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a b s t r a c t

The effects of bile salts (sodium cholate and sodium deoxycholate, 0–20 mmol/L), divalent cations
(Ca2+, Mg2+, Cu2+ and Zn2+, 0–20 mmol/L) or pH (3.0–10.0) on the adsorption of norfloxacin by
three selected soils (Paddy H, Paddy G and Red J) were systematically studied. Soil adsorption of
norfloxacin follows a pseudo second-order kinetics model, and the maximum adsorption capacity has
been determined from the nonlinear fit of the Langmuir isotherm model to be 88.8, 88.1 and 63.0
µmol/g for the adsorption onto Paddy H, Paddy G and Red J, respectively. The results indicate that
norfloxacin has a high adsorption affinity for the agricultural soils tested and that the organic content of
these soils have at least a slight influence on this adsorption. The adsorption of norfloxacin to soils was
strongly dependent on pH and exhibited a maximum at approximately pH 6. The presence of divalent
cations prominently suppressed the adsorption of norfloxacin by paddy soils, which followed an order
of Cu2+ > Mg2+ > Ca2+ > Zn2+, and by red soil, which followed an order of Cu2+ > Zn2+ > Ca2+

> Mg2+. The adsorption of norfloxacin (by the soils studied) sharply decreased as the amount of bile
salts was increased. For uncharged norfloxacin at environmentally relevant pH values, such factors as
soil type, exogenous divalent cations and macromolecules significantly altered the environmental fate
and transport of norfloxacin between aquatic and soil interfaces.

Introduction

Soil residues of pharmaceuticals and personal care prod-
ucts (PPCPs), including antibiotics and steroidal hor-
mones, have originated from the irrigation and fertilization
of agricultural land using contaminated excrement (Tolls,
2001; Thiele-Bruhn, 2003). Once released into the en-
vironment, in addition to biodegradation and chemical
reactions, sorption of these residues onto various solids
is an important transport process, particularly for PPCPs
(Khetan and Collins, 2007). The adsorbents’ properties,
such as hydrophobicity/hydrophilicity and pH values, have
been shown to affect the sorption process significantly.

Fluoroquinolone antibiotics are widely used as
chemotherapeutic antibacterial agents and are widely

∗Corresponding authors. E-mail: xuzhangwhu@gmail.com

found in the environment (Sukul and Spiteller, 2007).
Norfloxacin shows a high adsorption affinity for clay
minerals, natural aquifer material and soils (Hari et al.,
2005; Lorphensri et al., 2006; Liu et al., 2008; Zhang
et al., 2009; Conkle et al., 2010; Pei et al., 2011). The
factors influencing norfloxacin’s adsorption have been
systematically studied. The effect of aqueous pH on
the adsorption of norfloxacin appears to depend on the
particular adsorbent. Acidic conditions (pH < 5.0) favor
the adsorption of norfloxacin by Canadian River alluvium
and montmorillonite (Hari et al., 2005; Pei et al., 2011),
while maximum adsorption by alumina and silica occurs
at neutral pH and around pH 8.5 (Lorphensri et al.,
2006). Low-molecular-weight (LMW) organic acids have
been shown to retard the adsorption of norfloxacin by
Chinese Ferralisols (Zhang and Dong, 2008). Norfloxacin
can form complexes with various types of metal ions
(Khallow and Al-Assaf, 2011), and metal ions are usually

http://www.jesc.ac.cn
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present in wastewaters and enter the environment with
PPCPs through wastewater discharge. Therefore, it is
worthwhile to study the effects of coexisting metal ions
on the adsorption of norfloxacin by soils. The influence of
Cu2+ on the adsorption of norfloxacin depends on soil type
and Cu2+ concentration (Zhang et al., 2009). However,
the influence of other common aquatic divalent cations,
including Ca2+, Mg2+ and Zn2+, has not been investigated
and compared.

Host molecules, such as cyclodextrins, surfactant mi-
celles, bile salts (sodium cholate, sodium deoxycholate,
etc.) and macromolecules, are widely used in pharmaceu-
tical products to improve the delivery and the effectiveness
of drugs (Szejtli, 2004; Uekama et al., 2006; Zhou et al.,
2010; Jazkewitsch et al., 2011; Yhaya et al., 2011). The
surfactants cetylpyridinium chloride (CPC) and Tergitol
NP9 have been shown to have no influence on the ad-
sorption of norfloxacin by aquifer materials over a wide
pH region (5.5–12). On the other hand, CPC can cause a
considerable increase in the adsorption of nalidixic acid at
higher pH values, increasing the adsorption coefficient 4-
fold, from approximately 0.5 to 2 mL/g (Hari et al., 2005).
The co-effect of humic acid and methyl-β-cyclodextrin is
similar to the solo effect of humic acid on the adsorption
of norfloxacin by Hombikat UV-100, while the co-effect
shows a greater retardation effect (compared to the solo
effect of humic acid) on the adsorption of norfloxacin by
anatase TiO2. Methyl-β-cyclodextrin and humic acid have
exhibited a synergetic depressed effect on the adsorption
of norfloxacin by both types of TiO2 nanoparticles (Peng
et al., 2012). These findings indicate that host molecules
with or without natural aquatic compositions (like humic
acid) can alter the adsorption of pharmaceuticals.

The objective of the present work was to determine
how norfloxacin adsorption is affected by the properties
of soils from different provinces in China, as well as the
presence of bio-macromolecules and exogenous divalent
cations. To this end, the influences of two bile salts
(sodium cholate (NaC) and sodium deoxycholate (NaDC))
at varying concentrations (0 to 50 mmol/L), the pH (3.0
to 10.0), the presence of exogenous divalent cations (Ca2+,
Mg2+, Cu2+ or Zn2+ from 0 to 10 mmol/L) and the soil type
(paddy soil and red soil) on the adsorption of norfloxacin to
Chinese agriculture soils were systemically investigated.

1 Materials and methods

1.1 Chemicals

Norfloxacin (98%) was purchased from Tokyo Chem-
ical Industry and used as received. NaC (98%) and
NaDC (98%) were commercial products from Aladdin-
reagent Corporation (Shanghai, China). Paddy soils from
Hubei Province (GBW07415a (ASA-4a)) and Guangdong
Province (GBW07417a (ASA-6a)) and Red soils from
Jiangxi Province (GBW07416a (ASA-5a)) were purchased
from National Standard Reference Materials Center (Bei-
jing, China) and are referred to as Paddy H, Paddy G and
Red J throughout this study. The mechanical compositions
and basic chemical properties of soils are listed in Table 1.
To study the effect of soil organic matter on the adsorption
of norfloxacin, organic C-free soils were obtained by
treatment with H2O2 as described in previous work (Zhang
et al., 2009). Analytical-grade calcium chloride dihydrate
(CaCl2·2H2O), magnesium chloride (MgCl2), copper chlo-
ride dihydrate (CuCl2·2H2O) and zinc chloride (ZnCl2),
commercial products of Sinopharm Chemical Reagent Co.
Ltd. (Shanghai, China), were used as precursors to the cor-
responding divalent cations. Deionized water (resistivity >
18.0 MΩ·cm) was used for sample preparation.

Norfloxacin (100 µmol/L), NaC (100 µmol/L) and
NaDC (100 µmol/L) stock solutions were prepared by dis-
solving solid compounds in water. All low-concentration
solutions were prepared by dilution. Soil dispersions (0.5
g/L) were prepared by directly adding 0.05 g of the
corresponding soil into 100-mL solutions containing the
analyte of interest.

1.2 Equipment and methods

Batch adsorption studies were performed in the dark using
aqueous suspensions prepared in 150-mL glass vessels
containing norfloxacin at different initial concentrations
(c0 from 20 to 80 mol/L) and 0.5 g/L of the soil under
investigation. Each 100-mL suspension was continuously
stirred for 12 hr, using a constant-temperature magnetic
stirrer. After reaching equilibrium, 5-mL aliquots of these
suspensions were withdrawn to determine the equilibrium
concentration ct. The effects of NaC, NaDC and metal
ions on norfloxacin adsorption were investigated in the

Table 1 Physicochemical properties of the three test soils

Soil OM (%) f OC (%) CEC (cmol/kg) WSS (%) pH∗ Main clay minerals

Paddy H 3.3 ± 0.1 2.2 ± 0.3 19.0 ± 1.0 0.11 6.1 Hydromica, smectite, vermiculite, kaolinite
Paddy G 3.8 ± 0.1 2.4 ± 0.2 19.7 ± 1.1 0.14 6.8 Kaolinite, hydromica, vermiculite, smectite
Red J 0.73 ± 0.05 0.41 ± 0.3 10.0 ± 0.6 0.034 4.7 Kaolinite, hydromica, vermiculite

CEC: cation exchange capacity; WSS: water-soluble salt.
∗pH of the extraction solution of the soil dispersion (water (CO2 free):soil = 1:2.5, V/m).
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same manner. The pH of the suspended solutions was
adjusted by addition of dilute HClO4 or NaOH solutions
(0.1 mol/L).

Norfloxacin concentrations were determined using
reversed-phase HPLC (Peng et al., 2012), and experiments
were performed using a Waters 484 HPLC (Waters, Amer-
ica) with an Agilent Zorbax SB-C18 column (5 µm, 4.6 ×
250 mm). The mobile phase consisted of a mixed solution
of 0.025 mol/L phosphoric acid-acetonitrile (80/20, V/V),
for which the pH was adjusted with triethylamine (to
pH 3.0), and the flow rate was 1.0 mL/min. The UV-
detection wavelength was set at 278 nm. The retention
time for norfloxacin was 3.8 min, and its concentration was
determined via the working curve method (from 0.1 to 100
µmol/L).

1.3 FT-IR study of norfloxacin adsorption by soils

Norfloxacin adsorption (by the soils of interest) was
characterized using FT-IR spectroscopy. Norfloxacin (50
µmol/L) was added to each aqueous soil dispersion (1
g/L), and the resulting solutions were stirred for 12 hr.
Norfloxacin-adsorbed soils were recovered by centrifug-
ing each suspension (10,000 r/min for 30 min). The
resulting solids were rinsed with deionized water until
no norfloxacin was detected in the supernatant and were
then dried in a vacuum oven at 60°C overnight. Fourier-
transform infrared spectroscopy (FT-IR) studies of KBr
pellets containing the samples were performed using a
Nicolet 5700 infrared spectrometer (Thermo Electron Cor-
poration, American). All spectra were scanned within the
range 400–4000 cm−1 with a resolution of 4 cm−1. Each
sample was scanned 64 times.

1.4 Data analysis

Adsorption ratios (R, %) for norfloxacin adsorption by the
soils studied were calculated using Eq. (1):

R =
ct

c0
× 100% (1)

where, c0 and ct represent the initial concentration and the
concentration at different time intervals, respectively.

The reversible adsorption of norfloxacin between the
bulk phase and soil at fixed initial concentration is repre-
sented by the adsorption coefficient (Kd), which is defined
as the ratio of the concentration of norfloxacin in the solid
phase (cs) to that in the water (ceq) at equilibrium (Eq. (2)):

Kd =
cs

ceq
(2)

Koc is the adsorption coefficient normalized to the percent-
age of organic carbon ( foc) present in the soil, which was
calculated according to Eq. (3):

Koc =
Kd

foc
× 100% (3)

Both Langmuir and Freundlich isotherm models were
used to quantify the adsorption of norfloxacin by the
selected soils. Adsorption parameters were determined
from nonlinear regression fits of the adsorption equations
(Eqs. (4) and (5)) below.

qe =
qmaxKLceq

1 + KLceq
(4)

where, qe (µmol/g) is the amount of solute adsorbed per
gram of soil, KL (L/mol) is the Langmuir equilibrium
constant, qmax is the maximum adsorption capacity of the
solute/soils and ceq (µmol/L) is the solute’s equilibrium
concentration.

qe = KFc1/n
eq (5)

where, KF and 1/n represent the Freundlich adsorption
constant and the unitless linearity parameter, respectively.

All experiments were performed in triplicate, and data
are represented as means ± standard deviations. Regres-
sion analyses of the experimental data were performed
using Origin 7.5 software.

2 Results and discussion

2.1 Norfloxacin adsorption equilibrium for the soils
studied

As summarized in Table 1, each paddy soil studied had
much higher organic content than the red soil studied. On
the other hand, the cation-exchange capacity (CEC) and
water-soluble salt (WSS) contents were determined to be
approximately 1.9 and 3.2 times higher for the paddy soils
than for the red soil. Figure 1a illustrates the effects of
contact time on norfloxacin adsorption by soils. For all the
test soils, the bulk concentration of norfloxacin decreased
quickly with time up to 30 min and reached equilibrium
in 60 min. After achieving adsorption equilibrium, the
adsorption rate of norfloxacin onto both paddy soils was
approximately 85%, much higher than that obtained for the
red soil (55%).

To investigate the effects of soil organic matter on the
adsorption of norfloxacin, adsorption experiments were
also conducted using the corresponding organic C-free
soils as adsorbents. After H2O2 treatment, the organic C
contents of Paddy H, Paddy G and Red J were found to
be 0.2%, 0.3% and 0.1%, respectively. The corresponding
adsorption rates were 70%, 70% and 45%. The results
indicate that organic C plays a minor role in norfloxacin
adsorption by the three soils studied. Similar results have
been found regarding norfloxacin adsorption by other
agricultural soils (Zhang et al., 2009).
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Fig. 1 (a) Dependence of norfloxacin bulk concentration (ct) on contact time (in 0.5 g/L soil suspensions); inset shows the structural formula of
norfloxacin, (b) adsorption kinetics of norfloxacin onto soils; the lines correspond to data fit to the pseudo second-order kinetic model. Norfloxacin
conc.: 50 mol/L.

The pseudo second-order kinetics model has been wide-
ly applied to the sorption of antibiotics from aqueous
solution onto a solid phase (Ho and McKay, 2003; Basha
et al., 2011; Wang et al., 2011; Gao et al., 2012; Peng
et al., 2012). The linear form of the pseudo second-order
equation is represented by Eq. (6):

t
qt
=

1
kq2

e
+

t
qe

(6)

where, k (g/(µmol·min)) is the rate constant of adsorption,
qe (µmol/g) is the amount of norfloxacin adsorbed at equi-
librium, qt (µmol/g) is the amount of norfloxacin adsorbed
onto soils at reaction time t, and kq2

e (µmol/(g·min)) is the
initial rate. As shown in Fig. 1b, the correlation coefficient
(r2) for the pseudo second-order kinetic model was higher
than 0.999. The calculated adsorption-capacity (qe) values
recovered from the pseudo second-order model were 81.7,
82.1, and 55.6 µmol/g for the adsorption of norfloxacin
(at an initial concentration of 50 mol/L) onto Paddy H,
Paddy G and Red J, respectively, and were consistent with
the experimental results (81.4, 81.7, and 55.2 µmol/g,
respectively). These results demonstrate that the pseudo
second-order model is a good approach for describing the
process of norfloxacin adsorption by different soils.

The Kd values reported for other fluoroquinolone an-
tibiotics, such as ciprofloxacin, enrofloxacin and ofloxacin,
varied from hundreds to thousands (Thiele-Bruhn, 2003).
In the present work, the calculated Kd for Paddy H, Pad-
dy G and Red J was found to be 8.7 × 103, 8.9 × 103 and
2.5 × 103 L/kg, respectively, which is within the range of
values (102–104 L/kg) reported in previous work (Zhang
and Dong, 2007; Zhang et al., 2009). The corresponding
Koc for Paddy H, Paddy G and Red J is 4.0 × 105, 3.7 ×
105 and 6.1 × 105 L/kg, respectively.

0 10 20 30 40 50
30

45

60

75

90

 Paddy_H

 Paddy_G

 Red_J

q
e 

(µ
m

o
l/

g
)

ce (µmol/L)

Fig. 2 Dependence of the adsorbed norfloxacin per gram of soil (qe)
on the equilibrium concentration (ce). The solid lines and dotted lines
correspond to fits of the data to Langmuir and Freundlich adsorption
isotherm models, respectively. The regression coefficients were larger
than 0.98.

2.2 Isotherms for norfloxacin adsorption by soils

The dependence of the norfloxacin equilibrium concen-
tration on adsorption amount is shown in Fig. 2. When
the same initial concentration was used, the norfloxacin
adsorbed by paddy soils increased more sharply than that
adsorbed by red soil. Figure 2 shows plots of experimental
adsorption data fitted with the corresponding Langmuir
adsorption isotherm and Freundlich adsorption isotherm.
The fitted parameters for the adsorption equations are
listed in Table 2.

The KL (L/mol) values obtained for norfloxacin adsorp-
tion by Paddy H, Paddy G and Red J are (4.3±0.6) × 105,
(3.9 ±0.6) × 105 and (3.4 ± 0.4) × 105, respectively. These
KL values are within the range of values (104–105 L/mol)
reported for norfloxacin adsorption to other adsorbents
(Hari et al., 2005; Liu et al., 2008; Zhang et al., 2009; Yang
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Table 2 Calculated Langmuir and Freundlich isotherm parameters, and the correlation coefficients (R2) for the adsorption of norfloxacin onto the
three soils

Soil Freundlich isotherm Langmuir isotherm

KF (µmol(1−1/n)×L1/n/g) 1/n R2 qmax (µmol/g) KL (× 105 L/mol) R2

Paddy H 39.3 ± 3.6 0.23 ± 0.03 0.928 88.8 ± 2.7 4.3 ± 0.6 0.965
Paddy G 38.1 ± 3.5 0.23 ± 0.03 0.929 88.1 ± 2.9 3.9 ± 0.6 0.961
Red J 32.8 ± 2.0 0.17 ± 0.02 0.948 52.5 ± 1.0 3.4 ± 0.4 0.967

et al., 2012). On the other hand, the values obtained in
this work are much smaller than the values for norfloxacin
adsorption onto a TiO2 surface (106 L/mol) (Peng et al.,
2012).

2.3 Effect of pH on norfloxacin adsorption

The pH of the aquatic environment can drastically change
both the existing form of norfloxacin and the surface
charge of the soil and can, therefore, influence norfloxacin
adsorption. As shown in Fig. 3, the norfloxacin cation
is the dominant species at pH values below 6.2, the
zwitterionic form is dominant in the pH range of 6.3 (pKa1)
to 8.4 (pKa2) (Hari et al., 2005), and the anionic form
only exists when the pH is higher than 6.5 (according to
its acid-base equilibrium constant). To evaluate the effect
of pH on norfloxacin adsorption, adsorption experiments
were performed with an initial concentration of 50 µmol/L
to determine adsorption ratios and adsorption coefficients.
Norfloxacin adsorption studies of the selected soils were
conducted for pH values ranging from 3.0 to 10.0, and the
results are shown in Fig. 3.

Norfloxacin adsorption by paddy soils was higher than
that by red soils at all the pH values studied. The adsorption
rates and adsorption coefficients (for norfloxacin onto the
three soils studied) were relatively smaller in acidic solu-
tion and increased quickly as the pH increased. Adsorption
onto all three soil types studied reached a maximum at
pH 6.0, which is within norfloxacin’s cationic region. The
adsorption of norfloxacin onto all soils decreased sharply

when the pH ranged from 6.0 to 10.0, where the anionic
form of norfloxacin becomes the dominant species. The
effect of pH on norfloxacin adsorption by the soils studied
herein is consistent with the effect of pH on norfloxacin
adsorption onto other types of soils and natural aquifer
materials (Hari et al., 2005; Zhang et al., 2009). It has
been suggested that the bulk of norfloxacin adsorption onto
natural aquifer materials likely results from electrostatic
attraction between the cationic and zwitterionic species of
norfloxacin and the negatively charged quartz sand surface
(Hari et al., 2005). Therefore, the electrostatic repulsion
between anionic norfloxacin and a negatively charged soil
surface may increase with an increase in pH, causing a
corresponding decrease in adsorption.

2.4 Effects of NaC and NaDC on norfloxacin adsorption
by the soils studied

Drug carriers, including liposomes, cyclodextrins, bile
salts, surfactants and synthetic polymers, are used in
sundry drug delivery systems to prolong in vivo drug
actions, decrease drug metabolism, and reduce drug tox-
icity. Although these compounds are likely to be present
at low concentrations in the environment and are usually
considered to be non-toxic, their effects on the fate of
PPCPs and other pollutants should also be taken in account
when considering the design and synthesis of a new drug
carrier because many studies have found that the fate and
transport of the host-guest supramolecule is different from
that of free guests, (Sortino et al., 2001; Hapiot et al., 2002;
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of solution pH.
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Yamada et al., 2002; Cosa and Scaiano, 2004) and that the
adsorption/desorption process of pollutants is also changed
in the presence of drug carriers as well as dissolved organic
matter (Guo et al., 2010; Peng et al., 2012).

Sodium cholate (NaC) and sodium deoxycholate
(NaDC) are the most common bile salts and, excepting that
NaDC lacks a 7-hydroxyl group, have the same steroidal
skeleton (Ćirin et al., 2012). NaC, NaDC and other bile
salts are used in pharmaceutical formulations, where they
solubilize poorly soluble molecules and can improve the
permeation of various drugs across biological membranes
(Martin et al., 2005; Guo et al., 2010; Mahajan and
Mahajan, 2012). Therefore, it is worthwhile to study the
effect of bile salts on the adsorption of drugs.

The effect of NaC and NaDC on norfloxacin adsorption
by soils is shown in Fig. 4. Unlike the lack of apparent
effects by other host molecules, including cyclodextrins,
Tergitol NP9 and ethoxylated nonylphenol surfactants, on
norfloxacin adsorption to a solid phase (Hari et al., 2005;
Peng et al., 2012), both NaC and NaDC demonstrated a
significant retardation effect on norfloxacin adsorption by
all the soils tested in the present study. In the presence of
20 mmol/L NaC, the Kd values for norfloxacin adsorption
onto Paddy H, Paddy G and Red J were (8.1 ± 0.09) ×
102, (7.1 ± 0.06) ×10 2 and (6.4 ± 0.08) × 102 L/kg,
respectively. These values are approximately 10.7, 12.5
and 3.9 times smaller than their corresponding values
obtained in the absence of NaC. A similar experimental
phenomenon occurred for the adsorption of norfloxacin
onto soils in the presence of 20 mmol/L NaDC.

Various guests, with different structures and properties,
can form host-guest complexes with NaC and NaDC
aggregates. Thus, it has been suggested that hydropho-
bic guests can bind to primary or primary/secondary
aggregates, while hydrophilic guests are only incorporat-
ed into secondary aggregates (Amundson et al., 2008).
Norfloxacin’s point of maximum hydrophobicity occurs
around neutral pH (Takács-Novák et al., 1992). Therefore,

it is reasonable to propose that, at neutral pH, norfloxacin
could incorporate with both the primary and secondary
aggregates of bile salts. The bile-salt concentration in the
bulk phase should continuously increase with the as the
bile-salt dosage is increased, so that norfloxacin binding
to aggregates in the bulk phase could decrease norfloxacin
adsorption onto the soil surface.

However, it is noteworthy that the concentrations of
norfloxacin and bile salts used in this work are exces-
sively higher than their concentrations in natural aquatic
environments. Batch adsorption studies performed at lower
concentrations, to reveal to what extent different adsorp-
tion properties are observed, are ongoing.

2.5 Effect of divalent cations on norfloxacin adsorption
by the soils studied

Additional experiments investigated the effects of diva-
lent cations (Ca2+, Mg2+, Cu2+ and Zn2+) on norfloxacin
adsorption by the three test soils. The results, which are
depicted in Fig. 5, clearly show that norfloxacin adsorption
decreases as the concentration of divalent cations increases
and that Cu2+ cause the greatest inhibition of norfloxacin
adsorption. Close inspection of the experimental data
reveals different effects of metal ions on norfloxacin ad-
sorption by paddy soils and red soil. The effect of metal
ions on norfloxacin adsorption by the two paddy soils
follows the order of Cu2+ >Mg2+ > Ca2+ > Zn2+, while the
effect of metal ions on norfloxacin adsorption onto red soil
follows the order of Cu2+ > Zn2+ > Ca2+ > Mg2+. These
results indicate that, neglecting differences in the ability
of norfloxacin to complex with different metal ions, the
different effects of the four divalent cations on norfloxacin
adsorption should be significantly affected by differences
of metal-ion adsorption by soils as well as by the metal
ions that enter solution from the soils. Unfortunately, at the
present stage, we cannot conclude which is the dominant
factor.
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2.6 FT-IR study of norfloxacin adsorption by soils

FT-IR analysis was performed to study the preliminary
adsorption mode of norfloxacin onto soils, and the re-
sults are shown in Fig. 6. FT-IR spectra of norfloxacin
and metal-norfloxacin complexes have been well assigned
(Al-Mustafa, 2002; Sadeek, 2005). In the spectra of
norfloxacin-adsorbed soils presented herein, it is reason-
able to assign the new peaks at 1492 cm−1 and 1456
cm−1 to the vibration of ligated norfloxacin. However,
the υ (C=O) stretching vibration of the carboxylic group,
observed at 1730 cm−1 for bulk norfloxacin, was not
observed for adsorbed norfloxacin, indicating that the car-

boxyl group is involved in its interaction with soils. These
results are similar to those obtained for several norfloxacin-
metal-ion complexes (Al-Mustafa, 2002; Sadeek, 2005).
These FT-IR results indicate that soils adsorb norfloxacin
primarily through binding with metal ions located on soil
surfaces.

3 Conclusions

The results obtained in the present study indicate that
sodium cholate and sodium deoxycholate, divalent cations
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(Ca2+, Mg2+, Cu2+ and Zn2+) and solution pH play im-
portant roles in norfloxacin adsorption onto soils with
different physicochemical properties. The adsorption of
norfloxacin onto soil surfaces is highly pH-dependent.
Both bile salts greatly inhibit the adsorption of norfloxacin
onto paddy soils and red soil. Soils adsorb norfloxacin
primarily via metal ions on the soil surface, rather than via
norfloxacin penetration of layers or interlayers of soil clay
minerals. Thus, the present study implies that the release
of biomolecular hosts into the environment could greatly
affect the fate and transport of norfloxacin molecules that
exhibit high adsorption affinity.
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