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a b s t r a c t

This article reports pollutant removal performances of baffled subsurface flow, and integrated surface
flow-floating treatment wetland units, when arranged in series for the treatment of municipal
wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic
media, and were planted with nineteen types of macrophytes. The wetland train was operated under
hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland
units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow
wetland, due to organic carbon leaching from the employed organic media. Higher mean organics
removal rates (656.0 g COD/(m2·day)) did not completely inhibit nitrification in the first stage vertical
flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the
flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland
showed enhanced biodegradable organics removal, which depleted organic carbon availability for
denitrification. The final stage integrated wetland system allowed further nitrogen removal from
wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic
carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli
mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general,
enhanced pollutant removal efficiencies as demonstrated by the structurally modified hybrid wetland
system signify the necessity of such modification, when operated under adverse conditions such as:
substantial input organics loading, hydraulic loading fluctuation, and seasonal variation.

Introduction

Municipal wastewater contains widely variable amount of
organics and inorganics such as nitrogen, phosphorus, and
other solids, depending on water usage patterns in different
countries (Vymazal, 2009). Such pollutants of variable
concentrations in municipal wastewater can be treated
via steel-and-concrete, and natural treatment technologies.
The former technology often entails substantial operation

∗Corresponding author. E-mail: tanveer@alumni.ait.asia;
tanveer.ce@aust.edu

and maintenance costs (Arias and Brown, 2009; Anto-
niadis et al., 2010), whereas such problems are generally
encountered by the latter technologies.

Constructed wetland treatment systems, generally re-
ferred to as low-cost, green treatment technologies, are
dependent on an inter-connected network of plants, media,
biomass, and water which facilitate physical, chemical,
and biological removal of contaminants from wastewater
(Fountoulakis et al., 2009). Such systems exhibit bet-
ter efficiencies of organics removal, when employed for
wastewater treatment (Vymazal and Kröpfelová, 2009);
however, higher nitrogen removal performances are of-
ten difficult to achieve. To overcome these drawbacks,
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extensive research is being carried out in adjustment of
operational and environmental parameters, employing al-
ternative media, structural, and arrangement modification
of wetlands (Saeed and Sun, 2012).

To date, a few studies reported the role of media (i.e.
organic type), for improving classical nitrogen reduction
(from wastewater) in treatment wetlands (Saeed and Sun,
2011b; Tee et al., 2012). The mechanism for such media
oriented performance is involved with leaching of organic
carbon (C) from the employed media (into bulk wastew-
ater), that increases organic C availability to support
denitrification (along with organics removal).

Other studies modified structural configurations of
wetlands, for enhancing removal mechanism. Baffled hor-
izontal flow (HF), bio-rack, towery, and integrated down
flow-up flow wetlands fall under this category (Ye and
Li, 2009; Chang et al., 2012; Tee et al., 2012; Wang
et al., 2012a). Enhanced removals were observed in
such engineered wetlands, due to flow direction through
aerobic-anaerobic portions, and improved wastewater con-
tact time with increased root surfaces of macrophytes.
As such, combination of appropriate media, along with
structural modification of treatment wetlands could further
accelerate removal bio-kinetics.

Apart from media oriented performance improvement,
or structural modification of wetlands, different arrange-
ments of vertical flow (VF) and HF wetland systems (i.e.
hybrid systems) had also been examined (Belmont et al.,
2004; Abidi et al., 2009; Tunsiper, 2009) for accelerating
bio-reactions. The role of the last stage wetland in such
hybrid system is extremely critical. For example, a last
stage VF system can further accelerate nitrification and
organics removal, whereas a final stage HF system can
support denitrification (Vymazal, 2005; Saeed et al., 2012).
However, in both cases, either nitrification or denitrifi-
cation becomes the limiting factor (due to absence of
aerobic/anaerobic conditions), which may not meet the
stringent pollutant discharge criteria in many countries.
Considering these drawbacks, incorporation of a surface
flow (SF), or floating treatment wetland (that employs
floating mat with emergent macrophytes on water surface)
as a final stage unit can further reduce nitrogen contents,
as it allows substantial bio-kinetic metabolisms around the
rhizosphere (Headley and Tanner, 2006; Zachritz II et al.,
2008).

This study was designed to investigate the removal
efficiency of structurally modified VF and HF systems
(with organic and inorganic media), arranged in series
with an integrated SF-floating treatment wetland, and to
provide municipal wastewater treatment in Bangladesh.
The main objective of this study was to examine overall
removal mechanisms for pollutants (nitrogen, organics, E.
coli) of the developed engineered wetland systems, which
are subjected to hydraulic loading (HL) fluctuation and
seasonal variation.

1 Materials and methods

1.1 Municipal wastewater

Municipal wastewater was collected from a local out-
let (prior to disposal into open channels) in Dhaka,
Bangladesh. The wastewater was stored in a tank before
being dosed as influent, into the experimental wetland
system.

1.2 Configuration of the pilot-scale experimental wet-
lands

The pilot-scale experimental systems were established on
campus, Ahsanullah University of Science and Technol-
ogy, Dhaka, Bangladesh, and consisted of a VF, a HF,
and an integrated SF-floating treatment wetland (Fig. 1).
The VF and HF units were made of steel sheets, whereas
the integrated SF-floating treatment wetland was made of
plastic sheet. The wetland units were arranged to form
three consecutive treatment stages in series: VF wetland
as the first stage, followed by the HF wetland, and the
integrated SF-floating treatment wetland as the final stage.

The length, width, and height of VF were 0.7, 0.7 and
1.0 m respectively. The VF system included four baffles
(0.5 m length, 0.18 m distance between the baffles), as
shown in Fig. 2. The baffles had clear spaces of 0.2 m (from
the opposite steel sheet), to allow the flow of wastewater
throughout the media.

The length, width, and height of the HF unit were 2.5,
1.0, and 1.1 m, respectively. The HF included three baffles
(0.7 m length, 0.61 m distance between the baffles). The
baffles of the HF were constructed to direct the wastewater
(Tee et al., 2012) through anaerobic (i.e. lower portion),
and aerobic pockets (i.e. upper portion) of the employed
media.

The length, width, and height of the combined SF-
floating treatment unit were 1.40, 1.01, and 0.78 m,
respectively. The floating mat was constructed employing
perforated plastic containers (1.01 m length, and 0.15 m
width), and was placed at a distance 0.85 m from the
outlet of the combined unit. Such arrangement allowed
1.25 m water surface length (with macrophytes) in the

VF wetland HF wetland Combined SF and

Floating treatment wetland

Fig. 1 Photo plate of the experimental wetland units.
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combined unit, thereby resembling the characteristics of
SF as illustrated in Fig. 2.

Five types of locally available substrates (i.e. saw-dust,
coal, pea gravel, small sized gravel, and sylhet sand) were
employed as the main media. The VF consisted of saw-
dust (size 600.0 µm), and coal (size 2.75–9.50 mm). The
HF was filled with small sized gravel (size 2.36–2.75 mm),
and sylhet sand (size 300.0–600.0 µm). The main media
of SF unit included small sized gravel, sylhet sand, and
mixture of large sized gravel-oyster shell. The porosities
of the packed saw-dust, coal, small gravel, pea-gravel, and
sylhet sand were 44.0%, 42.0%, 40.0%, 25.0%, and 26.0%
respectively.

The saw-dust media of VF achieved 0.6 m depth, overly-
ing on coal substrates having 0.3 m depth; these substrates
were supported by large stones (0.1 m depth), to facilitate
effluent drainage. In HF, the depth of the employed media
was: small gravel (0.2 m-bottom part), sylhet sand (0.7

m-middle part), and small gravel (0.1 m-top part). In SF-
floating treatment unit, the main media (gravel and sand)
achieved 0.25 m depth, allowing 0.35 m water depth (from
the top of media); the depth of the media (mixture of large
gravel-oyster shell) in the floating treatment wetland mat
was 0.12 m. The total surface areas of the VF and HF were
0.49 m2, and 2.50 m2 respectively.

1.3 Macrophytes

The experimental wetland units were planted with nineteen
types of macrophytes (Table 1), collected from local water
channels and nurseries. The plants included emergent
(VF, HF, SF, and floating wetlands), submerged (SF),
free floating, and floating leaved macrophytes (SF). After
plantation, all the wetland units were water logged up to
a period of ten weeks, allowing necessary growth of the
macrophytes. After plant establishment, the water content
was drained, for the passage of wastewater through the
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Table 1 Macrophyte types in experimental pilot-scale wetland system

Plant type Scientific name

VF Emergent Phragmites australis, Cyperus difformis, Dracaena sanderiana, Canna indica.
HF Emergent Phragmites australis, Cyperus papyrus, Cyperus difformis, Dracaena sanderiana, Hydrocotyle umbellate,

Echinodorus cordifolius, Colocasia esculenta, Caladium sp., Hymenocallis littoralis, Canna indica.
SF Emergent Phragmites australis,Echinodorus cordifolius,Ludwigia adscendes, Alternanthera philoxeroides.

Submerged Hygrophila polysperma, Bacopa caroliniana.
Rooted floating Nymphea pubescens, Nymphoides indica.
Floating leaved Salvinia auriculata, Salvinia minima, Pistia stratiotes.

Floating wetland Emergent Phragmites australis, Cyperus papyrus, Echinodorus cordifolius.

wetland systems.

1.4 Operation of the wetland systems

The pilot-scale wetland train was fed with municipal
wastewater for nineteen weeks; wastewater dosing was
commenced from autumn period, and was continued until
the end of winter period. Municipal wastewater was dosed
manually into the surface of the VF, five days a week, two
times a day with 3 hr interval between successive dosings.
The volume of the influent wastewater was varied (i.e.
artificial fluctuation) every week; 306.0 mm/day in one
week, followed by 204.0 mm/day in the following week,
and was continued up to nineteen weeks.

Wastewater was applied into the VF, where it flowed
downwards as directed by the baffle walls towards outlet
(Fig. 2). The effluent of the first stage VF wetland A
was transferred into the HF, under gravitational force.
Wastewater maintained downwards and upwards flow path
(while moving towards outlet), as directed by the baffle
walls inside the HF maintaining 1.0 m water depth. The
effluent of the HF was transferred into the combined SF-
floating treatment unit by gravity. Wastewater in such unit
passed through the macrophytes of SF, and the hanging
roots of the floating treatment wetland towards outlet,
producing final effluent of the system.

1.5 Sampling and analyses

Wastewater was collected from the outlet of each wetland
on a weekly basis. Sixteen sets of samples (across each
experimental wetland unit) were analyzed for pH, redox
potential (Eh), dissolved oxygen (DO), NH4-N, NO2-N,
NO3-N, turbidity, BOD5, and COD. Eleven sets of samples
were analyzed for E. coli measurement, and five sets of
samples were analyzed for phosphorus (P) measurement.
Analyses of nitrogenous compounds, P and COD were
carried out using a digital reactor block, and Palintest 5000
colorimeter based on standard procedures, as highlighted
by the supplier (i.e. ELE International, UK). pH, Eh, and
DO were measured by ELE 970 DO2 probe, and 370 pH
meter (i.e. ELE International, UK). BOD5 measurement
was carried out with a manometer BOD instrument, and
an incubator operated at 20°C. Wastewater turbidity was

measured with a turbidity meter (ELE International, UK).
E. coli in the samples was measured with Macconkey agar,
and an incubator operated at 37°C (as indicated by the
supplier).

2 Results and discussion

2.1 Overall performance

Table 2 indicates mean removal performances across the
experimental wetland units. VF achieved higher BOD5 re-
moval percentages, when compared with nitrification and
denitrification rates. BOD5 removal efficiencies were also
higher, as the wastewater passed through the HF; however
such stage demonstrated lower nitrogen removal perfor-
mances. In addition, the experimental HF was efficient in
terms of P and E. coli removal from wastewater. The SF-
floating treatment showed substantial denitrification and
E. Coli removal performances, from influent wastewater
(effluent of HF). However BOD5 removal performances
in such stage were lower (over COD removal), when
compared with the previous stages.

2.2 Profiles of environmental parameters

Figure 3 shows the profiles of pH, Eh, and DO as
the influent municipal wastewater passed through the ex-
perimental wetland systems. The weekly profiles of the
environmental parameters (in raw municipal wastewater)
were substantially variable. Figure 3 also indicates gradual
concentration increment of such parameters (except efflu-
ent pH values across VF wetland A), as the wastewater
passed through each treatment stage

It should be noted that higher effluent DO and Eh
concentrations were observed across the effluent of HF. In
general HFs are believed to be operated under reducing
conditions. Higher effluent DO and Eh concentrations
from HF had also been reported previously (Vymazal and
Kröpfelová, 2008; Liu et al., 2011). As such, effluent
Eh and DO concentrations are not good indicators for
describing the environmental conditions inside the media
of wetland systems (Vymazal and Kröpfelová, 2008), due
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Table 2 Mean pollutant removal performances across the experimental wetland units

Raw conc. VF HF SF-floating Overall removal

Effluent conc. Removal Effluent conc. Removal Effluent conc. Removal

pH 7.1 (0.2)∗ 6.8 (0.2) 7.1 (0.2) 7.3 (0.3)
DO (mg/L) 0.06 (0.03) 0.10 (0.06) 0.13 (0.04) 0.17 (0.03)
Eh (mV) –17.0 (148.0) 109.1 (75.8) 152.1 (79.2) 152.4 (83.2)
Turbidity 86.8 (53.5) 22.8 (7.9) 73.7% 8.2(9.6) 63.7% 1.1 (2.7) 86.5% 98.7%
NH4-N (mg/L) 107.5 (71.2) 54.1 (46.2) 50.0% 38.4(43.7) 28.9% 19.1 (23.0) 50.5% 82.3%
NO2-N (mg/L) 2.9 (4.5) 2.1 (3.1) 30.1% 1.2 (1.7) 42.7% 0.4(0.5) 60.4% 83.6%
NO3-N (mg/L) 115.5 (42.1) 51.8 (21.1) 55.1% 45.5 (19.9) 12.2% 12.0 (6.0) 73.8% 89.6%
BOD5 (mg/L) 1903.0(1013.0) 431.7 (217.0) 77.3% 73.3 (39.1) 83.0% 57.8 (30.0) 21.1% 97.0%
COD (mg/L) 4048.0(1092.0) 1491.0(360.7) 63.1% 658.0(205.0) 55.8% 223.1(44.0) 66.1% 94.4%
P (mg/L) 23.1(11.5) 14.4(6.02) 37.5% 8.3 (4.1) 63.5% 5.9 (3.4) 27.3% 74.1%
E. coli (CFU/100 mL) 257318.0(248865.0) 129345.0(154984.0) 49.7% 2500.0(3685.0) 98.1% 83.3 (252.0) 96.6% 99.9%

∗ Standard deviations are presented within the bracket.

to possible coexistence of aerobic and oxygen limited
zones inside the wetland matrices (Saeed and Sun, 2012).

2.3 Nitrogen and organics removal

Nitrification is the first step of classical nitrogen removal
route (from wastewater), that is often observed in treatment
wetlands. Biological nitrification and organics removal in
constructed wetlands often follow contradictory pathways;
higher degradation of biodegradable organics generally
depletes the availability of oxygen inside the media, there-
by inhibiting aerobic nitrification. As such, higher BOD5
removal and lower nitrification performances (compared
to organics removal, Table 2) might be linked to greater
oxygen consumption by the former process in VF, that
could not be replenished by atmospheric oxygen diffusion
(due to lower porosity of the employed media) to enhance
the latter route. These results are in agreement with the
findings of Saeed and Sun (2013), where the authors em-
ployed porous sugarcane bagasse media (69.0% porosity)
in VF, and recorded greater atmospheric oxygen diffusion
inside the media, to support enhanced nitrification and
organics removal.

Higher oxygen consumption (in VF) by biodegrad-
able organics removal mechanism can also be illus-
trated through theoretical oxygen demand rate (ODR,
g/(m2·day)) equation (Platzer, 1999):

ODR = [BODin − BODout] + 4.3[NH4in − NH4out]

where, BODin and BODout are defined as mean input and
output BOD across VF (mean input 483.08 g/(m2·day),
output 109.69 g/(m2·day)), respectively; NH4in and NH4out
can be defined as mean input and output NH4 respectively
across VF (mean input 27.35 g/(m2·day), output 14.49
g/(m2·day)), respectively. Mean ODR for supporting ob-
served nitrification and organics removal in VF can be
calculated as 428.71 g O2/(m2·day). The majority portion
of this calculated ODR (373.3 g O2/(m2·day)) was required
for accomplishing observed organics removal rates. Lower
porosity of the media (of VF) could have limited additional
oxygen diffusion inside the bed, thereby reducing the
autotrophic nitrification.

The interference of BOD removal mechanism on au-
totrophic nitrification is further demonstrated by Fig. 4.
Nitrification rates were reduced with increase of influent
BOD/NH4-N ratios, further supporting the interference
of organics removal on nitrification process. However,
nitrification was not diminished drastically despite higher
organics loading (in VF, Table 2), which does not coincide
with the findings of previous studies (Sun et al., 1998;
Wu et al., 2011). Such contradictory performance could
be attributed to the effective usage of the trapped oxygen,

Time (week)

p
H

0 2 4 6 8 10 12 14 16 18
6.0

6.5

7.0

7.5

8.0

8.5

Input Output VF

Output HFOutput SF

Time (week)

E
h

 (
m

V
)

2 4 6 8 10 12 14 16 18
-400

-200

0

200

400

Input
Output HF

Output VF
Output SF

Time (week)

D
O

 (
m

g
/L

)

0 2 4 6 8 10 12 14 16 18
0.0

0.1

0.2

0.3

Input Output VF

Output HF Output SF

Fig. 3 Profiles of environmental parameters across the experimental wetland systems.
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due to flow direction throughout the media by the baffle
walls (Fig. 2). Subsequently, the following second stage
HF demonstrated lower nitrification performances and
higher biodegradable organics removal rates (Table 2).
The predominant anoxic/anaerobic environment inside the
bed of HF (due to water logging conditions) could have
limited nitrification, and fostered anaerobic organics re-
moval (Garcia et al., 2010).

First stage VF showed higher NO3-N removal per-
formances, when compared with nitrification efficiencies
(Table 2). The removal of NO3-N in wetland systems is
generally accomplished by denitrification (Bachand and
Horne, 2000), which is critically dependent on the pres-
ence of organic C in wastewater. In addition, substantial
organics removal rates often diminish organic C avail-
ability in wastewater, restricting denitrification metabolism
(Lavrova and Koumanova, 2010; Luanaigh et al., 2010).
As such, simultaneous denitrification and higher organics
removal performances in VF indicate that, organic C
requirement (for denitrification) might not be supported
by the input BOD5 quantity in wastewater. This is also
justified by Fig. 4, that represents the correlation plot
of influent BOD/NO3-N ratios vs. denitrification rates in
VF. As observed in Fig. 4, no clear correlation trend was
observed between incoming BOD/NO3-N ratios vs. NO3-
N removal rates, illustrating that influent BOD quantity
(in wastewater) was not the limiting factor for supporting
denitrification.

These findings indicate that, the employed organic saw-
dust and coal media could have provided required organic
C (through internal leaching), to support the measured
denitrification. The role of different organic substrates (i.e.
rice husk, wood mulch, coco-peat, and sugarcane bagasse),
in terms of fostering denitrification (through internal C
leaching) had been demonstrated previously in wetland
systems (Saeed and Sun, 2011a, 2013; Saeed et al., 2012;
Tee et al., 2012). The results of this study further support
the application of the organic media (i.e. saw dust and coal)
in wetland systems, to achieve denitrification (through

internal C leaching) despite enhanced organics removal
rates.

The generation of internal organic C from the organic
media (in VF) is further demonstrated in Fig. 5. Lower ef-
fluent NO3-N concentration values coincided with greater
effluent COD values for VF, confirming the dependency of
denitrification on C leaching (from the organic media) as
discussed in the previous paragraphs.

It should be noted that the correlation plot between efflu-
ent COD vs. NO3-N reduction in HF showed no clear trend
(Fig. 5). For HF, such pattern illustrates lack of organic C
(inside the HF reactor) to support denitrification, and is in
agreement with the observed diminished NO3-N removal
efficiencies (Table 2). Higher BOD5 removal in HF (due
to flow direction by the baffles through anaerobic-aerobic
pockets) might have depleted organic C availability, that
could not be balanced internally as the employed media
was of inorganic type.

Third stage SF-floating treatment demonstrated highest
NO3-N removal performances, when compared with other
experimental wetland units. Since denitrification was lim-
ited in previous stage HF it could be stated that, the influent
wastewater (i.e. effluent of HF) across the third stage unit
did not contain necessary organic C for accomplishing
denitrification. As such, internal production of organic C
could have intensified NO3-N reduction in the final stage
unit. Lower BOD5 removal performances (of the integrated
system, Table 2) also support the generation of organic C,
to foster denitrification. It could be possible that the leaves
and roots of the macrophytes (of the integrated system)
leached organic C into wastewater internally (through de-
cay process), thereby accelerating denitrification (Wang et
al., 2012b). Simultaneously, the profiles of environmental
parameters such as: increase of effluent pH values (Fig. 3),
and marginal increment of effluent redox potential values
across final stage wetland C further indicate favorable
conditions for denitrification (Table 2).
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2.4 E. coli removal

Second stage HF, and final stage integrated system demon-
strated enhanced E. coli removal performances (Table 2).
Since the redox potential values gradually increased in the
effluents of successive wetland units (Fig. 3), it could be
stated that E. coli removal might have been achieved via
protozoa predation (in oxygen rich zones), and oxidation
process (Decamp and Warren, 2000; Wand et al., 2007;
Papadimitriou et al., 2010). In addition, penetration of
UV radiation through the water column of the SF portion
(Fig. 2), could have assisted further E. coli mortality
(MacIntyre et al., 2006) in the final stage wetland.

2.5 Effect of hydraulic loading fluctuation and seasonal
variation

Figure 6 presents the effect of input HL fluctuation i.e
204.0 and 306.0 mm/day between successive weeks on
pollutant removal performances of the experimental wet-
land train. The HL fluctuation (within the experimental
range) did not produce significant nitrogen and organics
removal performance deviation in VF, and HF (except the
generation of NO3-N by HF at 204.0 mm/day loading).
Such NO3-N accumulation (at 204.0 mm/day loading)
could be linked to higher nitrification rates due to increased
retention time; and the lack of organic C to support NO3-N
reduction.

In general, the findings of this study are paradoxical to
the observations of the previous studies where the wetland
systems exhibited significant diminished performances,
when subjected to loading increment (Konnerup et al.,
2009; Trang et al., 2010). Such contradictory performance
of the experimental systems could be attributed to the
presence of baffle walls, that prevented short circuiting
of the flow (at higher loading), and maintaining sufficient
contact between biofilms, and root zones (via flow diver-
sion), thereby hindering performance deviations.

It should be noted that the last stage integrated SF-
floating treatment wetland showed contradictory organics
and nitrogen removal performances, at upper (306.0

mm/day) and lower (204.0 mm/day) HL ranges. Organics
removal performances were almost similar at both HL
ranges (Fig. 6). However, NH4-N and NO3-N removal
performances were higher at greater HL conditions (306.0
mm/day). The last stage integrated SF-floating wetland
unit was planted with different types of macrophyte . Si-
multaneously, influent N concentrations across integrated
SF-floating wetland were lower (Table 2), when compared
with previous stages. As such, greater HL conditions
(306.0 mm/day) might have allowed substantial increase of
input nitrogen loads, enhancing the competition between
macrophytes and biomass for available N (Breen, 1990),
thereby resulting higher nitrogen removal performances.

With regards to E. coli removal, the first stage VF
showed lower efficiencies at upper loading range (i.e.
306.0 mm/day), probably due to higher incoming coliform
concentrations, which could not be removed at reduced
retention time.

Temperature is an important environmental factor, that
often controls biological nitrification in wetland systems.
Previous studies indicated that temperature ranges between
16.5–32°C are favorable for nitrification in constructed
wetlands (Demin and Dudeney, 2003; Katayon et al.,
2008). Figure 7 shows the performance of the exper-
imental wetland systems when operated during autumn
(mean temperature 24.0–31.0°C), and winter (mean tem-
perature 9.5–13.0°C). Nitrification process was higher
during autumn period in all wetland units, coinciding with
the findings of previous studies (Demin and Dudeney,
2003; Katayon et al., 2008). NH4-N oxidation difference
(between the two periods) was sharp in VF. These results
further confirm that autotrophic nitrification was the main
route for oxidizing NH4-N in VF, as biological nitrification
proceeds substantially at higher temperature (Langergraber
et al., 2007). In contrast the difference of the achieved
nitrification rates was not substantially greater in integrated
SF-floating system, possibly due to nitrogen uptake via
macrophytes (Lim et al., 2001), in-conjunction with bio-
logical nitrification.

Biodegradable organics removal efficacy was slight-
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ly higher during autumn period in all the experimental
wetland systems (Fig. 7). These findings imply that, tem-
perature variation (within the experimental range) did not
affect biodegradable organics removal mechanism criti-
cally (in the experimental wetlands). Similarly NO3-N
removal differences (between autumn and winter) were
not sharp in VF and integrated SF-floating wetland, as
denitrification proceeds slowly at low temperature (e.g.
5°C, US EPA, 1975), that is well below the experimental
ranges.

Overall, efficient performance of the integrated SF-
floating treatment wetland (regardless HL and seasonal
variation), illustrates possible amalgamation of such unit in
a hybrid system as a final polishing step, to provide further
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Fig. 7 Impact of seasonal variation on pollutant removal performances
in experimental wetlands.

treatment of wastewater (prior to environmental disposal).

2.6 Loading-removal profiles

Figure 8 signifies the correlation profile between input
loading and observed removal rates of nitrogen, organics,
and E. coli, as the wastewater passed through the exper-
imental wetland units. Denitrification, organics, and E.
coli removal rates showed higher correlation values, with
increasing input loadings. Such results illustrate the effi-
ciencies of the structurally modified experimental wetlands
to support these bio-reactions, regardless HL and seasonal
variation (Section 2.5).

It should be noted that the experimental wetland train
was operated under substantial input organics loadings
(Fig. 8), that were rarely reported in the literature. Simul-
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taneously influent nitrogen and organics concentrations
(BOD5 = 500.0–3625.0 mg/L; COD = 2375.0–6400.0
mg/L) were also much higher, than the reported values
across other wetland systems (of different countries) em-
ployed for municipal and domestic wastewater treatment
(Vymazal, 2009). Nevertheless, overall pollutant removal
efficiencies of the employed system were higher (Table 2),
exceeding the performances of other wetland systems
operated under elevated input organics loadings (Zhao et

al., 2004; Sun et al., 2005).
In terms of HL, the experimental system also achieved

greater removal performance, when compared with the
wetland systems of Chang et al. (2012), operated under
higher HL (250 mm/day) for domestic wastewater treat-
ment. Such findings signify the importance of modifying
structural configurations (of wetland systems), and over-
come adverse conditions such as loading and seasonal
variation.
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Fig. 8 Correlation profiles of input loading vs. removal in experimental wetland units.
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It should be noted that, final effluent pollutant con-
centrations (particularly COD in Table 2) were higher
across the three stage hybrid system, as it was operated
under substantial input pollutant and hydraulic loadings
(Fig. 8). These values might not fulfill stringent discharge
guidelines in many countries. As such, field-scale trials are
required to identify optimum loading ranges (across the
baffled wetlands), and system arrangement prior to appli-
cation. In general, the results indicate the importance of
incorporating baffle walls in wetland systems for allowing
space-efficient designs, particularly in countries such as
Bangladesh where land availability is scarce.

3 Conclusions

Enhanced organics removal rates depleted oxygen avail-
ability, thereby reducing nitrification rates in first stage VF
wetland; however, nitrification rates were not completely
inhibited inside the first stage reactor. Such phenomena
might be linked to effective usage of the trapped oxygen,
due to flow direction throughout the media by the baffle
walls. In addition, enhanced organics removal rates did
not limit organic C availability for denitrification process
(in VF), due to internal C generation from the employed
organic media. Second stage HF wetland was inefficient
in reducing incoming NO3-N. Higher organics removal
depleted organic C availability in the system, that could
not support denitrification. In contrast, internal organic
C generation (through the decay of dead macrophytes)
intensified denitrification metabolism in the final stage
integrated SF-floating wetland.

Higher overall observed removal performances (of the
experimental hybrid wetland system) illustrate the necessi-
ty of structural modification, when operated under adverse
conditions such as: substantial input organics loading,
hydraulic loading fluctuation, and seasonal variation.
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