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Using total suspended solid (TSS) removal efficiency and hydraulic retention time (HRT) as
design parameters a design guideline of a settling basin in a constructed wetland (CW) was
suggested; as well as management of sediment and particle in the settling basin. The CW
was designed to treat the piggery wastewater effluent from a wastewater treatment plant
during dry days and stormwater runoff from the surrounding paved area during wet days.

The first settling basin (FSB) in the CW was theoretically designed with a total storage
volume (TSV) of 453 m® and HRT of 5.5 hr. The amount of sediment and particles settled at
the FSB was high due to the sedimentation and interception of plants in the CW. Dredging
of sediments was performed when the retention rate at the FSB decreased to approximately
80%. Findings showed that the mean flow rate was 21.8 m®hr less than the designed flow
rate of 82.8 m%hr indicating that the FSB was oversize and operated with longer HRT
(20.7 hr) compared to the design HRT. An empirical model to estimate the length of the
settling basin in the CW was developed as a function of HRT and desired TSS removal
efficiency. Using the minimum tolerable TSS removal efficiency of 30%, the length of the
FSB was estimated to be 31.2 m with 11.8 hr HRT.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.
Published by Elsevier B.V.
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the operation of a sedimentation basin, regular clean out and
removal of accumulated sediment by dredging are required.
Sediment accumulation is one of the few processes in wetland

Introduction

Constructed wetlands (CWs) are artificial wastewater treatment
systems composed of a shallow basin filled with substrate, such as
soil or gravel, and planted with vegetation tolerant of saturated soil
conditions (Davis, 1995; Lazareva and Pichler, 2010). Many CW
designs incorporate a sedimentation basin to trap sediments and
large particulates before they enter the wetland. Wetlands act as
settling basins and biological filters, can reduce turbidity, and can be
used as water treatment systems. This can extend the life of the
constructed wetland and ultimately enhance treatment efficiency
(Kadlec and Wallace, 2009). Settling basins are suggested where
space is available and construction costs are manageable. Due to

treatment that has a foreseeable requirement for maintenance.
More than 70% of the pollutant removal in the CW is attained
because of sedimentation enhanced by long hydraulic retention
time (HRT) and interception of plants. Therefore, the removal of
accumulated sediments during maintenance is vital to improve the
water quality in the CWs (Swash and Monhemius, 2005; Kadlec and
Wallace, 2009). Sediments in the CW may accumulate over long
periods and can act as new pollutant sources to the overlying water
(Lijklema et al., 1993). It could uptake or release contaminants when
the environmental conditions change such as pH (low or high),
temperature and dissolved oxygen concentration in the water
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(Golterman, 1977; Lijklema, 1977). Sediment re-suspension or
pollutant desorption may be an important source of pollutant to
the water column, and this potential release is a growing concern.
The characteristics of sediments, as well as overlying water quality,
could affect the release rate. Numerous studies have reported
several characteristics of accumulated sediment in CW such as its
phosphorus storage, distribution, and associations to metals (White
et al., 2000; Dunne et al., 2005; Maine et al., 2007; Lee et al., 2010).

The settling basin design has relied on empirically derived
criteria such as basin overflow rate, depth, surface geometry, HRT,
and weir rate (Kadlec and Wallace, 2009). These criteria were helpful
for designers but are not accurate enough to permit prediction of
actual settling performance. The settling basins sized at average
flow conditions should be checked at extreme flow conditions (e.g.,
peak storm flows with recycle flows and basins out of service) to
verify that operating parameters are acceptable. Degraded perfor-
mance at peak flows should be considered in the design of
secondary treatment processes. Design of settling basins must
identify and take into account the flow characteristics of the flow
stream. The settling basin functions as a pretreatment process by
reducing the mass of particulate materials before entering the next
process (Moshiri, 1993; Kadlec and Wallace, 2009). Knowing the
characteristics of sediment is important because accumulated
particles on the catchment area during dry periods are the main
sources of particulate matter during a storm and are affecting as
serious pollutants on the receiving waters (Tuccillo, 2006). Informa-
tion about particle size distributions of sediment and water is also
important to design the treatment facilities on the purpose of
managing nonpoint source pollution.

This study has focused a great deal of attention on settling basin
of the CW as a pretreatment process. The main objectives were to
suggest a settling basin design guideline using total suspended solid
(TSS) removal efficiency and HRT to effectively manage the
sediment and particles in the water of the settling basin in the CW.

1. Materials and methods
1.1. Description of the first settling basin

The surface flow CW site was located in Nonsan City, South
Chungcheong Province, Korea having a total surface area
(TSA) of 4492 m?, total storage volume (TSV) of 4006 m* and
design HRT of 48 hr draining a catchment area of 110,000 m?.
The climate of the region is monsoon and temperate, and is
characterized by annual rainfall of approximately 1400 mm of
which more than half was concentrated during the summer
season from June until August. The mean seasonal temper-
atures for the region were 12.0 °C in spring (March to May),
23.5 °C in summer (June to August), 13.7 °C in fall (September
to November) and 0.5 °C in winter (December to February) (Lee
et al,, 2012). The influent water has slightly higher tempera-
ture than the ambient air temperature with temperatures of
15.8,26.7, 20.5, and 9.8 °C for spring, summer, fall and winter,
respectively (Lee et al., 2012). The CW was designed as the
final stage of a wastewater treatment plant treating piggery
wastewater during dry days and stormwater runoff from the
paved area during wet days. The influent wastewater to the
CW has average (mean =+ standard deviation) concentrations
of 79+06, 42+24, 622258, 68.7+37.2, 137.7 + 614,
146.2 + 46.7, and 5.5 + 2.1 mg/L for pH, dissolved oxygen,
TSS, biochemical oxygen demand, chemical oxygen demand,
total nitrogen and total phosphorus, respectively (Lee et al,,
2010). Fig. 1 shows the watershed area and treatment units of

the CW. The CW was composed of six cells in series starting
with the first settling basin or FSB (Cell 1), followed by an
aeration pond (Cell 2), deep marsh (Cell 3), shallow marsh
(Cell 4), deep marsh (Cell 5) and final settling basin (Cell 6). The
FSB has a TSA of 560 m? a TSV of 453 m® and an average
depth of 0.8 m. The design HRT of treating wastewater from
the inlet to the outlet of the FSB is approximately 5.5 hr. The
FSB was planted with Phragmites australis surrounding the
water zone. During monitoring period, the average proportion
of plant coverage to surface area in FSB was 6.4%.

1.2. Monitoring method

Undisturbed sediment sample was collected at the inlet and
outlet parts of the FSB since February 2009 to October 2012
using an acryl tube 5cm in diameter and 50 cm long.
Undisturbed sediment samples were separated to determine
the pollutant amount in soil layer (SL) and accumulated
sediment (AS) at the bottom soil layer. The depth of each
sample was measured and the particle size was analyzed.
Particle size distributions of sediment samples were analyzed
using standard sieves and Beckman Coulter LS230 particle
size analyzer (Kim et al., 2006). Undisturbed sediment samples
of the FSB were air-dried and wet sieved using stainless steel
test sieves of sizes of 2000, 1000, 850, 425, 250, 180, 150 and
75 pm. This procedure resulted to seven sub-sets of particle
ranges 0-75, 75-150, 150-180, 180-250, 250-425, 425-850, and
850-2000 pm. Water quality samples were collected at the
inlet and outlet of the FSB for TSS analysis and particle size
distributions using laser diffraction particle size analyzer
(Beckman Coulter LS230, International Equipment Trading
Ltd., Illinois, USA) of sizes from 0 to 2000 pm.

1.3. Statistical analyses

All statistical analyses were performed using SYSTAT 9.0 and
OriginPro 8 package software. One-way analysis of variance
was used to analyze the difference between variance of
particle size data. The difference was tested at 95% confidence
level, which signifies that probability p value was less than
0.05.

2. Results and discussion
2.1. Particle size distributions of influent and effluent

The particle size distributions of size from 0 to 2000 um for
influent and effluent in the CW are summarized in Table 1.
The particle size of influent and effluent showed no significant
difference (p >0.05). The mean particle size of influent
(107.6 + 142.7 um) was higher than effluent particle size
(39.76 £ 49.15 pm). The mean dso (50% diameter) of influent
and effluent were observed to be 57.65 and 24.56 pm, respec-
tively. The findings showed that the particulate materials
were decreased by sedimentation and interception of plants in
the CW. The settled particulate matters decreased along the
hydrologic path of settling basin (El-Sheikh et al., 2010). The
complex and integrated environment of CWs provided great
number of mechanisms to remove contaminants from water.
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flow path.

The most important treatment process common to all wetland
systems was the physical settling of suspended particulate
matters such as silt or clay, or fine particles of organic and
inorganic matters (Moshiri, 1993). These pollutants were
adsorbed into the sediments that accumulated at the bottom
of the wetland.

2.2. Particle size distribution of sediment at the first
settling basin

Fig. 2 shows the cumulative particle size volumes of SL and AS
at the bottom soil layer of the FSB. Comparing the results of AS
and SL particles, the amount of fine particles in AS were greater
than SL but no significant difference was identified (p > 0.05).
The particles higher than size 150 pm was greater in AS (out)
compared to AS (in) while less in the particles ranging from 150
to 2000 pm. This result was due to the slow settling of fine
particles at the bottom along flow path. The particle size
distributions for each sediment sample at the FSB are presented
in Fig. 3. The highest amount of AS and SL particles collected
was below 75 pm while lower amount of particles was observed
in the 850-1000 pm size range. Itis likely that the characteristics
of the accumulated materials on paved areas are known to have
enriched coarser particles through the re-suspension and loss
of finer sediment taking into account (Sartor and Boyd, 1972).
The influent concentration from livestock wastewater (dry
days) and combined livestock wastewater and stormwater
runoff (wet days) appreciably contains high amount of partic-
ulates of 115.4 + 112.3 and 159.3 + 115.6 mg/L, respectively and

Table 1-Summary of particle size distributions of

influent and effluent in the CW (unit: pm).

Mean Standard deviation dqo dso doo

Influent 107.6 142.7 12.50 57.65 263.3
Effluent 39.76 49.15 6.129 2456 87.54

dso: mass median diameter; d;o and dgo: grain diameter at which
10% and 90% of the sediment sample is finer than

was directed into the CW. The amount of particles was
relatively high in FSB because the main mechanism of pollutant
removal in the CW is sedimentation.

2.3. Sediment accumulation at the first settling basin

Sediment accumulation is important when determining the
long-term maintenance requirements over the lifetime of CW.
Fig. 4 provides the changes in the depth of AS at the inlet and
outlet of FSB during the operation period. The sediment
accumulation was increased to 19.5 cm on June 13, 2012. The
particulate materials precipitated at the FSB as this process
acted as the main pollutant removal mechanism at the FSB of
the CW. The sediment accumulation was low in July 2009,
November 2010 and June 2012 due to the dredging operation
that took place at that time. As can be seen in Fig. 4, the
sediment depth was apparently reduced after the dredging
operation. According to Boyd and Queiroz (2001), when sedi-
ment accumulation begins to encroach on the HRT volume, the
sediment should be removed and properly disposed. The
dredging times were determined when the retention rates of
the FSB were decreased to approximately 80%. After the

100} --m- SL (in)

= —0— AS (in)
& 80} --@- SL (out) g
g —O— AS (out)
E 60} .
(] d
2
g 40+
g
S 20t

0+

1 10 100 1000
Particle size (um)

Fig. 2 - Cumulative particle size volumes of soil layer (SL) and
accumulated sediment (AS) at the FSB.
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Fig. 3 - Particle size distribution of soil layer (SL) and
accumulated sediment (AS) at the FSB.

dredging operation, retention rates increased between 90%
and 95%. During the third dredging operation on June 18,
2012, the unit sediment loads removed was determined to be
182 kg/(m?-yr) of which 17.6, 0.6 and 1.0 kg/(m?-yr) were the
amount of organic matters, nitrogen and phosphorus. The
analysis of physico-chemical characteristics of the sediment
accumulated at the FSB is important to predict the removal
efficiency of the next treatment unitin the CW and to determine
efficient operation and management.

2.4. TSS removal efficiency with overflow rates at the first
settling basin

The overflow rate represents the minimum settling velocity
necessary for sedimentation. Hence, all particles with a
terminal-settling velocity (Vs) equal to or greater than the
overflow rate (Vo) will settle in the basin; only the fraction
(V&/ Vo) of the particles with a velocity less than the overflow rate
will settle in the basin (USWEF and ASCE, 1992). A graphical
representation of the relationship between the overflow rate (or
surface loading rate) and TSS removal performance on an
idealized basis is shown by the curve in Fig. 5. TSS removal
efficiencies of 9.8% to 63.5% were achieved with overflow rates
between 0.11 and 4.83 m?/(m?-day). Such performance was not

24

70
*
60}

Qe o
50t

40+
30
20+
10}

0

0 1 2 3 4 5 6
Overflow rate (m*/(m?.day))

TSS removal efficiency (%)

Fig. 5 - TSS removal efficiency versus overflow rates at the
FSB showing idealized curve with data.

always achieved because many conditions were not accounted
for by the theory that affects the performance of operating
facilities which include inappropriate application of design
details, loading variability, soluble-to-insoluble ratio of organic
content, volatile/inert proportions, and recycle flow proportions
(USWEF and ASCE, 1992). Therefore, use of overflow/performance
relationships calls for caution, recognizing that more favorable
ratios require careful and prudent consideration of the many
other factors that affect performance.

2.5. Designing the first settling basin

A settling basin was typically designed considering HRT
which is an important factor affecting the TSS removal
efficiency. In order to determine the real operation HRT,
monitoring was performed for four years during dry days. The
mean inflow rate was determined to be 21.8 m>/hr, which was
less than the designed flow rate (82.8 m>/hr) indicating that
the FSB was operated with long HRT (20.7 hr) compared to the
design HRT (5.5 hr). As a result, approximately 44% of TSS was
removed at the FSB, which was greater than that of originally
expected removal efficiency (less than 35%). However, the
long HRT can also have a disadvantage such as oversized
design. The calculated HRT in the CW showed that the

#1 dredging (07/02/09)
21+

18

Depth of AS (cm)
o
T

#2 dredging (11/20/10)

#3 dredging (06/18/12)

6L :
: —m— AS(in)
T E —O— AS (out)
1 1 : 1 1 1 1 1 1
03/09/09 07/02/09 09/16/09 07/30/10 11/18/10 08/23/11 10/06/11 06/13/12

Monitoring date

Fig. 4 - Changes in the depth of accumulated sediment (AS) at the FSB.
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constructed FSB was oversized. The oversized space can be
used for other purposes to increase the pollutant removal
efficiency. In order to find the excess oversized space, efficient
sizing study for settling basin was needed.

Fig. 6 shows TSS removal efficiency with HRT changes
during monitoring. The TSS removal efficiency was increased
by increasing the HRT. When the TSS removal efficiency was
about 44%, the HRT was determined to be 17.3 hr. A 44% TSS
removal efficiency was relatively high compared to other
wastewater treatment plants. When the removal efficiencies
were between 20% and 30%, the HRT ranged from 7.9 to
11.8 hr. Boyd and Queiroz (2001) suggested that minimum
HRT should be 8 hr but a HRT of 24 hr or longer will provide
better treatment. As shown in Fig. 6a the TSS removal
efficiency is proportional to HRT. However, when the TSS
removal efficiencies were less than 44%, the trend was
linearly increasing. The HRT can be determined by Fig. 6b.

The HRT was dependent on the volume of settling basin
and inflow rate. The volume can be determined by multiply-
ing of depth, width and length of settling basin. Among the
dimensional parameters, length was a design factor for
volume sizing because the depth was limited to 1 m and
width was also limited due to flow. Therefore, the length (m)
can be the actual parameter for designing the settling basin.
Depending on a fixed inflow rate, the length of FSB could be a
function of HRT as shown in Fig. 7a. The optimal length of the
FSB was determined to be 31.2 m with 11.8 hr HRT when the
required TSS removal efficiency was 30%. Based on Fig. 7b, an

empirical model for determining the required length (I, m) of
the settling basin in the CW was developed as a function of
HRT (hr) and desired TSS removal efficiency (RErss, %) as
shown in Egs. (1) and (2).

RErss

HRT = 5547

(1)

| =62 RErss eXp(—0.22 HRT) + 0.579RErss

3. Conclusions

This study was performed to suggest an optimum settling basin
as a pretreatment process using TSS removal efficiency and HRT
and to manage the sediment and particles in the water of the
settling basin in the CW. The highest amount of AS and SL
particles collected was below 75 pm (SL: 35%—40%, AS: 60%—65%).
The amount of sediment and particles at the FSB was high due
to the sedimentation process identified as the main pollutant
removal mechanism in FSB. Wetlands promote sedimentation
by decreasing the water velocity and the filtering effect of plant
stems and leaves. The main activity of maintenance in settling
basin was dredging to remove accumulated sediments and to
recover the possible volume of settling basin. The determination
of amount of sediment accumulation and frequency of mainte-
nance were the main concemns in settling basin. The optimal
dredging time was determined by analyzing the monitored data.

o Length (TSS removal=20%) ¢ Length (TSS removal=30%) @ Length (TSS removal=40%) m TSS removal --- Fit curve of TSS removal
250 100 200 100
E a - E b | -
£ 200 180 £ Z 160} 180 =
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Fig. 7 - Length of the FSB with respect to HRT and TSS removal using (a) pooled data, and (b) truncated data (less than 24 hr).
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Sedimentation dredging was performed when the retention rate
of the FSB was decreased to approximately 80%. The unit
sediment loads removed was determined to be 182 kg/(m?-yr) of
which 17.6, 0.6 and 1.0 kg/(m?-yr) were the amount of organic
matters, nitrogen and phosphorus. The settling basin has an
important function in CW because TSS was mainly removed in
the basin. During the monitoring period, the TSS removal
efficiency for influent and the reduction of TSS load influenced
with generated TSS load were considerable. Efficiency of TSS
removal was proportional to the particle settling velocity and
length of the wetland. Considering the calculated HRT at the
FSB, the CW was determined to be oversized compared to the
results of the monitored data. Therefore, an empirical model
was developed to determine the required length of settling basin
with function of HRT and TSS removal efficiency. The required
length of the FSB was determined to be 31.2m which
corresponded to 11.8 hr HRT when the required TSS removal
efficiency was 30%. The findings of this study were useful
in designing the settling basin of the CW applicable as a
pretreatment process.
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