary
suspension was mixed for 24 hr at pH 7.0 ± 0.1, and filtered
through a 0.4 µm membrane. The soluble As concentration
in the filtrate was determined with an atomic fluorescence
spectrometer (AFS, Ruiguang, China) with a detection
limit of 0.6 µg/L (Cui et al., 2013). Triplicate adsorption
experiments were performed and averaged values were
reported.

Experiments were carried out to determine the As(V)
adsorption edge, which is the percentage of As(V) ad-
sorbed as a function of equilibrium pH, in the presence
and absence of HA. Suspensions containing 0.04 mol/L
NaClO4, 1.0 mg/L Fe, 100 µg/L As(V), and/or 1.5 mg/L
HA were prepared in a 1 L beaker. Then, 50 mL aliquots
of the uniform suspensions were transferred into centrifuge
tubes. The suspension pH was adjusted to desired levels in
the range from 4 to 12. After 24 hr mixing, the equilibrium
pH was measured and the suspension was filtered through a
0.45 µm membrane filter for As analysis. The HA adsorp-
tion edge was determined following the same procedure
with 5 mg/L HA and 5 mg/L Fe suspension samples.

1.3 Electrophoretic mobility measurements

Electrophoretic mobility (EM) was determined using a
ZetaSizer Nano ZS (Malvern Instrument, UK). All EM
experiments were performed under N2 atmosphere to
eliminate CO2 from the system. The pH of the suspension
containing 10 mg/L Fe, 2 mg/L As(V), and/or 2 mg/L HA
in 0.04 mol/L NaClO4 was adjusted to between 3 and 11
using NaOH and HClO4 solutions. Suspension samples
were placed on a rotating shaker for 24 hr and the final
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pH was measured. The reported ζ potential value was the
average of three measurements.

1.4 In situ FT-IR spectroscopic study

FT-IR measurements were conducted using an attenuated
total reflectance Fourier transform infrared (ATR-FTIR)
spectrometer (Nicolet 6700, Thermo, USA) equipped with
a liquid nitrogen cooled mercury-cadmium-telluride de-
tector and an ATRMax II horizontal flow cell with 45◦

ZnSe crystals (PIKE Tech, USA). The HFO film was
coated on the crystal following our previous report (Yang
et al., 2012). Briefly, 300 µL of 1 g/L HFO suspension
were spread on the surface of the crystal and dried under
a N2 stream. The crystal was gently rinsed with 0.01
mol/L NaCl before placed into the flow cell. The flow
cell was connected via PEEK tubing and Shimadzu LC-
3A pump to As(V) and HA solutions at 0.3 mL/min flow
rate. The solution was flow over the HFO film and spectra
were recorded over intervals for up to 8 hr. Spectra were
collected using 256 scans at 4 cm−1 resolution. No baseline
correction or smoothing was applied to any spectrum.

1.5 SERS analysis

The silver surface on a glass slide was prepared by the mir-
ror reaction, which involves the reduction of silver nitrate
by glucose. This procedure to prepare SERS substrate is
described in detail elsewhere (Saito et al., 2002). Samples
containing 1 mg/L As(V) and 1, 5, and 10 mg/L HA,
respectively, were mixed for 48 hr at pH 7. A 25 µL sample
was dipped on the SERS substrate and the SERS spectra
were obtained using Nicolet Almega XR Raman spectrom-
eter equipped with a 35 mW near-infrared diode laser at a
wavelength of 785 nm for excitation (Thermo, USA). The
laser beam was set in position through an Olympus BX51
research-grade microscope objective (20×). The spectra
were recorded with a resolution of 4 cm−1 using an average
of five scans with 10 sec accumulation for each scan. To
test the possibility of aqueous HA-As complex formation
at high As(V) concentrations, a mixture of 10 mg/L As(V)
and HA was mixed for 5 days at pH 7. A solution contain-
ing 10 mg/L As(V) and 8 mg/L Ca (As:Ca molar ratio =
2:3) was also prepared in the same way as a comparison.
The Raman system used in high As concentration (10
mg/L) study was an EZRaman-I instrument from Enwave
Optronics Inc. with 4 cm−1 resolution at 785 nm excitation.

1.6 EXAFS analysis

The EXAFS samples were prepared using the same exper-
imental methods as described above for batch adsorption
experiments. Suspension samples containing 0.04 mol/L
NaClO4, 10 mg/L As(V), 100 mg/L Fe, and HA with
concentrations at 0, 25, 100, and 200 mg/L, respectively,
were mixed at pH 7 in 1 L plastic bottles. After 24
hr mixing, the samples were filtered through a 0.45 µm
membrane filter. The wet paste was sealed between two

layers of X-ray transparent Kapton tape, and analyzed
on beamline 14W1 at Shanghai Synchrotron Radiation
Facility, China.

An energy range of –200 to 1000 eV from the K-edge
of As (11,867 eV) was used to acquire the spectra. The
spectra were collected in fluorescence mode using a Lytle
detector positioned at 90◦ to the incident beam, and the
sample was at a 45◦ sample, inspected for overall quality
and averaged to improve the signal/noise ratio.

The EXAFS spectra were analyzed using the Athena
and Artemis program in the IFEFFIT computer package
(Ravel and Newville, 2005). The standard EXAFS data
process was followed as used in our previous research (Jing
et al., 2012; Yu et al., 2012). Briefly, the spectra were
processed by removing the background absorbance with
a linear function through the pre-edge region, normalizing
the atomic absorption, and extracting the EXAFS signal
from the spectra. Then the data were converted from
energy to photoelectron momentum (k space) and weighted
by k3 to account for the dampening of oscillations with
increasing k. Spectra were Fourier transformed and fitted
in R-space (Å) in which the coordination number (CN),
interatomic distance (R), and Debye-Waller parameter (χ2)
were varied to give the best fit between the experimental
and predicted spectra. The theoretical phase shift and
amplitude functions were calculated with the ab initio
computer code FEFF6 using atomic clusters generated
from the crystal structure of scorodite (FeAsO4·2H2O).
The goodness-of-fit parameters were also calculated and
compared including χ2 and R-factor, the relative error of
the fit and data. Good fits occur for R < 0.05.

1.7 Surface complexation modeling

The CD-MUSIC model with the triple plane option was
used to describe As(V) and HA adsorption behaviors. The
basic principles of the model have been well document-
ed in the literature (Hiemstra and vanRiemsdijk, 1996).
Constants for protonation of the surface hydroxyl groups
and formation of outer-sphere complexes with background
electrolytes were taken from our previous study (Jing et
al., 2012) and listed in Table S1. Only singly coordi-
nated surface group, FeOH−1/2, was responsible for the
As(V) and HA adsorption in the CD-MUSIC modeling.
The As(V) and HA surface complexation constants were
optimized by fitting model-calculated values to the ex-
perimental data. The constants were varied systematically
until the difference ((experimental adsorption-calculated
adsorption)2) between the calculated and observed values
reached a minimum. The calculation was performed using
the chemical equilibrium program Visual MINTEQ with
the 1-pk TPM adsorption option. The ζ potential was also
calculated according to our previous report (Jing et al.,
2005).
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2 Results and discussion

2.1 As(V) removal in the presence of HA

The results in Fig. 1 show concentrations of As(V) re-
maining in solution with three contact orders in the As(V)-
HA-HFO ternary system: pre-equilibration of As(V)-HA,
HA-HFO, and As(V)-HFO. The initial 100 µg/L As(V)
was reduced to 4.7 µg/L with 1 mg/L Fe in the absence of
HA (Fig. 1a). When the HA concentration was increased
from 0 to 0.5 mg/L, average residual As(V) concentration
was slightly increased from 4.7 to 6.5 µg/L. However, the
differences between these two residual As(V) concentra-
tions were not statistically significant (p = 0.355). The
results suggest that at 5 times of As(V) mass concentration,
HA could not affect the As(V) adsorption. The finding is
in agreement with a previous report that As(V) adsorp-
tion on HFO is not decreased in the presence of equal
concentration of HA (Grafe et al., 2002). When the HA
concentration was increased to 1 mg/L which was 10 times
of initial As(V) mass concentration, the As(V) removal
efficiency was decreased from approximately 95% to 90%
which showed a significant difference (p = 0.049). In the
presence of 2.5 mg/L HA corresponding to 25 times of

As(V) mass concentration, only about 10% As(V) was
removed. This As(V) removal efficiency was not further
decreased even when the mass concentration ratio of HA
to As(V) was increased to 50.

Upon pre-equilibration of HA-HFO, As(V) removal by
HFO was substantially inhibited (Fig. 1b). The observed
adverse effect of HA on As removal was in agreement with
previous reports (Grafe et al., 2001; Redman et al., 2002),
which could be attributed to the competitive adsorption of
HA for available adsorption sites. When As(V) was pre-
equilibrated with HFO, the addition of HA only extracted
less than 40 µg/L As(V) (Fig. 1c). With the increase of HA
concentrations, the extracted As(V) was slightly reduced
from 38.3 to 21.6 µg/L due to aggregating effect of the
macromolecular HA.

2.2 SERS study

In order to study the possible formation of HA-As(V)
aqueous complexes which could subsequently reduce the
As(V) adsorption, SERS was employed as it provides a
ultrasensitive chemical analysis for molecular structure
of the sample. The SERS spectra shown in Fig. 2A
demonstrate that a peak at 785 cm−1 was observed for
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Fig. 2 (A) SERS spectra of DI water blank (line a), 1 mg/L As mixed with humic acid at 0 mg/L (line b), 1 mg/L (line c), 5 mg/L (line d), and 10
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aqueous samples containing 1 mg/L As(V). This peak was
not exhibited as DI water dipped on silver substrate as
blank sample. The peak was not shifted nor disappeared
with increasing amount of HA up to 10 mg/L. The lack
of change in band position in the presence of HA suggests
that no HA-As(V) complex was formed under the exper-
imental conditions. Had aqueous HA-As(V) complexes
formed, the As(V) symmetry and the As-O banding energy
would be changed accordingly which should result in
peak shift or split (Du et al., 2014). The conclusion was
further supported by the observation of peak shift from 785
cm−1 in As(V) solution to 810 cm−1 in calcium arsenate
solution (Fig. 2B, lines c and e). As(V) can form aqueous
complexes with calcium (Bothe and Brown, 1999) which
subsequently shifted the As-O peak position. In contrast,
no peak shift was observed in the mixture of HA-As(V)
solution at a 10 mg/L concentration level (Fig. 2B, lines d
and e).

There is no agreement on the formation of HA-As(V)
aqueous complexes. Generally accepted concept is that HA
and As(V) can not form covalent bond because they are
both anions, and indirect association of HA and As(V)
through metal bridging is the primary mechanism (Redman
et al., 2002; Lin et al., 2004). On the other hand, direct
association of HA and As(V) has been reported under high
HA concentrations at 1500 mg/L (Warwick et al., 2005).
The existence of HA-As(V) complex has been confirmed
using equilibrium dialysis method with 100 mg/L HA and
explained by ligand exchange with phenolate group in HA
(Buschmann et al., 2006). In this study, As(V) and HA (up
to 10 mg/L) concentrations were within environmentally
relevant range and no HA-As(V) aqueous complexes was
detected.

2.3 Arsenic K-edge EXAFS analysis

EXAFS spectroscopy was employed to determine the As
local coordination environment in the presence of HA.
The k3 weighted As K-edge EXAFS spectra and the corre-
sponding Fourier transformations (FT) are shown in Fig. 3.
The FT of the EXAFS spectra isolates the contributions of
different coordination shells, in which the peak positions
correspond to the interatomic distances. However, these FT
peak positions in Fig. 3A are uncorrected for phase shift,
and they deviate from the true distance by 0.3–0.5 Å. The
real parts of FT including both the magnitude and phase
terms are shown in Fig. 3C. The structural parameters
obtained by fitting the theoretical paths to the experimental
spectra are listed in Table S2.

The first peak in the FT was the result of backscattering
from the nearest neighbor As-O shell. The average As-O
distance was 1.69 Å with CN of 4 when HA concentrations
increased from 0 to 200 mg/L. EXAFS analysis confirmed
that the geometry of As(V) was not changed by the
formation of surface complexes in the presence of HA. The
second shell can be fitted with 1.5 Fe atoms at 3.27 Å for
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Fig. 3 Normalized k3-weighted observed and model-calculated As
K-edge EXAFS spectra (A), the corresponding magnitude of Fourier
transform (B, X-axis not corrected for phase shifts), and real part of
Fourier transform spectra (C) for HA concentrations of 0 mg/L (line a),
25 mg/L (line b), 100 mg/L (line c), and 200 mg/L (line d).

the sample without HA. The distances and CN of As-O and
As-Fe are in good agreement with previously published
data (Sherman and Randall, 2003). The As-Fe distance
was in the range of 3.26–3.31 Å when HA concentration
increased up to 200 mg/L which corresponds up to 20
times As(V) concentration.

The EXAFS results show that As(V) formed bidentate
binuclear inner-sphere complexes on HFO surfaces in the
presence of HA. No monodentate surface configuration
was detected under experimental conditions which indicat-
ed that HA could not change the bidentate configuration of
As(V) surface complexes.

2.4 ATR-FITR analysis

Figure 4 shows the ATR-FTIR spectra of DI water, As(V),
HA, and a mixture of As(V) and HA flowing through the
HFO film. Spectra of DI water (Fig. 4A) and HA (Fig. 4B)
feature a broad negative absorbance peak centered in 838–
842 cm−1. This broad peak, increased in negative intensity
with increasing time of adsorption, can be attributed to
the loss of the non-H-bonded surface OH group upon the
adsorption of proton to form positively charged surface.
The band position corresponds well to those assigned to
the deformation of surface OH groups resolved with flow
cell FT-IR (Dickie and McQuillan, 2004).

Figure 4B shows vibrational bands of As(V) flowing
through the HFO film. After 10 min of As(V) adsorption,
two bands at 878 and 818 cm−1 were resolved. These
bands, increased in intensity with increasing time of ad-
sorption, should be attributed to adsorbed As(V) species.
Generally, the FT-IR spectrum of an outer-sphere complex
should resemble that of the aqueous species (Yang et al.,
2012). In contrast, significant changes in adsorbed (Fig.
4B) and aqueous As(V) spectra suggest the formation
of inner-sphere As(V) complex on HFO surface. The
bands at 878 and 818 cm−1 can be assigned to stretching
vibrations of uncomplexed As-O and complexed As-OFe,
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respectively (Goldberg and Johnston, 2001). The number
of peaks and peak positions suggest the existence of
bidentate binuclear As(V) surface complexes.

When a mixture of As(V) and HA flowing through the
HFO film, the two As(V) bands at 878 and 818 cm−1

were not shifted (Fig. 4D). The invariable As(V) bands in
the presence of HA implies that no HA-As(V) complexes
formed even after they were concentrated on the surface
of HFO. The HA effect is fairly pronounced at high HA
concentrations where the As-OFe band at 818 cm−1 was
hardly resolvable and the As-O peak at 878 cm−1 was
rather weak. In contrast to As(V) bands, the intensity of
negative HA peak was enhanced. The FT-IR results are in
line with the reduced As(V) adsorption with HA addition
as shown in Fig. 1. Overwhelming concentrations of HA
blocked the HFO surface and limited the As(V) access.
This physical mask mechanism due to HA steric effect was
in agreement with a previous report (Weng et al., 2007).

2.5 As(V) competitive adsorption behavior

The competitive adsorption of As(V) and HA on HFO
was studied at a constant ionic strength of 0.04 mol/L as

NaClO4. The adsorption edges shown in Fig. 5 demon-
strate As(V) and HA exhibit anion adsorption behaviors,
which has a high adsorption percentage at low pH and
decreases to nearly zero within a narrow pH range. In the
presence of HA, the adsorption of As(V) was compressed
as evidenced by the left shift of the adsorption edge. The
curves in Fig. 5 were calculated with the CD-MUSIC mod-
el listed in Table S1 under spectroscopic constraints. The
bidentate binuclear As(V) inner-sphere surface complexes
were incorporated in the model. On the other hand, HA
may occupy multiple surface sites and form both inner-
sphere and out-sphere complexes (Vermeer et al., 1998).
The possible adsorbed HA including two inner-sphere and
two outer-sphere complexes were applied in the model and
the corresponding reactions are listed in Table S1. The
model could describe the HA and As(V) adsorption edges
well.

The point of zero charge (PZC) of HFO was 7.8 (Fig. 6),
in line with our previous report (Yang et al., 2012). A
significant shift of PZC to lower pH values at 6.3 and
5.8 was observed for HA and As(V) samples, respectively.
The value of ζ potential was predicted well by fitting the
location of the shear plane at 2.2, 1.5, 1.2, and 1.2 nm
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from the head end of the diffuse layer for HFO, HFO-HA,
HFO-As, and HFO-As-HA system, respectively (Fig. 6).
The derived distance was comparable with that of iron
oxide (Hiemstra and vanRiemsdijk, 1996). The predicted
shift of the PZC was in good agreement with experimental
observations (Fig. 6). The adsorption of As(V) resulted in
a greater decrease in PZC than that of HA, which may be
attributed to the lower negative charge of As(V) surface
complexes and the closer distance from the slipping plane
to the head end of the diffuse layer. The PZC shift of the
competitive system was almost identical to the As(V) sys-
tem, which indicates inner-sphere As(V) surface complex
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solution. The estimated distance between the shear plane and the head
end of the diffuse layer is 2.2, 1.5, 1.2, and 1.2 nm, respectively, for the
above four systems in the calculation.

was the primary contributor to surface charge and potential
over the outer-sphere HA surface complex.

3 Conclusions

The presence of HA has a substantial adverse effect on
As(V) adsorption on HFO. The As(V) concentration (0.1
mg-As per mg-Fe) employed in batch experiments and in
EXAFS studies is far below the HFO adsorption capacity
(0.8 mg-As per mg-Fe) (Ford, 2002). Even at this low
As(V) loading, the decrease of As(V) adsorption is statisti-
cally significant when HA concentrations are higher than 1
mg-HA per mg-Fe level. This HA adverse effect, however,
is not due to the formation of aqueous HA-As(V) com-
plexes. Competitive adsorption of HA and As(V) to limited
surface sites is the fundamental mechanism. As(V) forms
inner-sphere bidentate binuclear complexes as evidenced
by an As-Fe distance of 3.26–3.31 Å, and this surface
configuration is not changed when HA concentration is 10
times higher than As(V).
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Supporting materials

Table S1 Surface parameters and species used in the CD-MUSIC Modeling

Species P0 P1 P2 SOH S3O H Na ClO4 As Lc Lp logK

SOH−0.5 1
SOH2

+0.5 1 1 1 7.8
SOHNa+0.5 1 1 –1
SOH2ClO4

−0.5 1 -1 1 1 1 6.8
S3O−0.5 1
S3OH+0.5 1 1 1 7.8
S3ONa+0.5 1 1 1 –1
S3OHClO4

−0.5 1 -1 1 1 1 6.8
S2O2AsO2

−2 –1.1(–0.75)∗ 0.1(–0.25) 2 2 1 28.8
S2Lc 1.5 –0.5 0 2 4 1 14.5
SLc−0.5 1.5 –0.5 0 1 1 1 7.5
SOH2Lc−0.5 0.5(1.1) –0.5(–0.6) –0.3(1) 1 1 1 15.5
SOH2Lp−0.5 0.2 –0.2 –0.3(0.3) 1 1 1 16

Surface site density (nm−2) Inner-sphere capacitance, C1 (F/m2) 1.1 Surface area (m2/g) 600
SOH 3.45
S3O 2.7 Outer-sphere capacitance, C2 (F/m2) 5
∗ numbers in parentheses were used in Fe-As-HA modeling.

Table S2 Arsenic K-edge EXAFS fitting results of As(V) coprecipitation with ferrihydrite in the presence of HA.

HA (mg/L) As-O shell As-Fe shell R-factor X2

R(Å) CN σ2 (Å2) R (Å) CN σ2 (Å2)

0 1.69 ± 0.01 4∗ 0.0022 ± 0.0009 3.27 ± 0.04 1.5 ± 0.5 0.0074 ± 0.0048 0.022 54.49
25 1.69 ± 0.01 4∗ 0.0018 ± 0.0007 3.26 ± 0.03 1.5 ± 0.2 0.0026 ± 0.0019 0.027 58.0
100 1.70 ± 0.01 4∗ 0.0016 ± 0.0005 3.29 ± 0.04 1.9 ± 0.4 0.0016 ± 0.0006 0.022 58.2
200 1.69 ± 0.01 4∗ 0.0012 ± 0.0009 3.31 ± 0.04 1.7 ± 0.5 0.0130 ± 0.0075 0.026 26.4
∗: Fixed value.
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