Phosphorus recovery from wastewater by struvite crystallization: Property of aggregates
CONTENTS

Aquatic environment

A review of environmental characteristics and effects of low-molecular weight organic acids in the surface ecosystem
Min Xiao, Fengchang Wu .. 935
Review on water leakage control in distribution networks and the associated environmental benefits
Qiang Xu, Ruiping Liu, Quwen Chen, Ruohan Li 955
Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water
Xiaolei Bao, Zhimin Qiang, Jih-Hsing Chang, Weiwei Ben, Juhui Qu 962
Removal of phosphate from wastewater using alkaline residue
Yubo Yan, Xiuyun Sun, Fangbian Ma, Jiasheng Li, Jinyou Shen, Weiqing Han, Xiaodong Liu, Lianjun Wang 970
Immunotoxic effects of an industrial waste incineration site on groundwater in rainbow trout (Oncorhynchus mykiss)
Nadjet Benchalgo, François Gagné, Michel Fournier 981

Atmospheric environment

Characteristics of secondary inorganic aerosol and sulfate species in size-fractionated aerosol particles in Shanghai
Shilei Long, Jianrong Zeng, Yan Li, Liangman Bao, Lingling Cao, Ke Liu, Liang Xu, Jun Lin, Wei Liu, Guanghua Wang, Jian Yao, Guanghua Wang, Jian Yao, Shenghua Chen, Jianwen Shi .. 1001
In-vehicle VOCs composition of unconditioned, newly produced cars
Krzysztof Brodzik, Joanna Faber, Damian Łomankiewicz, Anna Golda-Kopek 1014
Sulfur evolution in chemical looping combustion of coal with MnFe2O4 oxygen carrier
Baowen Wang, Chuchang Gao, Weishu Wang, Haibo Zhao, Chuguang Zheng 1062

Terrestrial environment

Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants
Hewei Ni, Wenjun Zhou, Lizhong Zhu .. 1071
Growth and metal uptake of energy sugarcane (Saccharum spp.) in different metal mine tailings with soil amendments
Xin Zhang, Yongguan Zhu, Yuebin Zhang, Yunxia Liu, Shaochun Liu, Jiajun Guo, Ruanli Yuan, Songlin Wu, Baodong Chen .. 1080
A restoration-promoting integrated floating bed and its experimental performance in eutrophication remediation
Yiming Guo, Yunguo Liu, Guangming Zeng, Xinjiang Hu, Xin Li, Dawei Huang, Yunqin Liu, Yicheng Yin .. 1090

Environmental biology

Microbial community functional structure in response to micro-aerobic conditions in sulfate-reducing sulfur-producing bioreactor
Hao Yu, Chaun Chen, Jincai Ma, Xiajun Xu, Ronggui Fan, Aijie Wang 1099
Degradation of dichloromethane by an isolated strain Pandoraea pnomenusa and its performance in a biotrickling filter
Jianming Yu, Wenji Cai, Zhuo Chen, Jianmeng Chen .. 1108
Humic acid-enhanced electron transfer of in vivo cytochrome c as revealed by electrochemical and spectroscopic approaches
Jiahuan Tang, Yi Liu, Yong Yuan, Shengqi Zhou .. 1118
Evaluation of Bacillus sp. MZS10 for decolorizing Azure B dye and its decolorization mechanism
Huixing Li, Ruijing Zhang, Lei Tang, Jianhui Zhang, Zhonggui Mao 1125
Biodegradation of pyrene by Phanerochaete chrysosporium and enzyme activities in soils: Effect of SOM, sterilization and aging
Cuiping Wang, Hongwen Sun, Habin Liu, Baolin Wang .. 1135
Environmental health and toxicology

Primary neuronal-astrocytic co-culture platform for neurotoxicity assessment of di-(2-ethylhexyl) phthalate

Yang Wu, Ke Li, Haoxiao Zuo, Ye Yuan, Yi Sun, Xu Yang

Environmental catalysis and materials

Characterization and reactivity of biogenic manganese oxides for ciprofloxacin oxidation

Jinjun Tu, Zhendong Yang, Chun Hu, Jiuhui Qu

Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe

Jianjun Wei, Yajing Qian, Wenjuan Liu, Lutao Wang, Yijie Ge, Jianghao Zhang, Jiang Yu, Xingmao Ma

Heterogeneous Fenton-like degradation of 4-chlorophenol using iron/ordered mesoporous carbon catalyst

Feng Duan, Yuezhu Yang, Yuping Li, Hongbin Cao, Yi Wang, Yi Zhang

Photocatalytic removal of NO and NO2 using titania nanotubes synthesized by hydrothermal method

Nhat Huy Nguyen, Hsunling Bai

Efficient dechlorination of chlorinated solvent pollutants under UV irradiation by using the synthesized TiO2 nano-sheets in aqueous phase

Landry Biyoghe Bi Ndong, Murielle Primaelle Ibondou, Zhouwei Miao, Xiaogang Gu, Shuguang Lu, Zhaoju Qu, Qian Sui, Serge Maurice Mbadinga

Biogenic C-doped titania templated by cyanobacteria for visible-light photocatalytic degradation of Rhodamine B

Jiao He, Guoli Zi, Zhiying Yan, Yongli Li, Jiao Xie, Deliang Duan, Yongjun Chen, Jiaqiang Wang

Dyes adsorption using a synthetic carboxymethyl cellulose-acrylic acid adsorbent

Genlin Zhang, Lijuan Yi, Hui Deng, Ping Sun
Review on water leakage control in distribution networks and the associated environmental benefits

Qiang Xu1,, Ruiping Liu1,, Qiuwen Chen1,2,3,*, Ruonan Li1

1. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: qiangxu@rcees.ac.cn
2. Center for Eco-Environmental Research, Nanjing Hydraulics Research Institute, Nanjing 210029, China
3. China Three Gorges University, Yichang 443002, China

\textbf{A R T I C L E I N F O}

Article history:
Received 20 August 2013
revised 27 January 2014
accepted 11 February 2014

\textbf{Keywords:}
water leakage control
water distribution system
environmental benefits

\textbf{DOI: 10.1016/S1001-0742(13)60569-0}

\textbf{A B S T R A C T}

Water supply is the primary element of an urban system. Due to rapid urbanization and water scarcity, maintaining a stable and safe water supply has become a challenge to many cities, whereas a large amount of water is lost from the pipes of distribution systems. Water leakage is not only a waste of water resources, but also incurs great socio-economic costs. This article presents a comprehensive review on the potential water leakage control approaches and specifically discusses the benefits of each to environmental conservation. It is concluded that water leakage could be further reduced by improving leakage detection capability through a combination of predictive modeling and monitoring instruments, optimizing pipe maintenance strategy, and developing an instant pressure regulation system. The environment could benefit from these actions because of water savings and the reduction of energy consumption as well as greenhouse gas emissions.

\textbf{Introduction}

Human civilization is closely related to water development, as observed by the one-dimensional system whereby major cities have mostly originated along rivers. The settlement and interaction of human beings are influenced by the spatial and functional characteristics of river basins, and the direction of flow of rivers affects the movement of civilization (Delli Priscoli, 2000). The inherent driver of this phenomenon is that people need water in every aspect of life, e.g. drinking, agriculture, industry, transportation, recreation, etc.

In the early stage of the water-human relationship, people passively adapted their behaviors to the water distribution. The situation was reversed, however, in the later stages, especially when cities emerged. In urban planning, one of the most important infrastructures is the design of water systems, including the water supply system and the sewerage system. The former distributes potable water to the city habitants and the latter collects the wastewater and conveys it out. They serve as the arteries and veins of the city. The sustainable development of a city must involve the sustainable use of water.

However, it is nowadays more and more challenging to satisfy the water demand of the city inhabitants following rapid urbanization, since the per capita water use of urban inhabitants is much higher than that of rural inhabitants. Access to reliable potable water is an increasing pressure for many water supply industries, especially in developing countries. Taking China, which is the world’s largest developing country, as an example, the urban population has grown much faster than the total domestic water supply, as indicated by the growth rate during 2004 to 2012 (\textbf{Fig. 1}). The urban population increased by 35.2\% (from 303.4 to 410.3 million) while the total amount of urban water supply increased only by 10.2\% (from 23.3 to 25.7 billion m3) during the period. There is no surprise that this gap will hamper urban development; therefore, it is essential to
bridge the growing gap between the demand and supply of water. However, a large amount of water is lost during the delivery to customers in the meantime due to pipe failures. Each year more than 32 billion m3 of potable water are lost from water distribution networks all over the world, which accounts for 35% of total water supplied (Farley et al., 2008). Therefore, control of water leakage is an effective measure to enhance water supply capability. The emergence of the concepts water sensitive urban development and water sensitive city demonstrates the willingness of utility managers to improve water use efficiency (Coombes et al., 2000; Ferguson et al., 2013; Morison and Brown, 2011; Wong and Brown, 2009).

In addition to the waste of potable water, there are several indirect effects of water leakage. Water supply is an energy-intensive industry, which consumes 2%–3% of the worldwide energy (James et al., 2002), thus the leakage of water is also the waste of a large amount of energy. The development of small breaks in pipes, if not detected, may lead to pipes bursting, incurring great socio-economic losses. At the same time, there is a risk of contaminating the water because pollutants may intrude into the pipe network through the breaks when negative pressure occurs.

Management of water leakage is seen to obviously benefit both the water utilities and the customers. The water utilities will get the cheapest additional water source without much investment, reduce the risk of pipe bursts, and ensure water quality for the end-users. The savings of water resources and the associated energy from water leakage control will support the sustainable development of cities. Therefore, many investigations and practices have been conducted to minimize water leakage from water distribution systems, including active leakage detection, optimal maintenance of deteriorated pipes, and water pressure regulation.

This article presents a comprehensive review on state-of-the-art water leakage control approaches, in particular the research hotspots and the associated environmental benefits.

1 Improvement of leakage detection by combining models and instruments

Leakage detection is the fundamental to control water leakage because only if the leak is located it is possible to fix it. As such, leakage detection has become routine work for the water supply industries. Efficiency of leakage detection can be significantly improved if an optimal leakage detection scheme is used, which demands a combination of detection instruments and pipe failure prediction models.

1.1 Leakage detection techniques

The available leakage detection approaches are usually classified into three categories: noise monitoring, flow and pressure monitoring, and the others. The first two categories are widely applied in water utilities.

Noise monitoring: leakage can generate noise when water flows out through a hole or fracture of a pipe and when water flows past substances outside the pipe. Noise can propagate along the pipe and the ground, thus capturing the noise will help in finding a leak. There are many kinds of acoustic equipment to capture this noise signal. The earliest form of such acoustic equipment is a stethoscope-like apparatus that connects a metal rod and earphones. Placing the metal rod in contact with a pipe, the noise can be transmitted to the listener’s ears through the earphones (Babbitt, 1920). According to the sound heard, experienced workers can give a judgment as to whether a leak exists in the pipe and the leak location can approximately be given by repeating the process at different places. Although labor-intensive, this method has been used for many years and is still the main way to detect leaks for some water utilities. New acoustic techniques have also been applied to improve the efficiency. Devices have been developed to capture and/or record the signal of leakage noise, based on which the leakage information can be calculated. In essence, the theory is the same as that of the detection by human listening. But the machine-based techniques take advantage of the enhancement of hearing capacity and the improvement of leakage-locating accuracy and precision. Although broadly used, this kind of method suffers from the disadvantage of insensitivity to large leaks that do not generate vibrations at high frequencies (Colombo et al., 2009).

Flow and pressure monitoring: leakage is an additional, but unexpected, flow out of the pipe network, which means leakage can cause changes in the hydraulic characteristics, i.e. flow increase and pressure decrease, which are noticeable if the leak is large enough. Continuously monitoring the flow and pressure of a sectorized pipe network, e.g.
DMA (district metered area) can help to detect leakage. For example, if the minimal night flow (MNF, the flow when the normal water use is at its minimum) increases suddenly and keeps at this level for several consecutive days, it possibly indicates a new leak (Alkasseh et al., 2013). Besides the MNF, a leak can also be identified by analyzing the changes of flow pattern (Buchberger and Nadimpalli, 2004; Van Thienen, 2013) and the changes of water pressure, e.g. a sudden drop of water pressure may imply a big leak or a burst pipe. The method of transient pressure waves is also explored to identify leaks in pipe networks (Guo et al., 2012; Kapelan et al., 2003; Misiunas et al., 2005; Vítkovský et al., 2007; Wang et al., 2002). The existence of leaks can impose a wave reflection on an incoming transient signal and thus alter the system’s pressure response, notably the singularities in the wave shape and the attenuation in the wave amplitude (Colombo et al., 2009). By measuring the characteristics of the transient pressure wave, the leak can be detected. Corresponding to these approaches, hydraulic models have been developed as an alternative to direct monitoring. The location and rate of leakage can be estimated by the models to obtain an acceptable fit to the monitoring data (Wu, 2009; Wu and Sage, 2006).

The other approaches: there are also some forms of visual evidence such as water seeping or gushing to the surface, anomalous vegetation growth, etc. These observations are usually reported by the public and play an important role in leak detection, especially in the developing countries. Usually the visual evidence arises only when the leak exists for a long time, so such passive leakage detections become less and less, following the improvement of the leakage management capability of water utilities.

1.2 Optimization of leakage detection scheme based on pipe leakage assessment

Although a variety of instruments are available to monitor and detect leaks, they are mostly expensive or labor-intensive. It is logical that water utilities want to find more leaks with limited labor force and investment. The straightforward solution is to assess the risk of pipe failure and prioritize the sections to be monitored. Therefore, pipe break assessment models are developed to analyze pipe failure risks. These models can be grouped into two categories: physically based models and statistical models. Physically based models aim to reveal the physical mechanism behind the pipe break behavior. The explanatory variables usually contain physical and chemical parameters describing how the pipe’s structural resistance capacity decreases with chemical processes such as corrosion (Rajani et al., 2000), and how the pipe corrosion relates to the surrounding environment (Liu et al., 2010; Rajani and Kleiner, 2013).

Different from the physically based models, statistical models employ macro indicators to predict pipe breaks without much consideration of the physical mechanism. These indicators include both the properties of the pipe such as material (Kleiner and Rajani, 2002), age (Kettler and Goulter, 1985), diameter (Walski and Pelliccia, 1982), length (Le Gat and Eisenbeis, 2000) and number of service connections (Berardi et al., 2008) and the environmental variables such as soil type (Watson, 2005) and even earthquake interference (Fragiadakis et al., 2013; Ho et al., 2010).

Quantitative relationships between pipe leakage and selected explanatory variables have been established in the abovementioned studies. Although the models’ structures and parameters are usually case-dependent because of the inherent complexity of pipe leakage, the difference in pipe networks and data availability, these models are successfully applied to assess the failure probability of pilot pipes (Xu et al., 2011), from which an optimal leakage detection plan or pipe rehabilitation strategy can be made (Xu et al., 2013).

2 Pipe repair, rehabilitation and replacement

Once pipe are deemed to be structurally or functionally deteriorated, decisions should be made to repair the breaks, rehabilitate the pipe or replace it. Pipe repair has the least impact on the pipe since it usually operates on a rather small fraction of pipe compared to the entire length. Pipe replacement replaces the old pipe with a new one and thus can completely restore the pipe’s condition. Pipe rehabilitation can improve the pipe’s condition to a level between the current status and new pipe. It should be noted that, in some circumstances, the term pipe rehabilitation is used as a generalized concept referring to a wide range of measures taken on the pipe, including pipe repair, pipe lining, pipe replacement, etc. In some other instances, it specifically refers to a variety of maintenance operations including, for example, spray-on lining, slip-lining, etc., while excluding the measures of pipe repair and pipe replacement. This special meaning of pipe rehabilitation is adopted in this study.

It is obvious that pipe repair requires the least cost while pipe replacement requires the most. Therefore, careful consideration must be taken when making a decision whether to just repair the breaks or to rehabilitate or replace the pipe. Many researchers have studied the optimal pipe replacement strategies with the goal of achieving the largest benefit-to-cost ratio. These studies can be basically classified into two categories: models to calculate the optimal time to replace a pipe, and models to prioritize the pipes for replacement.

A notable model of the first category was presented by Shamir and Howard (1979), who established a pipe break prediction model and defined a cost function by adding up the total pipe repair cost and the pipe re-
placement cost. The optimal pipe replacement time could be quickly obtained by minimizing the cost function. Besides structural deterioration, functional deterioration was taken into consideration by Kleineret et al. (1998) to calculate the pipe’s lifetime and thereafter to schedule the pipe replacement strategies. In some other studies, multi-objective models were established to account for both the maintenance cost and the effect of deteriorated pipes on the water pressure (Dridi et al., 2009; Halhal et al., 1997). Park and Loganathan (2002) introduced the concept of threshold break rate and when a pipe’s actual break rate reached this value, it was economical to replace it. It should be noted that an essential step to optimize the pipe replacement strategy is to predict the pipe break probability (Xu et al., 2013).

The other category of optimal pipe replacement models focuses on sorting the pipes according to the assessment of priorities for replacement. The emergence of these models come about because usually water utilities have a pipe replacement plan, for example, replacing 1% of all the pipes per year. Rather than knowing exactly the most economical time to replace a pipe, they are more interested in knowing which pipes out of the whole network should be replaced first. Therefore, models were developed to assess the pipes’ priorities for replacement, where different performance indicators were included and different methods were developed (De Oliveira et al., 2010; Ho et al., 2010; Luong and Fujiwara, 2002; Luong and Nagarur, 2005). The results of these studies help make efficient use of the funds invested in pipe replacement.

Although quite a few studies have been done to balance the benefits and costs of break repair and pipe replacement, little effort was taken to assess the benefits of pipe rehabilitation. The main difficulty may exist in the prediction of pipe break rate after rehabilitation. For pipe repair, the break rate can be assumed to be consistent before and after the repair; for pipe replacement, the break rate is the same as new pipes after the replacement. Therefore, in most studies only pipe repair and pipe replacement are considered to develop optimal pipe maintenance models.

3 Water pressure regulation

Water pressure management is an effective and efficient way to reduce the leakage of water distribution systems and actually is the only way to reduce the background leakage that cannot be detected using current techniques. Compared to a long-term pipe break detection and pipe maintenance strategy, water pressure management can reduce the water leakage in a much shorter period. Leakage is positively related to pressure, which means that reducing the water pressure can immediately incur water leakage reduction. Figure 2 gives the response of MNF (often used to represent leakage) of a DMA to three pressure regulation regimes (the data is from a field experiment by the authors), which demonstrates the effectiveness of pressure management.

The leakage-pressure relationship is usually described by the following equation (Lambert, 2001; Thornton and Lambert, 2005; Thronton, 2003):

\[L = k \times P^n \]

where, \(L \) is the leakage rate, \(P \) is the average pressure of the network, and \(k \) and \(n \) are parameters to be calibrated. The exponent \(n \) ranges from 0.5 to 2.5 or even higher depending on the type of leak (Lambert, 2001; Thornton and Lambert, 2005). Obviously, leakage will be very sensitive to water pressure when \(n > 1 \).

Besides the reduced leakage from existing breaks, the water utilities can also benefit from pressure management by lowering pipe burst risks and extending the pipe’s lifetime (Farley and Trow, 2003; Lambert and Thornton, 2011; Thornton and Lambert, 2006). Water pressure is usually controlled based on the partitioning management of the pipe network, such as the PMA (pressure management area) and DMA. PRVs (pressure reducing valves) are installed at the inlet of the PMAs or DMAs and the water pressure inside the zonal network can be regulated by operating the PRVs. To maximize the benefits of pressure management, the installation and operation strategies of PRVs, i.e. quantity, locations and opening adjustment, are optimized (Araujo et al., 2006).

Although the benefits of pressure management have been recognized for over 40 years in some countries, notably the UK and Japan (Thronton, 2003), and are more and more realized by water utilities (Girard and Stewart, 2007; Marunga et al., 2006; Soriano et al., 2012), it is still not applied in most developing countries. The two major reasons are: the lack of decision support tools that can accurately assess the benefits associated with pressure management and justify the investment; the fact that water distribution networks are usually not well configured for effective pressure management (Mutikanga et al., 2013).
4 Discussion

4.1 Benefits of water leakage control

Water availability significantly influences the development of a city, and at the same time, urbanization has great impact on the available water resources, resulting in reduced amount, changed spatio-temporal distribution and deteriorated water quality (Du et al., 2010; Lee et al., 2009; Marinoni et al., 2013).

Water leakage control in distribution systems is a valuable activity to preserve the water resources, especially in the situation of water scarcity and climate change. The direct benefit of water leakage control is that more people will be fed without the need for new water resource exploration. According to the work by Farley et al. (2008), the lost water from distribution systems over the world can meet the demand of 200 million people.

The benefits of water leakage control go far beyond the saved water itself. Associated benefits include the reduction of energy consumption and greenhouse gas emissions. The energy consumption for treating 1 m3 of water is 2–42 MJ and varies depending on the source of water. Surface water and groundwater need 2–3 MJ of energy to treat 1 m3 of water (Friedrich, 2002; Mo et al., 2011; Racoviceanu et al., 2007). Recycled water or imported water needs 3–18 MJ/m3 of energy (Lyons et al., 2009; Stokes and Horvath, 2009), while the number for desalinated water is 42 MJ/m3 (Stokes and Horvath, 2009). The reduction of energy consumption is accompanied by a decrease of greenhouse gas emissions. According to Stokes and Horvath (2009), 60.7 g of CO$_2$ is emitted for each 1 MJ of energy consumed in the process of producing and distributing imported water.

With rapid urbanization, new water plants and supply systems must be constructed to meet the increasing water demand, especially in the developing countries. In some cases when insufficient source water is available, long distance water transfer projects, such as the South-to-North Water Diversion Project in China, are required, which inevitably cause significant impacts. However, if the water leakage from the existing water distribution systems is reduced, the need to expand the water supply may be alleviated.

Besides the direct and associated benefits, water leakage control can create more jobs in pipe leakage detection, pipe maintenance, pressure regulation, and the related device design and manufacturing. From this aspect, water leakage control can stimulate economic growth and promote social interests. This point has been justified by a newly released report from United Nations Environment Programme, which states that a sustainable urban water infrastructure can boost economic growth and social stability in addition to environmental protection (Swilling et al., 2013).

Although the effects of water leakage control on water savings (Sun and Chen, 2012) and energy reduction for sustainable urban development (Dzidic and Green, 2012) have been appreciated, a precise quantification is still lacking. It is important to use life cycle analyses to establish a method to parameterize these values so as to persuade the policy makers and the public to invest in water leakage control.

4.2 Outlook of water leakage control

The current water leakage control actions are relatively comprehensive. There is still, however, great room for improvement. With respect to pipe break prediction, many models in the previous studies were developed to describe pipe break behaviors. These models are either weak at explaining the mechanism for pipe breaks (statistical models) or hard to implement in large-scale pipe networks (physically based models). Therefore, there is a need to bridge the two types of models in further studies. Besides, the existing models are usually case-specific: so that one model working well in a given pipe network may fail in another. Development of generic models should be emphasized in the future. Although some authors have made the attempt (Savic et al., 2009), it is still worthwhile to move forward by using more data from different cases.

In pipe leakage detection, low-cost devices with high accuracy should be invented because high cost is a big barrier for many water utilities for the use of efficient leakage detection devices at a large scale. The same situation applies for pressure control equipment. For pipe rehabilitation, the benefits and costs of different kinds of rehabilitation techniques need to be studied in the future to help the stakeholders make economically optimal pipe rehabilitation plans. With respect to pressure management, pressure is mostly regulated by PRVs nowadays. The mechanism of PRV-based pressure control is that a local energy loss is generated at the PRVs, which implies that the energy for pumping the water is not really saved. Therefore, there is a potential to further reduce the water leakage and energy consumption in water distribution networks by lowering the redundant water pressure at the pumping station. By combining PRVs and pump regulation, a two-level water pressure management scheme can be designed. The first level is large-zone pressure management regulating the pumps, and the second level is pressure reduction at the inlet of DMAs using PRVs.

Finally, decision support systems are required to support the water utilities to manage their pipe networks and improve their work efficiency. Although there are several such systems available (Li et al., 2011; Matthews et al., 2011; Stone et al., 2002), they should be updated in time when innovative water leakage control methods are available.
5 Conclusions

Water leakage control in distribution systems is essential to sustainable urban development. Although many measures are available for leakage management, there is still great room for improvement; in particular the development and application of more reliable pipe break prediction models in leakage monitoring, the invention of low cost leakage detection and pressure regulation devices, optimization of pipe maintenance strategies, and establishment of updated decision support systems. Sustainable urban development will be benefited not only by the water savings, but also by the associated reduction of energy consumption and greenhouse gas emissions. Precise quantification of these benefits should be emphasized in the future.

Acknowledgments

This work was supported by the National Natural Sciences Foundation of China (No. 51309216) and the Ministry of Sciences and Technology of the People’s Republic of China (No. 2012ZX07408-002).

References

Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landsc. Urban Plann. 92(2), 80–89.

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
Hongxiao Tang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Associate Editors-in-Chief
Jiuhui Qu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Shu Tao
Peking University, China
Nigel Bell
Imperial College London, United Kingdom
Po-Kueang Wong
The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment
Baoyu Gao
Shandong University, China
Maosheng Fan
University of Wyoming, USA
Chhipin Huang
National Chiao Tung University, Taiwan, China
Ng Wun Jern
Nanyang Environment & Water Research Institute, Singapore
Clark C. K. Liu
University of Hawaii at Manoa, USA
Hokyong Shon
University of Technology, Sydney, Australia
Zijian Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Zhiwu Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental toxicology and health
Jingwen Chen
Dalian University of Technology, China
Jinying Hu
Peking University, China
Guibin Jiang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Sijin Liu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Atmospheric environment
Jianmin Chen
Fudan University, China
Abdelwahid Mellouki
Centre National de la Recherche Scientifique, France
Yujing Mu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Min Shao
Peking University, China
James Jay Schauer
University of Wisconsin-Madison, USA
Yuezi Wang
Institute of Atmospheric Physics, Chinese Academy of Sciences, China
Xin Yang
University of Cambridge, UK

Environmental catalysis and materials
Tsuyoshi Nakanishi
Gifu Pharmaceutical University, Japan
Willie Peijnenburg
University of Leiden, The Netherlands
Bingsheng Zhou
Institute of Hydrobiology, Chinese Academy of Sciences, China

Environmental analysis and method
Zongwei Cai
Hong Kong Baptist University, China
Jiping Chen
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
Min Shao
Peking University, China

Environmental biology
Yong Cai
Florida International University, USA
Henner Hollett
RWTH Aachen University, Germany
Jae-Soon Lee
Sungkyunkwan University, South Korea
Christopher Kensing
University of Copenhagen, Denmark
Bojan Sedmak
National Institute of Biology, Ljubljana
Lirong Song
Institute of Hydrobiology, Chinese Academy of Sciences, China
Gehong Wei
National Natural Science Foundation of China

Municipal solid waste and green chemistry
Pinjing He
Tongji University, China

Environmental ecology
Rusong Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Terrestrial environment
Christopher Anderson
Massey University, New Zealand
Zaocong Cai
Nanjing Normal University, China
Xinbin Feng
Institute of Geochemistry, Chinese Academy of Sciences, China
Hongqing Hu
Huazhong Agricultural University, China
Kim-Kei Lam
The Chinese University of Hong Kong, Hong Kong, China
Erwin Klumpp
Research Centre Juelich, Agroscope Institute Germany
Peijun Li
Institute of Applied Ecology, Chinese Academy of Sciences, China

Environmental catalysis and materials
Hong He
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Junhua Li
Tsinghua University, China
Wenfeng Shangguan
Shanghai Jiao Tong University, China
Yasutake Teraoka
Kyushu University, Japan
Ralph T. Yang
University of Michigan, USA

Environmental analysis and method
Zongwei Cai
Hong Kong Baptist University, China
Hong Kong, China
Jeping Chen
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
Minghui Zheng
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Municipal solid waste and green chemistry
Pinjing He
Tongji University, China

Environmental ecology
Rusong Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Editorial office staff
Managing editor
Qingcai Feng

Editors
Zixuan Wang Suqin Liu Zhengang Mao

English editor
Catherine Rice (USA)
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of an article implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The submission should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@263.net, jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.