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a b s t r a c t

T-2 toxin is one of the most important trichothecene mycotoxins occurring in various agriculture
products. The developmental toxicity of T-2 toxin and the exact mechanism of action at early life
stages are not understood precisely. Zebrafish embryos were exposed to different concentrations
of the toxin at 4–6 hours post fertilization (hpf) stage of development, and were observed for
different developmental toxic effects at 24, 48, 72, and 144 hpf. Exposure to 0.20 µmol/L or higher
concentrations of T-2 toxin significantly increased the mortality and malformation rate such as tail
deformities, cardiovascular defects and behavioral changes in early developmental stages of zebrafish.
T-2 toxin exposure resulted in significant increases in reactive oxygen species (ROS) production and
cell apoptosis, mainly in the tail areas, as revealed by Acridine Orange staining at 24 hpf. In addition,
T-2 toxin-induced severe tail deformities could be attenuated by co-exposure to reduced glutathione
(GSH). T-2 toxin and GSH co-exposure induced a significant decrease of ROS production in the
embryos. The overall results demonstrate that T-2 toxin is able to produce oxidative stress and induce
apoptosis, which are involved in the developmental toxicity of T-2 toxin in zebrafish embryos.

Introduction

T-2 toxin is a fungal metabolite that belongs to a group
of type A trichothecenes, and it is produced by various
Fusarium species. It can infect maize, wheat and oats
during cultivation and/or storage (Creppy, 2002). Among
trichothecenes, T-2 toxin is considered the most potent
myelotoxin and haematotoxin. Both humans and animals
suffer from several pathologies due to intoxication after
consumption of food and feed that are contaminated with
T-2 toxin (Joffe, 1978; Parent-Massin, 2004; Meissonnier
et al., 2008). Oral, parenteral and cutaneous exposures to
T-2 toxin induce lesions in hematopoietic, lymphoid and
gastrointestinal tissues and suppress reproductive organ
functions (Stanford et al., 1975; Williams, 1989; IARC,

∗Corresponding author. E-mail: pengsq@hotmail.com
∗∗Authors contribute equally to this article.

1993; Sharma, 1993). It has been indicated that T-2 toxin
readily passes through the placenta and is delivered to
the fetal tissues, resulting in the induction of embryo/fetal
death, fetal brain damage and fetal skeletal malformation
(Lafarge-Frayssinet et al., 1990; Rousseaux and Schiefer,
1987). Sehata (2005) and coworkers demonstrated that
the mechanism of T-2 toxin-induced maternal and fetal
toxicities is due to oxidative stress, followed by activation
of the MAPK pathway, finally inducing apoptotic cell
death (Doi et al., 2008). Recently, members of our group
described how T-2 toxin induced developmental toxicity in
the in vitro embryo-toxicity test known as the embryonic
stem cell test (EST) on differentiated murine embryonic
stem cells. The mechanism is related to the apoptosis
induced by the reactive oxygen species (ROS)-mediated
mitochondrial pathway (Fang et al., 2012).

Although several studies have revealed the develop-
mental toxicity potential of T-2 toxin and the possible
mechanisms, there has been no definitive assessment of
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developmental toxicity of T-2 toxin, especially in the early
life stages, and whether the known mechanisms such as
oxidative stress and apoptosis are involved in T-2 toxin-
induced developmental toxicity in the early life stages is
still unclear. In recent years, the zebrafish embryo is be-
coming an important model in developmental toxicology.

Zebrafish embryos have some characteristics such as in
vitro fertilization capability, rapid embryonic development
and optical transparency, which make it easy to detect
morphological endpoints or observe the development pro-
cess in early life stages (Yang et al., 2009). On the
other hand, the zebrafish genome is well characterized
and dysmorphology phenotypes linked to genomic targets
can potentially enable rapid evaluation of mechanisms
of action for compound-induced teratogenicity (McGrath
and Li, 2008). More important, zebrafish have also been
demonstrated to share many common features with hu-
mans in development, anatomy, physiological responses,
metabolism and chemical-induced organ/tissue responses,
and many molecular pathways are evolutionarily con-
served between zebrafish and humans (Goldsmith and
Jobin, 2012; Lieschke and Currie, 2007). Based on the
above-mentioned advantages and the similarity to the
embryo development in vertebrates, the zebrafish embryo-
based assay called the zebrafish embryotoxicity test (ZET)
has been a useful model to evaluate the adverse effects of
chemicals on embryo-fetal development in the early life
stages. ZET could play a role in bridging the gap between
in vitro cell-based models and in vivo mammalian models
(Sukardi et al., 2011). Therefore, zebrafish embryos are
considered an excellent model for the analysis of congenic
human diseases and for detecting hazards for the develop-
ing fetus (Goldsmith, 2004; Xu and Zon, 2010).

According to the above-mentioned facts, by utilizing
the zebrafish embryo as a model, the present study is
therefore intended to evaluate the developmental toxicity
of T-2 toxin and the potential mechanisms at early life
stages in which the duration of T-2 toxin exposure spans
the complete developmental period of a vertebrate embryo
from the embryo-fetal phase to the juvenile phase (larvae).

1 Materials and methods

1.1 Chemicals and test media

T-2 toxin and the oxidant-sensitive probe 2′,7′-
dichlorofluorescein diacetate (DCF-DA) used to assess
ROS concentration and tricaine used to anesthetize the
embryos were obtained from Sigma-Aldrich (Louis,
MO, USA), and Acridine Orange (AO) and reduced
L-glutathione from Amresco (Solon, OH, USA). All other
chemicals and reagents utilized in this study were of
analytical grade.

Fish water, similar to the reconstituted water described

in OECD 203, annex 2 (measured ranges: pH 7.5–8.0,
conductivity 632–676 µS/cm2, hardness 217–235 mg/L
CaCO3, oxygen 92%–98%) was used as the medium for
all solutions during the experiments. The pH was adjusted
to 6.8–8.0 and oxygen levels of the solutions were always
higher than 80%.

1.2 Maintenance of zebrafish and collection of embryos

The wild-type (AB strain) zebrafish were obtained from
the North Center of National Zebrafish Resources of China
and maintained at (28 ± 0.5)◦C in a 14-hr light/10-hr dark
cycle in an automatic zebrafish housing system (ESEN,
China) in charcoal-filtered tap water supplemented with
a salt solution at a pH and conductivity range of 6.8–7.2
and 450–520 µS, respectively. The water was continuously
aerated and renewal of the water occurred in a semi-static
manner (complete renewal of solutions after 24 hr). The
fish were fed with live brine shrimp twice daily. The health
condition of the fish was regularly checked (daily except
weekends). The care and husbandry of zebrafish used in
this study was in conformity with the guidelines (ILAR,
1996) that regulate the humane care and use of laboratory
animals for research purposes.

Prior to spawning, males and females were housed
separately for a minimum of 5 days. The day before eggs
were required, males and females were placed in breeding
tanks with a 1:1 or 2:1 (male:female) ratio. The breeding
tanks were equipped with a spawning tray, which consists
of a fine net with an appropriate mesh size for eggs to fall
through. The fish were left undisturbed overnight using a
separator to hold the male and female fish separately in the
middle of the tank. Spawning was induced in the morning
after removing the separator, and eggs could be collected
after 15 min.

1.3 Embryo toxicity tests

At 2–4 hpf (hours post fertilization), embryos were ex-
amined under a dissecting microscope (SEX10, Olympus,
Japan), and those that had developed normally and had
reached the blastula stage were selected for the subsequent
experiments. At approximately the 4–6 hpf stage, 12
fertilized eggs were transferred individually to wells of a
24-well plate (one embryo per well) containing 2 mL solu-
tion of different concentrations of T-2 toxin (0, 0.05, 0.10,
0.20, 0.25, 0.30, 0.40 and 0.80 µmol/L). Three replicates
were run for each concentration. The exposure was static
and continuous throughout 144 hpf, and solutions were
not renewed during the overall experiment. The range of
concentrations was selected based on earlier dose range-
finding studies that identified the concentration that would
induce the presence of a 0 and 100% effect level (for both
malformation and mortality). It was important to note that
the mentioned concentrations do not reflect the real dose in
the embryos. Bioavailability studies should be performed
to evaluate this further.
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1.4 Evaluation of developmental and teratogenic effects

Evaluation of developmental and teratogenic effects was
performed according to Selderslaghs et al. (2009). Briefly,
at 24, 48, 72 and 144 hpf, embryotoxicity and morpho-
logical characteristics were evaluated using an inverted
microscope (CKX 41, Olympus, Japan) or dissecting mi-
croscope (SEX10, Olympus, Japan). The embryos were
evaluated for the presence and morphological development
of somites, tail detachment and otoliths, eyes, heartbeat
and blood circulation. After hatching, larvae were evaluat-
ed for skeletal deformities, body position and their ability
to swim (after stimulation if necessary). The percentage of
embryotoxicity was calculated as the ratio of dead embryos
and/or larvae over the number of embryos (generally 12
fertilized eggs) at the start of exposure. On the other hand,
the percentage of malformation at 24, 48, 72 and 144 hpf
was calculated as the ratio of malformed embryos and/or
larvae over the number of embryos that were alive at
24 hpf. As for the effect of GSH on T-2 toxin-induced
malformations, the percentage of severe tail deformities
in the presence of 0.30 µmol/L T-2 toxin and increasing
concentrations of GSH co-exposures was calculated as the
ratio of malformed embryos over 12 fertilized eggs at 24
hpf.

The resulting data, from at minimum 3 independent
experiments (n = 3) each with 12 replicates (one em-
bryo per well) per concentration were imported into
Graphpad Prism (Graphpad Prism, version 2.01) to create
concentration-response curves for mortality and malfor-
mation for each time point. These concentration-response
curves were required to determine EC50 (teratogenic ef-
fects) and LC50 (lethal/embryotoxic effects) values. Based
on LC50 and EC50 values, a teratogenic index (TI) was
calculated.

1.5 Acridine Orange staining

Apoptosis was assessed using AO, a nucleic acid-selective
metachromatic stain. At 24 hpf, after exposure to the
concentrations of T-2 toxin (0, 0.05, 0.10, 0.20, and 0.30
µmol/L), 10 embryos from each group (n = 3) were washed
twice in 30% Danieau’s solution (58 mmol/L NaCl, 0.7
mmol/L KCl, 0.4 mmol/L MgSO4, 0.6 mmol/L Ca(NO3)2
and 5 mmol/L HEPES, pH 7.4), transferred to 5 µg/mL AO
dissolved in 30% Danieau’s solution for 20 min at room
temperature. Singular embryos were washed with 30%
Danieau’s solution three times for 5 min. Before exami-
nation, the embryos were anesthetized with 1× (0.016%)
Tricaine for 3 min. Apoptotic cells were identified with a
fluorescence microscope (Olympus BX61, Japan).

1.6 ROS measurement

The generation of ROS in the embryos exposed to T-2
toxin (0, 0.05, 0.10, 0.20, and 0.30 µmol/L) at 24 hpf was
measured using dichlorofluorescein-diacetate (DCF-DA).

Twenty embryos were washed with cold PBS (pH 7.4)
twice and then homogenized in cold buffer (0.32 mmol/L
sucrose, 20 mmol/L HEPES, 1 mmol/L MgCl2, and 0.5
mmol/L phenylmethyl sulfonylfluoride (PMSF), pH 7.4).
The homogenate was centrifuged at 15,000 r/min at 4◦C
for 20 min, and the supernatant was transferred to new
tubes for further analysis.

Twenty microliters of the homogenate was added to a
96-well plate and incubated at room temperature for 5 min,
after which 100 µL PBS (pH 7.4) and 4 µL DCF-DA stock
solution (dissolved in absolute alcohol, 10 mg/mL) were
added to each well. The plate was incubated at 37◦C for
30 min. The fluorescence intensity was measured using a
SpectraMax M5 multi-mode microplate reader (Molecular
Device, USA) with excitation and emission at 485 and 530
nm, respectively. The ROS concentration was expressed in
arbitrary units (mg DCF/protein).

1.7 Statistical analysis

The homogeneity of variances was checked with Levene’s
test, and the differences were evaluated by one-way ANO-
VA followed by Tukey’s test (a post hoc test: LSD) using
SPSS 11.5 (SPSS, Chicago, USA). The value p < 0.05 was
used as the criterion for statistical significance. All values
were expressed as the mean ± standard error.

2 Results

2.1 Mortality and malformations of T-2 toxin in ze-
brafish embryos

Zebrafish embryos were observed for developmental toxic
effects as produced by various concentrations of T-2 toxin
at developmental stages of 24, 48, 72, and 144 hpf.
Embryonic mortality rate was 0% among control embryos.
Groups treated with 0.05 and 0.10 µmol/L of T-2 toxin at
all observation time points also showed no mortality, while
embryos treated with 0.80 µmol/L of T-2 toxin induced
100% mortality within the first 24 hr of exposure. Embryos
treated with 0.20, 0.25, 0.30, and 0.40 µmol/L of T-2
toxin experienced mortality rates of 0%, 5.5%, 30.5%,
and 83.3%, respectively, at 24 hpf. Furthermore, T-2 toxin
exposure caused mortality in a time- and concentration-
dependent manner (Fig. 1).

The embryos of the control group developed normally in
embryo medium, as did embryos treated with 0.05 and 0.10
µmol/L of T-2 toxin. Abnormalities in tail formation were
observed in embryos exposed to 0.20 µmol/L or higher
concentrations of T-2 toxin at 24 hpf (Fig. 2a). At 48
and 72 hpf, cardiovascular defects were observed in the
embryos treated with 0.20 µmol/L or higher concentrations
of T-2 toxin (Fig. 2b, c). At 144 hpf side-wise position
and lack of swimming behavior (Fig. 2d) were most
prominent. The percentage of all the developmental mal-
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Fig. 1 Dose-response of mortality in zebrafish embryos exposed to
different concentrations of T-2 toxin at 24, 48, 72, and 144 hours post
fertilization (hpf). The values were presented as the mean ± SEM.

formations following exposure to T-2 toxin significantly
increased in a dose-dependent manner (Fig. 3). Based on
the percentage of individuals affected (malformation for
any of the observed characteristics) for each concentration,
concentration-response curves were created for each time

Table 1 LC50, EC50 (mean values of 3-independent experiments) and
TI values as derived from the concentration-response curves for T-2
toxin

LC50 (µmol/L) EC50 (µmol/L) TI (LC50/EC50)

24 hpf 0.33 0.18 1.83
48 hpf 0.31 0.18 1.72
72 hpf 0.31 0.18 1.72
144 hpf 0.28 0.18 1.56

LC50: concentration having caused the death of 50% tessted compared to
control; EC50: concentration having 50% of effect compared to control;
TI (teratogenic index) was calculated as the ratio LC50/EC50.

point. LC50 (for embryotoxic effects or lethality) and
EC50 (for specific teratogenic effects) values were derived
from the concentration-response curves for all time points
evaluated (Fig. 4). TI values were calculated as the ratio
LC50/EC50 (Table 1). The data showed T-2 toxin induced
teratogenic effects on the zebrafish embryos.

Control

Control
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48 hpf

48 hpf

48 hpf 48 hpf

   24 hpf    24 hpf

b

Control Control
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a
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c  d72 hpf

72 hpf
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144 hpf

144 hpf

144 hpf

Fig. 2 Representative photographs of malformations caused by 0.20 and 0.30 µmol/L of T-2 toxin at (a) 24 hpf; (b) 48 hpf; (c) 72 hpf, and (d) 144
hpf. Malformations are indicated by arrows. HT: hook-like tail; PE: pericardial edema; SP: side-wise position.
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Fig. 3 Cumulative malformation rate in zebrafish embryos exposed to different concentrations of T-2 toxin. (a) tail deformities at 24 hpf; (b)
cardiovascular defects at 48 hpf; (c) side-wise position at 144 hpf; (d) no active swimming at 144 hpf. Values that were significantly different from
the control are indicated by asterisks (one-way ANOVA, followed by a post hoc test, LSD: **p < 0.01; ***p < 0.001). Values are presented as mean ±
standard error.

-1.5 -1.0 -0.5 0.0
0

25

50

75

100

Mortality Malformation

-1.5 -1.0 -0.5 0.0
0

25

50

75

100

log concentration (µmol/L)log concentration (µmol/L)

log concentration (µmol/L) log concentration (µmol/L)

E
ff

ec
t 

(%
)

E
ff

ec
t 

(%
)

E
ff

ec
t 

(%
)

E
ff

ec
t 

(%
)

-1.5 -1.0 -0.5 0.0

0

25

50

75

100

-1.5 -1.0 -0.5 0.0
0

25

50

75

100

a b

c d

Fig. 4 Concentration-response curves of malformation and mortality for T-2 toxin (n = 3) at (a) 24 hpf; (b) 48 hpf; (c) 72 hpf and (d) 144 hpf. Values
are presented as mean ± standard error.
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2.2 Apoptosis analysis

There were no obvious apoptotic cells observed in the
control embryos or the 0.05 µmol/L T-2 toxin-treated
group, whereas considerable numbers of apoptotic cells
appeared, mainly around the tail area, in 0.10, 0.15, 0.20,
and 0.30 µmol/L T-2 toxin-treated groups. In addition, the
apoptotic cells increased dose-dependently (Fig. 5).

2.3 Effect of T-2 toxin on production of ROS in ze-
brafish embryos

The percent of ROS levels treated with different concentra-
tions of T-2 toxin in zebrafish embryos at 24 hpf compared
with the control are shown in Fig. 6. No significant
difference in the level of ROS production was observed in
the embryos treated with 0.05 µmol/L of T-2 toxin when
compared with the controls. However, ROS levels in the
embryos treated with the other concentrations of T-2 toxin
were significantly higher than the controls.

2.4 Effect of GSH on T-2 toxin-induced malformations
and oxidative stress in zebrafish embryos

GSH is a known antioxidant and free-radical scavenger;
thus, it is important for detoxification of ROS associated
with chemical exposure. Since the embryotoxicity of T-2
toxin is considered to be associated with ROS overproduc-
tion and the resulting oxidative stress, we then determined
if the developmental toxicity and teratogenicity caused by

a b

c d

e f

 

 

 
 

Fig. 5 Zebrafish embryos exposed to T-2 toxin at 24 hpf were stained
with Acridine Orange (AO). Apoptotic cells stained with AO appeared
mainly in the tail region. Apoptotic cells and abnormalities are indicated
by arrows. (a) control; (b) 0.05 µmol/L; (c) 0.10 µmol/L; (d) 0.15 µmol/L;
(e) 0.20 µmol/L; (f) 0.30 µmol/L.
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Fig. 6 Effects of different concentrations of T-2 toxin on reactive
oxygen species (ROS) production at 24 hpf. The values are presented as
the mean ± SEM. Values that were significantly different from the control
are indicated by asterisks (one-way ANOVA, followed by a post hoc test,
LSD: ∗p < 0.05; ∗∗∗p < 0.001).

T-2 toxin at 24 hpf could be alleviated by this antioxidant.
Representative tail deformities of 24 hpf embryos ex-

posed to 0.30 µmol/L T-2 toxin and after co-exposure
with 200 µmol/L GSH are shown in Fig. 7. Severe tail
deformities were defined as the presence of hook-like tail
(Fig. 7d) and the absence of complete tails (Fig. 7e). It
was established that the percent of the embryos exhibiting
severe tail deformities induced by T-2 toxin was noticeably
diminished when co-exposed to 200 µmol/L GSH (Fig.
8a), while slight tail deformities (Fig. 7b, c) were still
observed. In addition, there was no difference in the
percent of the severe tail deformities treated with the other
concentrations of GSH.

We examined the effectiveness of GSH on ROS gener-
ation. In the ROS assay, GSH co-exposure (200 µmol/L)
with 0.30 µmol/L T-2 toxin induced a significant decrease
of ROS production in the embryos compared with T-2
toxin treatment alone, whereas hyper-generation of ROS
in zebrafish embryos was still observed in the GSH co-
exposure group when compared with the control group
(Fig. 8b).

3 Discussion

The present study was conducted to ascertain whether T-
2 toxin was developmentally toxic at early life stages,
using a useful model of zebrafish embryos, and to elucidate
its potential mechanism. From the data presented, the
developmental toxicity and teratogenicity of T-2 toxin
have been demonstrated in zebrafish embryos. The results
indicated the responsiveness of this organism to the toxin
through production of types of developmental abnormal-
ities, such as tail deformities, cardiovascular defects and
behavioral changes that had not been previously reported
(Figs. 2 and 3). Furthermore, we found that T-2 toxin
exposure resulted in hyper-generation of ROS in zebrafish
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Fig. 7 Representative photographs of tail deformities induced by 0.30 µmol/L T-2 toxin alone and after co-exposure with 200 µmol/L GSH at 24 hpf.
Tail abnormalities are indicated by arrows. (a) control; (b, c) slight tail deformities; (d, e) severe tail deformities.
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Fig. 8 (a) Percentage of zebrafish embryos exhibiting severe tail deformities in the presence of 0.30 µmol/L T-2 toxin and increasing concentrations
of GSH co-exposure at 24 hpf. (b) Effect of 200 µmol/L GSH co-exposure with 0.30 µmol/L T-2 toxin on the level of ROS in the embryos at 24 hpf.
Values that were significantly different from the control are indicated by asterisks, values in the group co-exposed with 200 µmol/L GSH significantly
different from that exposed to 0.30 µmol/L T-2 toxin alone are indicated by pound signs (one-way ANOVA, followed by a post hoc test, LSD: ∗,# p <
0.05; ∗∗p < 0.01, ∗∗∗p < 0.001).

embryos and induced cell apoptosis in the tail at 24 hpf.
In addition, by using an antioxidant GSH as scavenger, we
further demonstrated the role of ROS in T-2 toxin-induced
developmental toxicity (Figs. 5–8).

Malformation has been reported in zebrafish embryos
exposed to environmental toxicants, such as BDE 47
(Lema et al., 2007), TCDD (Antkiewicz et al., 2005;
Yamauchi et al., 2006) and copper (Johnson et al., 2007).
Other results also suggest that malformation may be a
general end-response of fish embryos exposed to toxicants
(Zhang et al., 2008; Hu et al., 2009). To determine the
sensitivity of zebrafish to T-2 toxin during gastrulation,
somitogenesis, and organogenesis, embryos were observed
for developmental toxic effects when exposed to a range of
T-2 toxin concentrations between 0.05 and 0.80 µmol/L.
Exposure to T-2 toxin also caused malformations. It should
be noted that the malformations mainly occurred in the
tail areas at 24 hpf in our study, which suggests that
the developing tail may be an important potential target
for T-2 toxin in zebrafish. Since bone malformations
such as incomplete ossification, absence of bones, wavy
bones and fused bones are one of the most frequently
observed fetotoxicities of T-2 toxin (Hood et al., 1978), we
investigated the mechanism of tail deformity in T-2 toxin-
exposed zebrafish embryos. In addition, cell apoptosis is

reported to be chemically induced, and induces teratogenic
effects (Zakeri and Ahuja, 1997). Using AO staining in
the embryos, we determined whether T-2 toxin induced
apoptotic cell death at 24 hpf. AO staining showed that the
major apoptosis occurred in the tail area. This effect was
possibly due to the high percentage of apoptotic cells in the
tail and may partly explain the observed tail deformities.

It has been reported that six teratogenic mechanisms
are associated with chemical exposure: folate antago-
nism, neural crest cell disruption, endocrine disruption,
oxidative stress, vascular disruption and specific receptor-
or enzyme-mediated teratogenesis (van Gelder et al.,
2010). Environmental pollutants are well-known inducers
of ROS, and ROS can further cause the depletion of an-
tioxidant defenses and mediate other oxidation-reduction
reactions through different metabolic pathways (Living-
stone, 2001). Embryonic development may be especially
sensitive to ROS and the resulting oxidative stress, as
even a 15%–20% increase in ROS can tip progenitor cells
into premature cell cycle arrest and differentiation (Shi
and Zhou, 2010); and oxidative stress-induced apoptosis
is thought to contribute to abnormal development during
embryogenesis (Yamashita, 2003). Our results demonstrat-
ed that T-2 toxin induced ROS overproduction in zebrafish
embryos at 24 hpf. However, when the increase of ROS
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reached the highest level, it may result in necrosis in cells
followed by a fall of ROS levels. This may explain why
ROS concentration in the embryos treated with 0.20 and
0.30 µmol/L of T-2 toxin was lower than for treatment
with 0.10 and 0.15 µmol/L (Fig. 6). Therefore, the devel-
opmental toxicity caused by T-2 toxin exposure could be
explained, at least in part, by induction of ROS generation
and subsequent cellular apoptosis in zebrafish embryos.

Oxidative stress may occur either due to the overpro-
duction of ROS or to decrease of cellular antioxidant
levels. Pronounced increases in thiobarbituric acid reac-
tive substances (the product of lipid peroxidation) were
reported in liver homogenate of T-2 toxin-treated rats and
in differentiated murine embryonic stem cell exposed to T-
2 toxin, due to oxidative damage (Rizzo et al., 1994; Fang
et al., 2012). Exposure to T-2 toxin resulted in significant
ROS generation, which may result in the depletion of
antioxidant defenses. GSH was initially tested to determine
the sub-lethal concentrations, and it was shown that GSH
did not induce tail deformities on its own at any concen-
tration tested. GSH was then tested at several sub-lethal
concentrations in combination with 0.30 µmol/L T-2 toxin
to determine its potential to modify T-2 toxin-induced
tail deformities. Our results showed that exogenous GSH
could mitigate T-2 toxin-induced developmental toxicity
in zebrafish embryos, and the percent of the embryos ex-
hibiting severe tail deformities was noticeably diminished
by GSH co-exposure. GSH and T-2 co-exposure induced a
significant decrease of ROS production in the embryos as
compared to T-2 toxin exposure alone. Taken together, the
results suggest that oxidative stress is partly involved in T-2
toxin-induced tail deformities in the zebrafish embryos.

In summary, the results of the present study demon-
strate the occurrence of developmental toxicity in zebrafish
embryos exposed to T-2 toxin, as indicated by increased
malformation and reduced survival in the embryos and lar-
vae. The mechanism of this developmental toxicity appears
to be the generation of ROS and the consequent triggering
of apoptosis. However, a future study of expressions of
oxidative stress- and apoptosis-related genes would likely
provide more information in terms of the mechanism of
developmental toxicity in zebrafish embryos. Therefore,
further studies on the relationship between certain gene
functions and T-2 toxin-induced developmental toxicity
are underway in our laboratory.
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