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a b s t r a c t

Anion exchange resins (AERs) with different properties were evaluated for their ability to remove
dissolved organic matter (DOM) and bromide, and to reduce disinfection by-product (DBP) formation
potentials of water collected from a eutrophic surface water source in Japan. DOM and bromide
were simultaneously removed by all selected AERs in batch adsorption experiments. A polyacrylic
magnetic ion exchange resin (MIEXr) showed faster dissolved organic carbon (DOC) removal than
other AERs because it had the smallest resin bead size. Aromatic DOM fractions with molecular
weight larger than 1600 Da and fluorescent organic fractions of fulvic acid- and humic acid-like
compounds were efficiently removed by all AERs. Polystyrene AERs were more effective in bromide
removal than polyacrylic AERs. This result implied that the properties of AERs, i.e. material and
resin size, influenced not only DOM removal but also bromide removal efficiency. MIEXr showed
significant chlorinated DBP removal because it had the highest DOC removal within 30 min, whereas
polystyrene AERs efficiently removed brominated DBPs, especially brominated trihalomethane
species. The results suggested that, depending on source water DOM and bromide concentration,
selecting a suitable AER is a key factor in effective control of chlorinated and brominated DBPs in
drinking water.

Introduction

Chlorination is one of the most widely used disinfec-
tion process for inactivating microbes in water treatment
plants (WTPs). Chlorine also reacts with dissolved organic
matter (DOM) and bromide present in water, leading to
formation of disinfection by-products (DBPs) such as
trihalomethanes (THMs) and haloacetic acids (HAAs) (Liu
et al., 2011; Zhang et al., 2011; Tian et al., 2013). The
most effective way to control DBP formation is to remove
precursors before chlorination. Coagulation, activated car-

∗Corresponding author. E-mail: phetrak@env.t.u-tokyo.ac.jp,
athit.phetrak@gmail.com

bon adsorption, ultrafiltration and nanofiltration membrane
processes target DOM removal, but these processes could
not effectively remove bromide in previous studies (Singer
and Bilyk, 2002; Ates et al., 2009; Kristiana et al., 2011;
Xu et al., 2013), causing an increase in the bromide
to dissolved organic carbon (DOC) ratio (Br/DOC), and
preferential formation of brominated DBPs in treated
waters. Although reverse osmosis membrane can achieve
the simultaneous removal of DOM and bromide in a well-
designed one unit process, the implementation of this
technology in WTPs is usually restricted by high cost and
complicated operation. The simultaneous removal of DOM
and bromide prior to chlorination process is of crucial
importance to control DBP formation and to simplify
treatment process.

http://www.jesc.ac.cn
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The use of anion exchange resin (AER) is an alternative
technology to simultaneously remove DBP precursors and
bromide (Hsu and Singer, 2010; Walker and Boyer, 2011;
Xu et al., 2013) in WTPs owing to its benefits of being
easy-to-handle, high efficiency, and low cost and having a
simple regenerating practice using a chloride salt (Neale
and Schfer, 2009). The AERs used in WTPs are either
polystyrene or polyacrylic AERs. Polystyrene AERs are
more hydrophobic than polyacrylic AERs; as a result,
polyacrylic AERs tend to have a higher water content
and more open structure (Boyer and Singer, 2008). The
simultaneous removal of DOM and bromide in water solu-
tion by AERs has been investigated by some researchers.
Hsu and Singer (2010) investigated DOM and bromide
removal in simulated surface waters and found that poly-
acrylic AER, i.e. MIEXr, was more effective in removing
DOM, whereas polystyrene resins were more effective for
bromide removal. Walker and Boyer (2011) and Xu et al.
(2013) investigated the simultaneous removal of DOM and
bromide from surface water by MIEXr, which has the
potential to remove both DOM and bromide, but the rela-
tionship between reductions of DOM, bromide and THM
species had not been investigated. However, there has been
no study on the effects of various properties of AERs on
the removal efficiencies for DOM and bromide and the
reduction of DBP formation potential in surface water.
Therefore, the objectives of this study were: (1) to evaluate
the effect of AER properties on bromide and DOM removal
from surface water, (2) to evaluate the performance of
AERs on the reduction of the DBP formation potential.
To our knowledge, this is the first study on the influence
of AER properties on the removal of DOM, bromide and
associated THM species after chlorination. The results of
this study were aimed to be used to design an AER process
for the effective removal of bromide and DOM to control
the occurrence of DBPs in drinking water.

1 Materials and methods

1.1 Water sample

The water sample was collected in November 2011 from
Lake Inba-numa in Chiba Prefecture, Japan, which is a
representative eutrophic lake in Japan and a source for

water supply. The water sample was collected in a cleaned
plastic container and then delivered to the laboratory. After
filtration through 0.45 µm hydrophilic PTFE membrane
filters (Millipore, JHWP09025), the filtered water was
stored in brown glass bottles at 4°C to minimize changes
of character, which is hereafter referred to as raw water
and used in all the experiments. The water quality of the
raw water are as the following: pH 9.1, DOC concentration
of 2.71 mg/L, ultraviolet absorbance at 254 nm (UV254)
of 0.062 cm−1, specific ultraviolet absorbance at 254 nm
(SUVA254) of 2.28 L/(m·mg), bromide concentration of
0.125 mg/L, and chloride concentration of 23 mg/L. Due
to algal bloom, the water pH was alkaline and DOC was
moderately high, while a rather high concentration of
bromide may be due to anthropogenic pollution, because
the Br and Cl ratio in the raw water (Br/Cl = 0.0054) was
higher than in sea water (Br/Cl = 0.0035) (Stumm and
Morgan, 1996).

1.2 Anion exchange resins

The characteristics of the five AERs used in this study are
shown in Table 1. The AERs were selected based on their
different structures (i.e. gel or macroporous) and materials
(i.e. polyacrylic or polystyrene) for comparison purposes.
To remove impurities from as-received AERs, they were
preconditioned according to published procedures (Hum-
bert et al., 2005; Phetrak et al., 2012), except for MIEXr.
MIEXr was rinsed with Milli-Q water to wash away the
fine particles and to confirm that there was no release
of organic matter. All AERs, conditioned in the chloride
form, were stored in Milli-Q water until use.

1.3 Adsorption of DOM and bromide by AERs

Kinetic exchange experiments were conducted based on
the bottle-point method. A preconditioned AER was
placed in each of a set of 100 mL flasks containing 60
mL of raw water to achieve an AER dose of 2 g/L.
The adsorption experiments were conducted at 25°C with
horizontal shaking at a rate of 200 r/min. The sampling
time was set at 0, 5, 10, 15, 30, 60 and 120 min. At
the end of each contact time, water samples were filtered
through a pre-rinsed 0.45 µm PTFE filter (Dismic 45HP,
Advantec, Japan) to remove AERs before DOM and anion
analyses. Each adsorption experiment was performed in
triplicate. The formation of DBPs after chlorination for 24

Table 1 Characteristics of AERs used in this experiment

Resin Type Structure Material Particle size (µm) Capacity (meq/mL) Manufacturer

IRA400 Type I Gel Polystyrene 300 1.40 Rohm & Haas
IRA910 Type II Macroporous Polystyrene 460 1.10 Rohm & Haas
MIEXr Type I Macroporous Polyacrylic 150–180 0.52 Orica
IRA458 Type I Gel Polyacrylic 500 1.25 Rohm & Haas
Purolite Type I Macroporous Polyacrylic 300–1200 0.80 Purolite
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hr, such as trihalomethane formation potential (THMFP)
and haloacetic acid formation potential (HAAFP), were
examined for the AER-treated waters with 30-min contact
time.

1.4 Analytical methods

DOC concentration and UV254 were measured by a non-
purgeable organic carbon method using a TOC-5000A
analyzer (Shimadzu Corp., Kyoto, Japan) and UV/Vis
spectrophotometer (U-2000, Hitachi, Ltd., Tokyo, Japan),
respectively. SUVA254 (L/(m·mg)) is an indicator of aro-
matic moieties in surface water, which is defined as UV254
divided by DOC concentration. A Metrohm 861 ion chro-
matography analyzer (Metrohm, Switzerland) was used to
measure the concentrations of anions.

The molecular weight (MW) distribution of DOM was
analyzed through the use of a Protein Pak 60A◦ (Waters
Corp., USA) column and LC-10ADvp liquid chromatog-
raphy pump connected to an SPD-M10Avp diode array
detector at 254 nm (Shimadzu Corp., Kyoto, Japan). De-
tails of high-performance size exclusion chromatography
(HP-SEC) analysis are given by Phetrak et al. (2012).

Spectrofluorimetric analysis was performed using a
spectrofluorimeter (F-4500, Hitachi) equipped with a
xenon lamp. Three-dimensional fluorescence excitation-
emission matrix (3D F-EEM) spectra were collected at
excitation (Ex) and emission (Em) spectra in a wavelength
range of 220–550 nm, which can be used to identify
fluorescent organic compounds present in water samples.
The spectra of Milli-Q water were recorded as the blank.

THMFP and HAAFP were analyzed according to the
Japanese Standard Methods for the Examination of Water.
Chlorination was performed by adding sodium hypochlo-
rite into samples buffered at pH 7.0 ± 0.2, followed by 24
hr incubation in the dark at 20°C. The residual free chlorine
was maintained at 1–2 mg/L. The reactions were imme-
diately quenched with sodium ascorbate prior to analysis
for THMs and HAAs. Four THMs (chloroform (TCM),
dibromochloromethane (DBCM), bromodichloromethane
(BDCM) and bromoform (TBM)) were analyzed using a
purge and trap concentrator (Aqua PT 5000J, Teledyne
Tekmar, OH, USA) coupled to a gas chromatography mass
spectrometry system (GC/MS-QP2010 Plus; Shimadzu
Corp., Kyoto, Japan) and five HAAs (chloroacetic acid
(CAA), dichloroacetic acid (DCAA), trichloroacetic acid
(TCAA), bromoacetic acid (BAA) and dibromoacetic acid
(DBAA)) were analyzed using liquid-liquid extraction and
chemical derivatization, followed by analysis with a HP
Hewlett Packard Agilent 6890 GC System gas chromato-
graph equipped with a Hewlett Packard/Agilent HP 5973
mass selective detector.

2 Results and discussion

2.1 DOM and bromide removals by AERs

The time courses of the reduction of DOM (in terms
of DOC and SUVA254) are shown in Fig. 1. AERs re-
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Fig. 1 Reduction of DOM and bromide with contact times. (a) DOC, (b) SUVA254, (c) bromide (Br) and (d) Br/DOC ratio.
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duced DOC from the initial concentration of 2.71 mg/L
to 0.98–1.61 mg/L at 120 min, which corresponded to
DOC removal rates of 41%–64% (Fig. 1a). The trend
of DOC reduction by polystyrene IRA910 was relatively
smaller than for other AERs. For example, at 30 min
contact time, 2.00 mg/L of DOC remained after treatment
by IRA910, whereas it was 1.43–1.80 mg/L in water
treated by IRA400, MIEXr, IRA458 and Purolite. This
result was similar to the previous result conducted by our
group (Phetrak et al., 2012). The distinctively different
trends in DOC reduction by AERs could be attributed to
the uniqueness of AER properties. MIEXr, having the
smallest resin size, exhibited the fastest DOC reduction
at 30 min among the other AERs. A smaller resin size
provides a larger solid-liquid interface between the AER
and surrounding water, resulting in a faster DOC exchange
rate (Humbert et al., 2012). Greater UV254 reduction
rates than DOC reduction rates were observed for all of
the tested AERs, which resulted in decreasing trends of
SUVA254 with contact time (Fig. 1b). The decreases in
SUVA254 indicated that DOM having aromatic moieties,
which absorb UVA254, was preferentially removed by
the AERs. In addition, the SUVA254 value of MIEXr

decreased markedly from 2.28 L/(m·mg) at start-up to 0.37
L/(m·mg) at 30 min of contact time, which was lower than
those of the other AERs, indicating the higher affinity of
MIEXr for aromatic moieties than the other AERs (Singer
and Bilyk, 2002; Rokicki and Boyer, 2011; Walker and
Boyer, 2011; Xu et al., 2013). The preferential aromatic
moieties removal by MIEXr was possibly due to the iron
oxide incorporated into the resin (Shuang et al., 2013).

The change of bromide concentration by various AERs
is also shown in Fig. 1c. Bromide reduction rates were
apparently faster than DOC reduction rates, leading to
the lowest bromide concentrations occurring at about 30
min for all of the AERs. During the course of bromide
exchange by AERs, the removal rates varied between
58% and 90% for the AERs. The polystyrene AERs

(IRA400 and IRA910) were more effective in bromide
removal (removal rates 84%–90% at 120 min) than the
polyacrylic AERs (MIEXr, IRA458, and Purolite; 58%–
79%), which is similar to the results reported by Hsu
and Singer (2010). Among the polyacrylic AERs, MIEXr

showed the lowest reduction of bromide, while MIEXr

reached the steady state bromide concentration within the
shortest time (5 min) compared to the other AERs. This
implied that MIEXr had the highest affinity for DOM not
simply from the ion-exchange capacity or the polyacrylic
material, but possibly due to its unique structure. Since the
DOC removal by MIEXr was the highest but the bromide
removal was the lowest, the highest Br/DOC ratio was
obtained (Fig. 1d). A similar result of a high Br/DOC
ratio was found with nanofiltration membranes, which
were more effective in removing DOC than bromide (Laı̂né
et al., 1993; Ates et al., 2009). Nonetheless, polystyrene
AERs showed smaller Br/DOC ratios in the treated waters
than those of polyacrylic AERs because they had greater
removal rates for bromide than DOC, which could be
useful in controlling the formation of brominated DBPs.

2.2 DOM characterization

DOM in raw water and treated water was characterized
by HP-SEC with a UV254 detector and 3D F-EEM to
better understand the fractions of DOM removed by the
AERs. The MW distributions of aromatic DOM present
in raw water and after treatment by MIEXr and IRA458
are shown in Fig. 2. The chromatograms showed that
a majority of aromatic DOM in raw water were in the
MW range of 700–4000 Da, corresponding to humic com-
pounds (Jarusutthirak and Amy, 2007). The AER treatment
was shown to be an effective method to remove a wide
range MW of aromatic DOM, with especially high removal
rates for aromatic DOM greater than 1000 Da. However,
different abilities of aromatic DOM removal from raw wa-
ter were observed between MIEXr and IRA458. Aromatic
DOM greater than 1600 Da was completely removed by
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MIEXr at 30 min, but this DOM fraction still remained
after the 60-min contact time with IRA458. This was ex-
plained by the fact that the macroporosity, small resin size
and iron oxide content of MIEXr provided greater DOM
accessibility and more solid-liquid interfaces, resulting in
a more rapid removal of aromatic DOM greater 1600
Da than IRA458 and other AERs (data not presented).
However, aromatic DOM smaller than 1000 Da remained
after treatment by either MIEXr or IRA458, indicating
that DOM in this smaller-MW fraction was not easily
removed by the AERs, which is consistent with the finding
by Humbert et al. (2005).

Figure 3 shows the 3D F-EEM of raw water and EEM
volumes (accumulated fluorescence intensities) of the indi-
vidual regions in 3D F-EEM spectra of raw water and AER
treated waters, which was computed using the fluorescence
region integration proposed by Chen et al. (2003). The
position of Ex-Em of each region followed Chen et al.
(2003) and Nguyen and Roddick (2013). Region I (Ex/Em:
220–270/280–330) and region II (Ex/Em: 220–270/330–
380) corresponded to aromatic proteins such as tyrosine-
and tryptophan-related compounds, respectively. Region
III (Ex/Em: 220–270/380–550), region IV (Ex/Em: 270–
440/280–380), and region V (Ex/Em: 270–440/380–550)
corresponded to fulvic acid-like compounds, soluble mi-
crobial products (SMPs) and humic acid-like compounds,
respectively. The result demonstrated that the raw water
contained predominantly humic and fulvic acid-like com-
pounds, which were efficiently removed by all of the tested
AERs. However, all AERs showed marginal removal of
tyrosine, tryptophan and SMPs, which was consistent with
findings reported by Cornelissen et al. (2008) and Nguyen
and Roddick (2013). The reasonable explanation for higher
removal of fulvic and humic acid-like compounds by
AERs is that these compounds are negatively charged at
basic pH (pH = 9) and thus can be easily removed by ion
exchange mechanism. The greatest removal of humic acid-
like compounds (71%) and fulvic acid-like compounds

(55%) were found for MIEXr at a dose of 2 g/L for 30 min,
while they were also removed by other AERs in the range
of 43%–56% for humic acid-like compounds and 32%–
43% for fulvic acid-like compounds.

2.3 Control of disinfection by-products by AERs

The concentrations of THM and HAA species in the raw
water and treated water by AERs at the dose of 2 g/L for 30
min are shown in Table 2. The total THMFP in raw water
was higher than the total HAAFP, which was in agreement
with results reported by Marhaba and Van (2000) and Ates
et al. (2009). Chloroform (47%) was the dominant THM
species in raw water, followed by BDCM (35%), DBCM
(17%) and TBM (1%). For HAAFP in raw water, TCAA
was the most dominant species (56%), followed by DCAA
(33%), whereas DBAA, CAA and BAA were found in
small proportion lower than 7%. This indicated that DBP
precursors in the raw water contributed to the formation
of brominated THM species rather than the formation of
brominated HAAs. This is consistent with the work by
Ates et al. (2009) using reservoir water. In addition, the
relatively large proportion of brominated THM species of
raw water can be explained by the relatively high concen-
tration of bromide in Lake Inba numa. All of the tested
AERs showed efficient total THM removal at 52%–77%
and total HAA removal of 47%–89%. The highest total
THMFP and HAAFP removals were achieved by MIEXr

because it had the greatest DOC removal at 30 min com-
pared with the other AERs. MIEXr efficiently removed
chlorinated THMs, whereas the removal of brominated
THMs (i.e. DBCM and BDCM) was lower than those
of the other AERs because of the low removal rate of
bromide by MIEXr. Polyacrylic resins such as IRA458
and Purolite were capable of removing both chlorinated
THMs (36%–42%) and brominated THMs (DBCM: 62%–
77%; BDCM: 67%–69%). Interestingly, polystyrene AERs
showed higher brominated THM removal rates (85%–92%
for DBCM and 78%–81% for BDCM) than chlorinated
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Table 2 Formation of THM and HAA species in raw water and treated waters from AERs

Water sample THM species (µg/L) HAA species (µg/L)

TCM DBCM BDCM TBM CAA DCAA TCAA BAA DBAA

Raw water 36 13 27 1 2 15 25 0 3
DBPraw water (%) 47 17 35 1 4 33 56 0 7
AERs treated water
IRA400 19 1 5 0 0 8 13 0 0
IRA910 21 2 6 0 0 8 15 0 0
MIEXr 7 4 7 0 0 3 2 0 0
IRA458 23 3 9 0 0 8 16 0 0
Purolite 21 5 11 0 0 7 12 0 0

AER dose of 2 g/L and 30 min contact time.

THM removal rates (42%–47%) due to their greater bro-
mide than DOC removal rates. MIEXr was also effective
in the removal of chlorinated HAAs including DCAA
(80%) and TCAA (92%), whereas other AERs showed
removal rates of DCAA and TCAA of 47%–53% and
36%–52%, respectively. In addition, CAA and DBAA, of
the HAA species, were not found after treatment by all the
AERs. The findings of this study suggest that polystyrene
AERs removed bromide to a greater extent than DOC,
resulting in a lower Br/DOC ratio and decreasing the
relative occurrence of brominated THMs, while MIEXr

was effective in removing DOC, showing a substantial
removal of chlorinated DBPs.

3 Conclusions

This study reported that differences in AER properties
affected the removal of DOM and bromide from surface
water, and consequently the reduction of THM species
after chlorination. A polyacrylic macropore-type resin,
MIEXr, showed the most effective removal of DOC,
possibly due to the small bead size, but polystyrene
AERs were more effective in bromide removal than the
polyacrylic resins. All selected AERs showed preferen-
tial removal of DOM with MW greater than 1600 Da
and of fulvic acid-like and humic acid-like compounds
of the fluorescent DOM fractions. The AER treatments
significantly lowered the DBPFP levels, with total THMFP
removal rates of 52%–77% and total HAAFP removal rates
of 47%–89%. As for MIEXr, although bromide removal
was relatively lower than those by other AERs, the highest
DOC removal at 30 min led to a significant reduction of
chlorinated DBPs. On the other hand, polystyrene AERs
decreased the relative occurrence of brominated THM
species in raw water. The results of this study suggest
that AERs are able to remove both DOM and bromide
simultaneously. Depending on the DOM characteristics
and bromide concentration of source waters, we should
select a suitable AER to meet the goal of both total and

brominated DBPs in treated water.
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Humbert, H., Gallard, H., Croué, J.P., 2012. A polishing hybrid AER/UF
membrane process for the treatment of a high DOC content surface
water. Water Res. 46(4), 1093–1100.

Humbert, H., Gallard, H., Suty, H., Croué, J.P., 2005. Performance of
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