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ABSTRACT

Modified substrates as outer heterogeneous catalysts was employed to reduce the soot generated from
incomplete combustion of diesel or diesel/biodiesel blends, a process that harms the environment
and public health. The unique storage properties of ceria (CeO;) makes it one of the most efficient
catalysts available to date. Here, we proposed that ceria-based catalysts can lower the temperature
at which soot combustion occurs; more specifically, from 610°C to values included in the diesel
exhausts operation range (300-450°C). The sol-gel method was used to synthesize mixed oxide-based
catalysts (CeO,:Zn0); the resulting catalysts were deposited onto cordierite substrates. In addition,
the morphological and structural properties of the material were evaluated by XRD, BET, TPR-Hj,
and SEM. Thermogravimetric (TG/DTA) analysis revealed that the presence of the catalyst decreased
the soot combustion temperature by 200°C on average, indicating that the oxygen species arise at low
temperatures in this situation, promoting highly reactive oxidation reactions. Comparative analysis of
soot emission by diffuse reflectance spectroscopy (DRS) showed that catalyst-impregnated cordierite
samples efficiently oxidized soot in a diesel/biodiesel stationary motor: soot emission decreased by
more than 70%.

about the need to abate soot release by the diesel engine

Introduction

exhausts has increased, as noted from the environmental
legislation on exhaust specifications (van Setten et al.,
2001; Vouitsis, et al., 2003).

Particulate matter (PM) is naturally present in the at-
mosphere. The majority of the PM released into the
atmosphere stems from fossil fuels combustion. The PM
generated by diesel engines affects the human health
negatively indeed, environmental pollution from diesel
exhausts has risen dramatically, increasing the prevalence
of lung problems among the population, mainly in urban
centers (Harrison and Yin, 2000; Wichmann, 2007; Miiller
et al., 2006; Biinger et al., 2012; Tsai et al., 2012). This
situation calls for strict PM emission control (Russell and
Epling, 2011; Neeft et al., 1996; Twigg, 2007). Awareness

* Corresponding author. E-mail: osaserra@usp.br

The hazardous nature of diesel soot has led researchers
to develop devices that can diminish soot emission from
engines, in the hope that new technologies will help
remedy the problems soot causes (Simonsen et al., 2008;
Cousin et al., 2007). One strategy has been to design cat-
alytic filters or traps that combine retention and oxidation
or gasification of the soot emitted from diesel engines
(Tikhomirov et al., 2006; Galvez et al., 2012). These filters
may employ catalysts that promote low-temperature com-
bustion of carbonaceous materials, to reduce the amount

of diesel soot, and they should exhibit high-performanee-at
low temperatures, since exhaust gases codql down to 280-
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450°C. Hence, it is mandatory that catalysts which are
active enough to ignite soot within the above temperature
range are developed. However, systems that increase the
temperature to burn soot are not necessary, because this
would require greater energy expenditure (Tighe et al.,
2012; Kumar et al., 2012).

The catalytic diesel particulate combustion is based on
a heterogeneous reaction involving solid soot particles,
exhaust gas, and the solid catalyst in intimate contact with
the filter (van Setten et al., 2001). In turn, the catalytic
activity of the solid is related to the chemical composition,
structure, particle size, and specific surface area of the cat-
alyst. Many catalysts mixed with metal oxides and noble
metals can function as traps. The most often used materials
can adsorb oxygen and generate reactive oxygen species
that oxidize soot (Liang et al., 2008; Gupta et al., 2010; Li
et al., 2007). Oxides containing metals are the most active
for soot combustion, because they can perform redox
cycles during the process. The redox reaction disturbs the
charge balance of the mixed-valence binary oxides, but
the creation of oxygen vacancies ensures electroneutrality.
Researchers have tested several kinds of catalysts such
as oxides (Wagloehner and Kureti, 2012; Saab et al,,
2007; Zouaoui et al., 2012; Kaspar, et al., 1999), mixed
oxides (Wu et al., 2011; Uner et al., 2005; Wang et al.,
2012), alkaline or heavy metal oxides (Kumar et al., 2012;
Jiménez et al., 2008; Peralta et al., 2011; Neyertz et al.,
2012), and precious metals (Guan et al., 2011; Homsi,
et al., 2011; Yamazaki, et al., 2011; Hirata et al., 2011).
Ceria (CeO;) doping with these metals oxides improves
the oxygen exchange capacity of the oxide and raises
the soot combustion rate. Ceria contain oxygen vacancies,
because many Ce**/Ce3* redox sites are rapidly formed
and removed. The result is remarkable oxygen storage
capacity (Homsi, et al., 2011; Vicario et al., 2009; Shimizu
et al., 2010), a function known as oxygen storage/release
capacity. In more general terms, this behavior is referred
to as redox and oxygen-vacancies behavior; it accounts
for the characteristics of CeO, reduction and oxidation,
confirming that these materials generate active species that
consume soot (Aneggi et al., 2006; Thrimurthulu et al.,
2012). This happens because O, adsorbs onto the catalyst,
subsequently increasing the mobility of active oxygen
species (Trovarelli, 2002; Azambre et al., 2011; Sun et al.,
2012; Acerbi et al., 2012).

The immobilization of small amounts of oxides with
catalytic properties on matrixes with high specific surface
area leads to new surface species with structural features
that control the activity and selectivity of the new com-
posite materials. The combination of two or more metal
oxides on the surface of a support produces a complex
system with multiple functions stemming from each oxide,
often eliciting new properties. The role of ceria is to assist
generation of the atomic oxygen species and transfer them
from the gas phase to the lattice consisting of mixed oxides

and the soot surface (Aouad et al., 2009; Jeguirim et al.,
2010).

In this article we prepared the mixed binary oxide
Zn0:Ce0, over cordierite by the sol-gel method and
evaluated the catalytic activity of the supported mixed
oxide in diesel soot particulate oxidation. We used X-ray
powder diffraction (XRD), scanning electronic microscopy
(SEM), Raman spectroscopy, diffuse reflectance spec-
troscopy (DRS), and thermal analysis (TG and DTA), to
analyze the structure of the catalyst.

1 Materials and methods

1.1 Preparation of the mixed binary oxide powder sup-
ported onto cordierite

The solid system CeO,:ZnO was synthesized from
an ethanolic suspension of Ce(NO;3);-6H,O and a
Zn(CH3;C0OO0),.2H,0 solution (0.4 mol/L), at a Ce/Zn
molar ratio of 2:3. The mixture was heated under reflux,
and 200 pL of lactic acid (85%) was successively added,
until Zn(CH;COO);,-2H,0 dissolved completely and a
stable transparent sol arose. The sample was then dried
until ethanol was eliminated. The powder was calcined
at 650°C for 3 hr under air atmosphere, to eliminate the
organic material.

The cordierite ceramic sub-
strates (58i0,-2A1,03-2Mg0O, Umicore®, Brazil) were
modified using the CeO,:ZnO impregnation method;
they were cut into a cylindrical shape (3.5-cm height
and 2.5-cm diameter), for use in the catalytic tests. The
impregnation process consisted of immersing the ceramic
substrate into the Ce0O,:ZnO sol at 50°C for 5 min,
followed by heating at 650°C for 3 hr; this procedure was
repeated four times. The mass of catalyst that adhered
to the monolith after the impregnation procedure was
gravimetrically determined for each preparation, by
weighing the vacuum-dried cordierite samples before and
after the impregnation procedure. The amounts of loaded
catalyst varied around 10% in mass with relation to the
initial mass of the substrate.

1.2 Characterization of the prepared materials

Nitrogen adsorption data were obtained on a Nova 2200
(Quantachrome, USA) analyzer using a liquid nitrogen
bath (77 K) and high-purity nitrogen as adsorbate; the
specific surface area was calculated by the BET equation.
The samples were previously dried for 5 hr under low
pressure (ca. 60 mmHg), at 120°C.

The structural characterization of the catalysts (powder)
was accomplished on a D5005 (Siemens, Germany) X-ray

diffractometer (XRD) operating with a coppertube(Cu
Ko radiation, 1.541 A) under 40 kV and 3D mA. The scan



http://www.jesc.ac.cn

696 Journal of Environmental Sciences 26 (2014) 694-701

speed was 2°/min; the 20 values ranged from 20° to 90°.

The redox behaviour of the CeO,:ZnO catalysts was
examined by H,-TPR in a Pulse ChemiSorb 2705 (Mi-
cromeritics, USA) device consisting of a tubular quartz
reactor coupled to a TCD detector, to monitor H, consump-
tion. The reducing gas was 5% H, in N,. Experiments were
conducted from room temperature to 800°C at heating rate
was 10°C/min.

The oxygen storage capacity (OSC) measurements were
carried out in an atmospheric glass fixed bed reactor placed
in an electrical oven connected to a QMS200 quadrupole
mass spectrometer (Pfeiffer, Germany) and a TCD. The
sample (200 mg) was placed in the reactor and heated up
to 400°C under continuous helium flow (50 mL/min), at
atmospheric pressure. At this temperature, 10 pulses of
10% O,/He were introduced, to completely oxidize the
sample; He flow was passed through the sample for 10 min,
to purge to desorb the excess of weakly adsorbed O, in
the sample. Then, ten pure CO pulses were injected before
a new 10 min purging step with He. The oxygen storage
capacity was calculated from the first CO pulse. Then, the
oxygen storage complete capacity (OSCC) was evaluated
from the total amount of CO consumed at the end of the
CO pulse series. OSCC corresponds to the total amount of
reactive oxygen.

The morphology and particle size of the materials
were evaluated by scanning electron microscopy. The
micrographs were acquired on a EVOS50 (Zeiss, Germany)
equipment and a JEM-100cx I (JEOL, Japan). An IXRF
Systems 500 Digital Processing accessory was used for
elemental quantification.

For diffuse reflectance spectroscopy (DRS) measure-
ments, the powders were ground in an agate mortar and
compacted in a black holder. The measurements were
performed on an USB4000 (Ocean Optics, Germany)
spectrometer equipped with an R400-7-VIS/NIR reflec-
tion/backscattering probe (400 um core diameter optical
fiber) and an LS-1 tungsten-halogen lamp. The DR spectra
were recorded in the 300-700 nm and 300-1000 nm
ranges, with integration time of 100 ms and a distance
of 0.5 cm between the samples and the probe, which was
kept at 90° in relation to the sample surface (backscattering
geometry). The visible spectra of the filter papers impreg-
nated with soot were also recorded in the same apparatus.

Micro-Raman spectra were collected in the backscat-
tering configuration using a T64000, (Horiba-Jobin Yvon,
USA) spectrometer equipped with a nitrogen-cooled
charge coupled device detector. The argon ion (Ar")
laser line with A = 514.5 nm was used as the excitation
source, focused onto the sample with the aid of an BX41
(Olympus, USA) microscope and a long working distance
objective with 100x magnification. The incident laser
power was 3.5 mW.

1.3 Catalytic activity

The potential of the catalysts was firstly evaluated by
thermal analysis of the combustion of mixtures containing
each catalyst and the soot model - Printex-U®, Degussa
(DeSousa Filho et al., 2009) at a ratio of 9:1 (W/W), respec-
tively. For loose contact conditions, the catalyst and soot
were simply mixed with a spatula. The catalytic ability
was evaluated through dynamic tests comprising a diesel
combustion stationary motor. The emissions produced by
diesel burning in the engine were captured by means of
quantitative papers, used as filters. Impregnation into the
filter papers was compared by DRS. Clean filters (without
soot deposition) were used as diffuse reflectance internal
standards; i.e., blank samples, DRS = 100% (Silva et al.,
2011).

2 Results and discussion

2.1 Catalyst characterization

Nitrogen physisorption analysis (Fig. 1) revealed that
deposition of CeO,:ZnO onto cordierite changed the BET
surface area slightly, but it did not affect the catalytic
activity or the texture significantly. CeO,:ZnO exhibited
moderately high surface area, 28 m?/g and average pore
size of 23.2 nm, for a type IV structure with an H3
hysteresis-loop, indicating a certain degree of mesoporosi-
ty.

We investigated the redox properties of selected samples
by H,-TPR and plotted the H, consumption profiles in
Fig. 2, where the TCD signal is proportional to the amount
of consumed H,. H, consumption (730 umol/g) must be
due to the reduction of Ce** and Zn?* cations (Wang and
Luo, 2008; Yao and Yao, 1984). The first peak, centred at
around 370°C in the profile of CeO,, refers to reduction
of the Ce** layers; the second peak, centred at 670°C,

35+
30+
25+

20+

Adsorbed volume (cm?/g)

0 n 1 n 1 n 1 n 1 n
0 01 02 03 04 05 06 07 08 09 10

Relative pressure (P/P,)

Fig. 1 Ce0,:Zn0O nitrogen adsorption/desorpfion isotherms.
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H, consumption (a.u.)

L Il L Il L Il L Il L Il L Il L
100 200 300 400 500 600 700 800
Temperature (°C)

Fig. 2
catalyst.

Temperature-programmed reduction profile of the CeO,:ZnO

corresponds to Zn** reduction, indicating that Ce** ions
exist in the ZnO host and facilitate cerium reduction. This
suggests enhanced oxygen mobility within the CeO,:ZnO
lattice, with consequent creation of vacancies. A syner-
gistic interaction between Ce and Zn in the mixed solid
solution gives rise to low-temperature reduction (Wang
et al.,, 2012). These results agree with the OSC data,
which had demonstrated that CeO,:ZnO has higher oxygen
storage capacity (268 umol O/g for OSC and 320 pmol
O/g for OSCC). We also measured at 400°C for the
catalyst. The storage capacities are expressed as umol O/g,
which corresponds to the amount of oxygen removed by
reduction with CO, to produce COs,.

The XRD pattern of Ce0,:ZnO calcined at
650°C (Fig. 3) shows of the reflections in detail: the
narrow lines perfectly match the indexed CeO, cubic
system, unit cell, and cubic face centered space group
Fm3m (225), as well as the ZnO hexagonal system,
primitive unit cell, and space group P63mc (186) (Lima et

n E‘ [ znO
M CeO,
O
[
B
s
& [
5
E D
)
L Il L Il L Il L L L L
20 30 40 50 60 70 80 90

20 (degree)
Fig. 3 X-ray diffractrogram of CeO,:ZnO.

al., 2009). No peaks due to any other phases appear. Peaks
associated with the hexagonal phase are also present,
indicating that the ZnO host incorporated the Ce** ions.

The Ce0,:Zn0O particles display high aggregation de-
gree, a consequence of the annealing process. The size of
the ordered (crystalline) domains in the solid (27.9 nm)
must be smaller than or equal to the grain sizes observed
by electron microscopy, attesting to the nanostructure of
the synthesized materials.

To evaluate the morphological properties of cordierite,
we acquired SEM micrographs of this substrate. Figure 4
depicts the SEM micrographs of the powder catalysts
Ce0,:Zn0O (Fig. 4a) and Ce0O,:ZnO immobilized on-
to cordierite (Fig. 4b). We detected a large amount
of monodisperse spherical particles on the surface of
cordierite after we deposited CeO,:ZnO on the ceramic
substrate (Fig. 4b). Moreover, the coated cordierite surface
became less porous, and the entire sample surface was
rougher.

The average diameter of the microspheres was 20—
30 nm for the CeO,:ZnO powder and 300-500 nm for
Ce0,:Zn0O anchored on cordierite. Higher magnification
revealed that the spherical particles displayed rougher
surface smaller crystallites bound together, to form the
larger spheres. Therefore, according to crystallite size,
each spherically shaped particle in the CeO,:ZnO system
must consist of nanocrystallites measuring 20-30 nm. The
particle size distribution was narrow.

UV-Vis diffuse reflectance spectroscopy (Fig. 5) helped
estimate how the band gap energies of the CeO,:ZnO pow-
der. Varied both samples presented low reflectance in the
UV region, indicating high absorption; they also displayed
high reflectance in the visible region, typical of lower
absorption (Fig. 5a). To determine the band gap values, we
plotted (ahv)? vs. hv around the fundamental absorption
region (Fig. Sb) (Santara et al., 2011). The high reflectance
in the visible region and the low reflectance in the UV
region clearly showed that the fundamental band gaps of
both samples were fairly similar: 3.63 eV for CeO,:ZnO.
In the presence of increased carrier concentrations, the
Fermi level shifts close to the conduction band, the energy
transitions become unobstructed, and the band gap value
decreases. This also agrees with the quantum confinement
effect of the nanoparticles (Kumaran and Gopalakrishnan,
2012).

Raman spectroscopy of the CeO,:ZnO catalyst informed
about crystallinity and structural defects (Fig. 6). The
band at 460 cm™! generally corresponds to the symmetric
breathing mode F,; of the oxygen atoms around Ce**
ions, which resembles the active mode of the fluorite
structure and corroborates that the synthesized materials
have crystalline fluorite cubic structure. The low-intensity
bands at ca. 250 and 588 cm™! refer to oxygen vacancies
(Laguna et al., 2011); the mode at 1180 cm~"is due to 1.0

phonon (Fig. 6, amplified). The ratio betWeen the area of
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EHT=2000kV  Mag= 10000 KX

1
P | EWT=2000kV Mag= 5000KX

Fig. 4 SEM micrographs of the CeO;: ZnO powder (a) and CeO;:ZnO/cordierite (b).
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Fig.5 (a) Reflectance UV-Vis spectra of the as-prepared CeO,:Zn0O,

(b) band gap energy of the CeO,:ZnO catalyst (powder).

the signal relative to the oxygen vacancies and the area of
the Fy, signal is considered the most appropriate way to
compare the population of oxygen vacancies in different
solids (Hernndez et al., 2009).

2.2 Catalytic activity

We investigated the catalytic combustion of soot over
Ce0,:ZnO (Fig. 7) using Printex-U® as soot model in
the loose contact conditions. The combustion temperature
decreased to 430°C in the presence of Ce0,:Zn0O; in the
absence of this material, the process occurred at 620°C.
And Table 1 summarizes the results from soot oxidation
thermogravimetric analysis in the presence of CeO,:ZnO
The CeO,:ZnO nanometric particles possess a special
function in heterogeneous catalysis: only the outer surface
can provide the active sites necessary for the catalytic
reactions. The smaller the diameter of the surface particles
on the catalyst surface, the larger the number of surface
sites that the catalyst can provide, and the higher the

Intensity (a.u.)

L 1 L
200 400

L 1 L 1 L 1 L 1 L 1 L
600 800 1000 1200 1400 1600
Wavenumber (cm™)
Fig. 6 Raman spectrum of CeO,:ZnO (solid line) powder system and
enlarged CeO,:Zn0O spectrum (dashed line).

100
<
=
80 =
S 60 L —— Printex-U* 'g
5 | —— Fresh CeO,:ZnO/Printex-U® E{
§ —— Used CeO,:ZnO/Printex-U® 3
40 - S
-
20 + a.
£
(5]
H

1 n 1 n 1 n 1 n
100 200 300 400 500
Temperature (°C)
Fig.7 TG/DTA of Printex-U®, fresh CeO,:ZnO/Printex-U®, and used
Ce05:ZnO/Printex-U®.

1 L
600 700

catalytic activity of the material. The well-dispersed Ru
species on the surface of Ce0,:ZnO promote mobility of

the active oxygen species, which are extre
oxidation reactions.

Tty Teactive
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Table1 CeO,:ZnO catalytic performance in soot o
Catalyst T; T. Tk AT
(§®) Q) () §(®)
None? 480 610 640 160
Ce0,:Zn0 (Fresh) 340 420 480 140
Ce0,:Zn0 (Used) 345 434 486 141

2 Corresponding to Printex-U® oxidation without catalyst.

We assessed the catalytic performance of CeO,:ZnO
through dynamic tests comprising a diesel combustion
stationary motor (Silva et al., 2011). This methodology is
based on the principle of the Bosch method (Faiz et al.,
1996). The exhausting gases and PM emission are directed
to a filter paper, where the soot particles accumulate. The
DRS of the paper is then read in an optical device such as
a spectrometer. Once the amount of PM at the filter surface
is proportional to its concentration in the effluent from the
fuel combustion, the indirect measurement of its optical
absorbance provides a comparative way of determining
the soot concentration in the effluents. Hence, considering
the clean filters as blank, larger amounts of soot should
lead to higher absorbances and, consequently, to lower
percentages of diffuse reflectance. Figure 8 illustrates a
typical DRS profile, which corresponds to the DRS of the
filter exposed to the effluents of diesel combustion after
passing through the interior of CeO,:ZnO/cordierite.

The DRS of the filters impregnated with soot displayed
the same profile, but CeO,:Zn0O reduced soot emission by
about 70%. In other words, soot emission decreased in the
following order: none > cordierite > CeO,:Zn0O.

Figure 9 represents a possible mechanism for soot
oxidation over CeO,:Zn0O. First, gaseous O, is adsorbed
on the surface of CeO, through a synergistic effect with the
oxygen vacancies in Zn0O:Ce0O,, to form atomic oxygen
species, the first active oxygen species (O*) to oxidize
soot. These species migrate to the CeO,:ZnO surface via

100

— In the absence of cordierite
| o In the presence of cordierite
gol-2 Fresh CeO,:ZnO/cordierite

o Used CeO,:ZnO/cordierite

60

'
oo

40

Diffuse reflectance (%)

1 1 L 1 L 1 L 1 L
600 700 800 900 1000
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Fig.8 DRS of the filters impregnated with soot upon combustion of
diesel.

0, (gaseous)
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Fig. 9 Schematic soot oxidation by CeO,:ZnO catalyst.

the interface, which is large and accelerates migration.
The mobile active O* species on CeO,:ZnO migrate to
the surface of the soot particle through contact with the
surface between the catalyst and the soot, oxidizing the
latter to CO,, which is finally released into the gas phase.
The atomic oxygen species that are weakly adsorbed onto
the CeO,:ZnO surface desorb in the temperature range
300-400°C and function as active oxygen species for soot
oxidation.

The presence, concentration, and mobility of lattice de-
fects govern transport properties, such as oxygen diffusion
(Yamazaki et al., 2011). The application of this type of
materials, even in the nanometer range, will depend on
these transport properties, which are also believed to play
a key role in catalysis.

3 Conclusions

We synthesized CeO,:ZnO nanopowder systems by a non-
alkoxide sol-gel procedure and proved that they effectively
diminish the soot combustion temperature. This sim-
ple inexpensive method provides ultrafine particles with
the desirable characteristics. The resulting mixed oxide
Ce0,:Zn0O displays a bicrystalline phase consisting of
wurtzite ZnO and cubic phase CeO,. SEM analysis showed
that the particles are spherical, with sizes ranging from
100 to 300 nm. The specific surface area and the redox
properties of the solids affect the catalytic reactivity. Coex-
istence of Ce>* and Ce** on the surface of the CeO,:ZnO
materials further contributes to the catalytic ability. The
main advantage of the catalyst is that active oxygen can
store both ceria, and the catalytic activity is related to the
number of vacant oxygen lattice sites. Ceramics modified
with Ce0,:Zn0O can reduce soot emission during diesel
burning in a stationary diesel motor.
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