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Excessive nitrogen (N) and phosphorus (P) loading of aquatic ecosystems is a leading cause
of eutrophication and harmful algal blooms worldwide, and reducing nutrient levels in
water has been a primary management objective. To provide a rational protection strategy
and predict future trends of eutrophication in eutrophic lakes, we need to understand the
relationships between nutrient ratios and nutrient limitations. We conducted a set of
outdoor bioassays at the shore of Lake Taihu. It showed that N only additions induced
phytoplankton growth but adding only P did not. Combined N plus P additions promoted
higher phytoplankton biomass than N only additions, which suggested that both N and P
were deficient for maximum phytoplankton growth in this lake (TN:TP = 18.9). When
nutrients are present at less than 7.75–13.95 mg/L TN and 0.41–0.74 mg/L TP, the deficiency
of either N or P or both limits the growth of phytoplankton. N limitation then takes place
when the TN:TP ratio is less than 21.5–24.7 (TDN:TDP was 34.2–44.3), and P limitation occurs
above this. Therefore, according to this ratio, controlling N when N limitation exists and
controlling P when P deficiency is present will prevent algal blooms effectively in the short
term. But for the long term, a persistent dual nutrient (N and P) management strategy is
necessary.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Nitrogen (N) and phosphorus (P) are essential elements for the
synthesis of nucleic acids, ATP and proteins, which are necessary
for cell division and growth (Conley et al., 2009). The cycles of the
key macronutrients N and P have been massively altered by
anthropogenic activities (Canfield et al., 2010; Elser et al., 2007). N
ac.cn (Boqiang Qin).

o-Environmental Science
and P over-enrichment accelerates eutrophication in aquatic
ecosystems and has promoted harmful algal blooms worldwide
(Conley et al., 2009; Paerl et al., 2011a; Schindler and Hecky, 2009).
Some of our largest aquatic ecosystems are now experiencing
severe cyanobacterial blooms (Paerl et al., 2011a). The strongest
stimulation of algal productivity is usually observed when N and P
enrichment occurs simultaneously (Elser et al., 2007; Lewis and
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Wurtsbaugh, 2008; Paerl et al., 2008). These results suggest that
there is a need to reduce both N and P inputs to prevent further
eutrophication and harmful algal bloom expansion (Paerl and
Otten, 2013; Paerl and Paul, 2012; Xu et al., 2010).

Nutrient control strategies strongly rely on nutrient limitation
studies. The TN:TP ratio has been widely proposed as a means to
identify whether phytoplankton is N or P limited (Healey and
Hendzel, 1980; Hecky et al., 1993; Smith, 2006; Verburg et al., 2013).
Previous studies to predict which nutrient is limiting have often
applied the hypothesis that there is an optimal ratio of N and P
supply rates that promotes maximum rates of primary production
(Redfield, 1958; Schanz and Juon, 1983). The most commonly cited
ratio is the Redfield ratio, which states that marine algal cells
contain N and P in a 16:1 (atomic) ratio on average (Redfield, 1958).
Thus, assuming that nutrient concentrations in the water reflect
supply rates and according to Liebig's law of the minimum (Liebig,
1842), algae should be limited by N if the water N:P ratio is lower
than 16 on an atomic basis (TN:TP of 7.2). In contrast, they should
be limited by P if the ratio is above that.

However, shifts from N to P limitation have often been found to
occur at ratios different from the Redfield ratio in many field
observations (Bergström, 2010; Elser et al., 2009; Guildford and
Hecky, 2000; Morris and Lewis, 1988). In both lakes and oceans, N
limitation was apparent at TN:TP < 9 whereas P limitation consis-
tently occurred when TN:TP > 22.6, and either N or P could become
deficient for ratios in the range 9 < TN:TP < 22.5 (Guildford and
Hecky, 2000). In 106 oligotrophic lakes across Europe and North
America, 72% of the variation in the response of algae to
nutrient-enrichment assays revealed that phytoplankton growth
shifted from N limitation at DIN:TP mass ratios <1.5 to P limitation
atDIN:TPmass ratios >3.4 (Bergström, 2010). Schanz and Juon (1983)
have reported N limitation of streammicrophytobenthos at atomic
N:P ratios <10 and P limitation at N:P ratios >20. Moreover, the N:P
ratio also failed to predict the nutrient-limiting status in some cases
(Francoeur et al., 1999; Wang et al., 2008).

To provide a rational strategy and predict future trends of
eutrophication in eutrophic lakes, we need to understand the
relationships between nutrient ratio, absolute nutrient concen-
tration and nutrient limitation.

Lake Taihu, a large, shallow and hyper-eutrophic lake in China,
has suffered annual cyanobacterial blooms from May to October
and has changed from bloom-free to bloom-plagued conditions
over the past 3 decades (Chen et al., 2003b; Paerl et al., 2011b).
Approximately 40million people live in cities and towns within the
Taihu watershed. The lake is a key drinking water source for the
local human population (estimated to be about 10 million), with
tourism, fisheries, and shipping being additional important eco-
nomic functions. Ironically, it is also a repository for waste from
urban centers and nearby agricultural and industrial segments of
the rapidly growing local economy (Qin et al., 2007).

Anthropogenic activities are likely to accelerate nutrient
loading to Lake Taihu. Here, we analyzed the results of field
experiments to evaluate the responses of phytoplankton biomass
to manipulations of N and P availability in Lake Taihu water using
a set of outdoor bioassays. Our goals were to examine the effects of
individual and combinedNandP additions onphytoplankton growth
and determine the relationship between nutrient ratio and nutrient
limitation in LakeTaihu, using anutrient additionbioassay incubated
under natural light and temperature conditions during the bloom
period.
c.c
n

1. Materials and methods

1.1. Bioassay

A set of bioassays was conducted from 10 to 28 September,
2012 (Ma et al., 2014). Lake water samples were incubated
under natural light and temperature conditions at the Taihu
Laboratory for Lake Ecosystem Research (TLLER), located
on the shore of Lake Taihu, near Wuxi, China. We prepared
48 white plastic buckets (maximum volume of 35 L) and
then pumped 30 L water from the lake into each bucket. N
and P were added as NaNO3 and KH2PO4 respectively as
three treatments (N only, P only and N plus P). The added
nutrient concentrations of treatments were 2, 4, 8, 16 and 32
times relative to the control (lake water with no additions)
concentrations (Table 1). Each treatment was performed
in triplicate. The pH, dissolved oxygen (DO), dissolved
oxygen saturation (DO%), and electrical conductivity (EC)
were measured in each bucket between 8:00 and 9:00 on days
0, 3, 6, 9, 12, 15, and 18 by a Yellow Springs Instruments (YSI)
6600 multi-sensor sonde (YSI Incorporated, Brannum Lane,
Ohio, USA).We sampled 0.5 Lwater fromeach bucket in order
to determine the chlorophyll a (Chl-a) concentration and
total phytoplankton biovolume. Weather conditions and air
temperature were recorded every day. Each bucket was
stirred before sampling and twice daily at 7:00 and 19:00.
Chl-a concentrations were determined spectrophotometri-
cally after extraction in 90% hot ethanol (Pápista et al., 2002).
Phytoplankton samples were preserved with Lugol's iodine
solution (2% final concentration) and sedimented in a plastic
bottle for 48 hr. Cell density was measured with a Sedgwick–
Rafter counting chamber under magnification of 200×–400×.
Algal biovolumes were calculated from cell numbers and cell
size measurements. Conversion to biomass was calculated
by assuming that 1 mm3 of volume was equivalent to 1 mg of
fresh weight biomass (Chen et al., 2003a).

1.2. Statistical analysis

Data are presented as means ± SD. Significant differences
between control and treated samples were determined by
analysis of variance with the Tukey post-hoc test. Statistical
analyses were conducted with SPSS 17.0 (IBM, Armonk, State
of New York, USA).

The growth rate (μ) under each set of treatment conditions
was calculated according to the modified exponential growth
equation,

μ ¼ ln X2=X1ð Þ
T2−T1

where, X1 (mg/L) is the concentration of Chl-a on day 0 (T1),
and X2 (mg/L) is the concentration of Chl-a on day 18 (T2).
c.a

2. Results

2.1. Environmental factors

The weather conditions were cloudy (days 0–2, day 4, day 11,
days 17–18), rainy (day 3 and day 12) and sunny (days 5–10, days
13–16). Air temperature ranged from 16 to 28°C. Water temper-
ature ranged from 18.8 to 22.5°C. The pH, dissolved oxygen (DO)
concentration, dissolved oxygen saturation (DO%), and electri-
cal conductivity (EC) in N plus P additions were greater than
those observed in either N or P additions or controls (Table 2).
jes
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Table 1 – Nutrient concentrations (mg/L) and ratios in the experiment.

Buckets TN TDN TP TDP TN:TP (+N) TDN:TDP (+N) TN:TP
(+ P)

TDN:TDP
(+ P)

TN:TP
(+N plus P)

TDN:TDP
(+N plus P)

Initial water 1.55 0.95 0.082 0.053 18.9 17.9 18.9 17.9 18.9 17.9
+2× 4.65 4.05 0.246 0.217 56.7 76.4 6.3 4.4 18.9 18.7
+4× 7.75 7.15 0.41 0.381 94.5 134.9 3.8 2.5 18.9 18.8
+8× 13.95 13.35 0.738 0.709 170.1 251.9 2.1 1.3 18.9 18.8
+16× 26.35 25.75 1.394 1.365 321.3 485.9 1.1 0.7 18.9 18.9
+32× 51.15 50.55 2.706 2.677 623.8 953.8 0.6 0.4 18.9 18.9

TN: total nitrogen; TP: total phosphorus; TDN: total dissolved nitrogen; TDP: total dissolved phosphorus; +N: nitrogen added; +P: phosphorus
added; +N plus P: nitrogen and phosphorus added; +2× (4×, 8×, 16× and 32×):2 (4, 8, 16 and 32) times nitrogen, phosphorus or the both added.
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2.2. N, P and N plus P addition results: TN:TP ratio changes
and impact on phytoplankton growth

In the initial lake water, the TN:TP ratio was 18.9 (TDN:TDP =
17.9). The TN:TP ratios were 56.7–623.8 (TDN:TDP = 76.4–953.8)
in N addition buckets, 0.6–6.3 (TDN:TDP = 0.4–4.4) in P addition
buckets and remained at 18.9 in N and P addition buckets
(Table 1). Biomass (Chl-a) in the initial lake water was
(20.46 ± 0.82) μg/L. Chlorophyll a concentrations in N only
additions were significantly higher than those in controls after
12 days of incubation (p < 0.05) but there was no significant
difference between 2× and 32× (Fig. 1a). The biomass in P only
additions was not significantly different from controls and
there was no significant difference between 2× and 32×
additions (p > 0.05, Fig. 1b). The biomass of N plus P additions
wasmuchhigher than that of control andNonly additions from
day 3 (p < 0.05, Fig. 1c). The 2× N plus P addition promoted a
176% increase in biomass above all N only additions on day 18
(p < 0.01; Fig. 1a, c). The biomass of 4× N plus P addition was
higher than that of 2×, with no significant difference
(p > 0.05), and significantly lower than that of 8× addition
(p < 0.05; Fig. 1c). The biomass response of the 8× N plus P
addition (TN = 13.95 mg/L, TP = 0.74 mg/L in buckets) was the
highest (281.6 ± 28.9 μg/L) on day 15 but showed no significant
difference with 16× or 32× additions during the experimental
period (p > 0.05; Fig. 1c).

The linear relationship between Chl-a and total phyto-
plankton biovolume in all treatments from day 0 to day 18 was
clear and significant (Fig. 2). Genus Microcystis and Cosmarium
were dominant in initial lake water and dynamic in the
experiment.
Table 2 – Range of pH, DO, DO% and EC in the experiment.

Parameter Control N
additions

P
additions

N plus P
additions

pH 8.91–9.41 8.79–9.46 8.97–9.54 9.45–11.28
DO (mg/L) 8.95–12.24 9.27–14.66 9.08–11.13 9.1–19.64
DO% 102.9–113.4 105.3–120.9 101.1–124.7 101.4–232.3
EC (μS/cm) 435–638 439–1211 428–698 488–1346

The pH, dissolved oxygen (DO), dissolved oxygen saturation (DO%),
and electrical conductivity (EC) were measured between 8:00 and
9:00 on days 0, 3, 6, 9, 12, 15, and 18.
During the experiment, the growth rate of the phytoplank-
ton assemblages in the control was (0.009 ± 0.008) day−1. In
the N only additions, growth rates ranged from 0.034 to
jes
c.a

c.c
n

C
h
l-
a 

(μ
g
/L

) 

4× (N+P)

16× (N+P)

2× (N+P)

8× (N+P)

32× (N+P)

Day 18Day 15Day 12Day 9Day 6Day 3Day 0

0

50

100

150

200

250

Fig. 1 – Phytoplankton biomass (Chl-a) changes in bioassays
with added N (a), P (b) and N plus P (c). Controls were the
same in all treatments.
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0.039 day−1, and had no significant differences with each
other from 2× to 32× (p > 0.05) but were significantly higher
than controls (p < 0.01). In P only additions, growth rates
ranged from 0.008 to 0.015 day−1, and showed no significant
differences from controls and each other over the 2× to 32×
range (p > 0.05). In N plus P additions, growth rates ranged
from 0.096 to 0.143 day−1. There were no significant differ-
ences between 8×, 16×, or 32× additions (p > 0.05), which were
higher than 4× (p < 0.05) and 2× (p < 0.01). Growth rates of N
plus P additions were about 3× higher than N additions and
10× higher than P additions or controls (Fig. 3).

The pH values for control and N only and P only additions
were always below 10. However, due to the vigorous growth of
phytoplankton in N plus P additions, values rose to above 10
(Fig. 4).
collected from buckets which had added N, P or N and P.
Nutrient concentrations are relative to initial lake water
(control). Error bars represent ± SD of triplicate samples.
Controls were the same in all cases.
3. Discussion

N plus P additions promoted the highest biomass, suggesting
that both N and P supplies were controlling algal production in
the lake (TN:TP = 18.9). Both N and P input together promoted
higher growth rates thanN or P separately (Fig. 1a, c), which has
been shown byXu et al. (2010) and Paerl et al. (2011b). Compared
to all N only additions, 8× N plus P addition (13.95 mg/L TN and
0.74 mg/L TP in buckets) promoted primary productivity about 5
times (Fig. 1a, c). More interestingly, phytoplankton biomass
and growth rates showed no significant difference between 8×,
16× and 32× N plus P additions, which indicated that nutrient
supplywas sufficient for themaximumgrowth of phytoplankton
in these conditions. Hence, when concentrations more than
about 4×–8× N plus P additions (7.75–13.95 mg/L TN and 0.41–
0.74 mg/L TP) were added, growth of phytoplankton assemblages
in the bioassaywasneitherNnor P, norNandP co-limited (Fig. 1).
In response to these additions phytoplankton grew rapidly,
which may have induced CO2 limitation as indicated by the
very high pH levels (Fig. 4) (Talling, 1976). There is preference for
CO2 over HCO3

− and CO3
2− as a photosynthetic carbon source, but

under these conditions there is little free CO2 in water when
pH 10 is reached (Gavis and Ferguson, 1975; Paerl and Ustach,
c.c
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1982). Thus, the high pH conditions which were promoted by N
plus P additions (Fig. 4) likely promoted inorganic CO2 limitation.

N only additions (TN:TP = 56.7–623.8) promoted phyto-
plankton growth and P only additions (TN:TP = 0.6–6.3) did
not (Table 1, Fig. 1), indicating that N limitation existed in the
initial lake water (TN:TP = 18.9). Phytoplankton growth
showed no significant difference between 2× to 32× N only
additions, suggesting that 2× N additions to the initial lake
water (TN:TP = 56.7) resulted in P limitation. Hence, N
limitation occurred when TN:TP ≤ 18.9–56.7 and shifted to P
limitation when TN:TP ≥ 18.9–56.7. We examined data from
previous studies conducted in every season in Lake Taihu (Xu
et al., 2010, 2013). It indicated that the TN:TP ratio threshold
needed to obtain N- or P-limited conditions was between 21.5
and 24.7 (Table 3) in this lake when less than 7.75–13.95 mg/L
TN and 0.41–0.74 mg/L TP were present. In addition, consid-
ering that phytoplankton cannot take up particulate nitrogen
(PN) and particulate phosphorus (PP), total dissolved nitrogen
(TDN) and total dissolved phosphorus (TDP) may reflect the
conditions in reality. The TDN:TDP ratio threshold shift for N
or P limited conditions was 34.2–44.3 under 7.15–13.35 mg/L
TDN, 0.381–0.709 mg/L TDP (Tables 1 and 3).

This is different from the Redfield ratio, and also different
from numerous previous studies. Bioassay experiments of 19
Kansas (USA) reservoirs showed N limitation when TN:TP
ratios were <8.1, co-limited by N and P when TN:TP ratios
were between 9 and 20.8, and P limitation when TN:TP ratios
>29.4 (Dzialowski et al., 2005). Elser et al. (2009) have reported
that a large majority of experiments indicated N-limited
phytoplankton growth when TN:TP was below ~20, and
phytoplankton growth was consistently P-limited when
above ~49.7.

Although numerous TN:TP ratio studies have been con-
ducted, contradictory results have been noted in these works.
Three factors may explain why these ratio shifts from N to P
limitation were different. Firstly, a major reason could be
jes
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ascribed to the different forms of N and P present. TN and TP
could not reflect the bioavailable N and P species in different
lakes. As the bioavailable N and P species are dynamic and
varying in different lakes, one is unlikely to obtain a common
conclusion by measuring TN and TP. Secondly, our under-
standing of nutrient limitation is derived from Liebig's Law of
the Minimum (Liebig, 1842). Liebig's Law of the Minimum only
originally described the limitation on individual crop plants,
but it has been extended to communities of plants and
ecosystems (Danger et al., 2008). At the community level, a
new layer of complexity exists because communities are
comprised of many species, so that limiting ecological factors
may be shared or unique adaptations (North et al., 2007).
Thirdly, N or P limitation cannot be measured under
conditions where another factor may control the growth of
phytoplankton. For example, only the addition of Fe signifi-
cantly stimulated Microcystis spp. growth, while addition of N
and/or P had no effects on growth, indicating that Fe was a
primary limiting nutrient in East Taihu (Xu et al., 2013).

Freshwater ecosystems tend to be P limited, but as the
trophic state increases (i.e., becomes more eutrophic), these
systems tend to show a higher frequency of N limitation or N
Table 3 – Bioassays in Lake Taihu suggesting the relationship b

Source TN (mg/L) TP (mg/L) TN:TP

Xu et al. (2013) 1.89 0.2 9.5
Xu et al. (2010) 2.29 0.169 13.6
Xu et al. (2010) 1.63 0.103 15.8
Xu et al. (2013) 2.12 0.126 16.8
This research 1.55 0.082–2.706 ≤18.9
Xu et al. (2013) 0.99 0.046 21.5
Xu et al. (2010) 2.37 0.096 24.7
Xu et al. (2010) 3.42 0.133 25.7
This research 4.65–51.15 0.082 ≥56.7
Xu et al. (2013) 0.85 0.014 60.7
Xu et al. (2013) 0.76 0.012 63.3
Xu et al. (2013) 2.36 0.013 181.5

N: N limitation; P: P limitation.
plus P co-limitation. TN:TP is high in oligotrophic lakes and
very low in eutrophic lakes, declining with increased TP
(Downing and McCauley, 1992). Competitive equilibrium
favors greater allocation to P-poor resource-acquisition cell
machinery, leading to a higher N:P ratio, and exponential
growth favors greater allocation to P-rich assembly machin-
ery, resulting in a lower N:P ratio (Klausmeier et al., 2004). N
limitation is not only more frequent in lakes of low ambient
TN:TP (TN:TP mass ratio ≤14) but is also more frequent in
lakes with TP ≥0.03 mg/L (Downing and McCauley, 1992).

TN:TP ratios in Lake Taihu showed strong seasonal
variations, with the highest values (52:1 to 212:1) during the
low productivity season (winter) and lowest values (20:1)
during the high productivity season (spring-fall). This pattern
supports the seasonal bioassay results, which indicated that P
limitation occurs in winter and spring, and, N limitation in
summer and fall (Xu et al., 2010). When the TN:TP ratio
exceeded 29:1 by weight, cyanobacteria tended to be rare,
suggesting that modification of this ratio may provide a
means of lake water quality management (Smith, 1983).
Thus, the TN:TP ratio that we determine not only can be an
effective tool for assessing potential nutrient limitations in
jes
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etween TN/TP, TDN/TDP ratio and nutrient limitation.

TDN (mg/L) TDP (mg/L) TDN:TDP Limitation

0.8 0.05 16 N
1.43 0.062 23.1 N
0.98 0.035 28 N
0.82 0.024 34.2 N
0.95 0.053–2.677 0.6–18.9 N
0.46 0.017 27.1 N
1.55 0.035 44.3 P
2.51 0.044 57 P
4.05–50.55 0.053 56.7–623.8 P
0.75 0.007 107.1 P
0.62 0.005 124 P
2.21 0.006 368.3 P
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Lake Taihu, but also can serve as a threshold to prevent
cyanobacterial blooms. During winter and spring, TN:TP ratios
ranged from 33:1 to 80:1 in Meiliang Bay, but in summer, this
ratio dropped below 20:1. The ratios in the central lake varied
between 30:1 and 64:1 during winter and spring and then
declined in late summer to early fall below 20:1 (Xu et al.,
2010). Hence, in summer and fall, controlling Nwill enhance N
limitation. Conversely, controlling P in winter and spring will
increase P limitation.

Overall, deficiency of either N or P or both is limiting to
phytoplankton growth when less than 7.75–13.95 mg/L TN
and 0.41–0.74 mg/L TP are present. In this study, high
concentrations of N (with low P) or P (with low N), and low N
plus P concentrations, could not promote continuing phyto-
plankton growth because of P, N or dual limitations. This
supports most environmental policy that controls the input of
nutrients into watersheds and maximizes its removal (Smith
and Schindler, 2009). Phytoplankton biomass can be de-
creased substantially by lowering nutrient inputs (Brookes
and Carey, 2011). Obviously, it does not matter whether N, P,
or both are controlled since each strategy will inhibit the
growth of algae if used properly. Therefore, different control
strategies should be implemented according to the actual
situation in different aquatic ecosystems. Previous studies in
Lake Taihu (Xu et al., 2010; Paerl et al., 2011b) have suggested a
dual N and P control strategy in the long term. Based on this
strategy and according to the TN:TP or TDN:TDP ratio,
controlling N when N is limiting and controlling P in case of
P deficiency will prevent cyanobacterial blooms effectively in
the short term.

It is worth noting that even bigger containers are different
from the environment of natural lakes. For example, such
bioassays change the hydrodynamics and the degree of
mixing relative to light attenuation, and have no sediment.
Hence, further research on the use of TN:TP and TDN:TDP
ratios in lake management is needed.
4. Conclusions

When nutrients were present at less than 7.75–13.95 mg/L TN
and 0.41–0.74 mg/L TP, the TN:TP ratio threshold to identify
N or P limitation was 21.5–24.7 (TDN:TDP was 34.2–44.3) in
experiments conducted on water from Lake Taihu. In addi-
tion, both N and P were below levels required for maximum
phytoplankton growth in this lake (TN:TP = 18.9). The defi-
ciency of either N or P or both limits the growth of phyto-
plankton. Based on the dual N and P control strategy of
previous studies, controlling N when N is limiting and
controlling P when P is deficient will prevent algal blooms
effectively in the short term.
c.c
n
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