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In anattempt to elucidate the effects of different CO2 concentrations (270, 380, and 750 μL/L) on
the competition of microcystin-producing (MC-producing) and non-MC-producing Microcystis
strains during dense cyanobacteria blooms, an in situ simulation experimentwas conducted in
the Meiliang Bay of Lake Taihu in the summer of 2012. The abundance of totalMicrocystis and
MC-producing Microcystis genotypes was quantified based on the 16S rDNA and mcyD gene
using real-time PCR. The results showed that atmospheric CO2 elevation would significantly
decrease the pH value and increase the dissolved inorganic carbon (DIC) concentration.
Changes in CO2 concentration did not show significant influence on the abundance of
total Microcystis population. However, CO2 concentrations may be an important factor in
determining the subpopulation structure of Microcystis. The enhancement of CO2 concentra-
tions could largely increase the competitive ability of non-MC-producing over MC-producing
Microcystis, resulting in a higher proportion of non-MC-producing subpopulation in treatments
using high CO2 concentrations. Concurrently, MC concentration in water declined when CO2

concentrations were elevated. Therefore, we concluded that the increase of CO2 concentra-
tions might decrease potential health risks of MC for human and animals in the future.
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
Keywords:
Microcystis
Microcystin
Inorganic carbon
Real-time PCR
Harmful cyanobacterial blooms
Introduction

In recent decades, harmful cyanobacterial blooms have occurred
with increasing frequency and intensity in freshwater ecosystems
worldwide (Paerl and Huisman, 2008). Microcystis is the most
commonly reported bloom-forming cyanobacterial genus and
can be classified as microcystin-producing (MC-producing) and
non-MC-producing strains according to the presence or absence of
microcystin synthetase genes (Fastner et al., 2001; Kaebernick and
Neilan, 2001; Kurmayer et al., 2002). MC-producing strains release a
wide variety of MCs that pose a health risk for both humans and
animals (Chorus and Bartram, 1999; Carmichael, 2001). The waxing
and waning of MC-producing and non-MC-producing Microcystis
as.ac.cn (Fanxiang Kong).

o-Environmental Science
has been considered as the most important factor regulating
MC concentrations in freshwater (Chorus and Bartram, 1999).
Nutrient availability and environmental factors including light
and temperature can influence the dynamics of MC-producing
and non-MC-producingMicrocystis genotypes and MC production
(Briand et al., 2012; Davis et al., 2009; Kardinaal et al., 2007; Vézie
et al., 2002; Yoshida et al., 2007).

The relentless combustion of fossil fuels has significantly
increased the concentrations of atmospheric carbon dioxide,
which have increased from the pre-industrial level of 270 μL/L to
the present level of 380 μL/L, and it is predicted to double by the
end of this century (Caldeira and Wickett, 2003; Solomon et al.,
2007). Rising CO2 concentrations can alter aquatic chemistry, and
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this is likely to have a profound effect on the ecophysiological
characteristics and community structure of cyanobacteria (O'Neil
et al., 2012; Qiu and Gao, 2002; Verschoor et al., 2013). During
the outbreak of cyanobacterial blooms, the high photosynthetic
activity of dense algae blooms can remove CO2 from the surface
water layer, thereby inducing high pH and carbon-limited growth
conditions (Hein, 1997; Ibelings and Maberly, 1998; Talling, 1976).
In contrast, the rising concentrations of dissolved CO2 cause the
pH to decrease and the concentration of dissolved inorganic
carbon (DIC) to rise (Doney et al., 2009; O'Neil et al., 2012; Orr et al.,
2005; Riebesell et al., 2007). Laboratory studies have revealed
that an increase in the availability of inorganic carbon can alter
microcystin production and Microcystis population, favoring the
dominance of non-MC-producing cells over MC-producing cells
(Jähnichen et al., 2007; Van de Waal et al., 2011). However, there is
a lack of field studies investigating how CO2 availability affects the
competition of MC-producing and non-MC-producing strains in
natural freshwater ecosystems.

Lake Taihu is the third largest freshwater lake in China, which
is the primary drinking water source for 30 million residents
in the Lake Basin and Shanghai (Ye et al., 2009). With a rapid
economic development and excessive exploitation of the envi-
ronment, Lake Taihu has become a hypertrophic lake, and
MC-producing cyanobacteria blooms have been occurring annu-
ally during the summer over the past two decades. MC concen-
trations have exceeded the provisional guideline of 1 μg/L set by
the World Health Organization (WHO) in some lake regions, e.g.,
Meiliang Bay (Song et al., 2007; Xu et al., 2005). Therefore, it is
urgent to understand how rising atmospheric CO2 levels influ-
ence MC-producing and non-MC-producing Microcystis popula-
tion and MC concentrations in Lake Taihu.

The aim of this study is to investigate the effects of
elevated atmospheric CO2 concentrations on the dynamics of
MC-producing and non-MC-producing Microcystis strains dur-
ing dense cyanobacteria blooms and to determine the com-
petitive dominance of those two subpopulations at high and
lowCO2 concentrations. To accomplish this, we performed an in situ
mesocosm experiment and utilized real-time PCR to quantify the
abundance of Microcystis genotypes and MC-producing Microcystis
genotypes based on the 16S rDNA and mcyD genes. Our study
verifies the results of laboratory experiments and predicts the
response of toxic cyanobacterial bloom in Lake Taihu to future
climate change.

1. Materials and methods

1.1. Experimental design

We collected lake water from Meiliang Bay. Lake water was
passed througha 100 μmpore size nylon screen to remove large
zooplankton and pumped into nine white 200 L plastic buckets.
The buckets were placed in a pool at the Taihu Ecosystem
Research Station (31°24′N and 120°13′E) to simulate the
temperature and light of the Lake. The mesocosm experi-
ment started from 16 August 2012 and lasted for 21 days.

We performed three treatments in this study using various
CO2 concentrations: pre-industrial concentration (270 μL/L),
current concentration (380 μL/L), and future concentration
(750 μL/L). The enriched CO2 concentration was a mixture of
ambient air and pure CO2 that was automatically controlled by
continuousCO2-sensing and controlling systems equippedwith
a CO2 chamber. This system varied the CO2 concentrations by
less than 5%. The low CO2 concentration was obtained by
pumping natural air through a CO2 absorber (i.e., a sodium
carbonate solution). The air with three concentrations of CO2
 c.a

was released into the water just above the bottom of the
mesocosm, where it was released through a pipe system
equipped with a nozzle at its end at a rate of approximately
1.0 L/min. The CO2 concentration of the air used to aerate the
water and atmosphere wasmeasured regularly using a CO2 gas
analyzer (Testo 535, Testo, Lenzkirch, Germany). Each treat-
ment was triplicated. Nitrogen and phosphorus nutrients in
plastic buckets and the ambient lake water were measured
every two days. Phosphate, ammonium, andnitratewere added
timely to ensure that the nutrient concentration between the
plastic buckets and the ambient lake water body was nearly
equal. Water samples were collected on days 0, 3, 6, 9, 12, 15, 18,
21 between 09:00 and 10:00 a.m.

1.2. pH and DIC concentration

The pH was measured with a pH meter (PHSJ-4A, Leici Ltd.,
Shanghai, China), DIC concentrations were measured by sam-
pling filtered over GF/F glass fiber membrane filter (pore size,
~1.2 μm; Whatman, Maidstone, England, UK; via burning in the
muffle furnace for 4 hr at 500°C), and DIC was analyzed by high
temperature burning method with a TOC analyzer (Torch,
Teledyne Tekmar, Ohio, USA).

1.3. Quantitative real-time PCR

Water samples were filtered onto GF/C filters and immediately
stored at −80°C until extraction. Total DNAwas extracted using
the potassiumxanthogenate sodiumdodecyl sulfatemethod as
described previously (Tillett and Neilan, 2000).

The real-time PCR assay was used to quantify the 16S rDNA
and mcyD gene regions. The 16S rDNA gene was amplified using
the 184F (5′-GCCGCRAGGTGAAAMCTAA-3′) and 431R (5′-AAT
CCAAARACCTTCCTCCC-3′) primers (Neilan et al., 1997), and
the mcyD gene was amplified using the F2 (5′-GGTTCGCCTG
GTCAAAGTAA-3′) and R2 (5′-CCTCGCTAAAGAAGGGTTGA-3′)
primers (Kaebernick et al., 2000). The Microcystis 16S rDNA gene,
which is specific to theMicrocystis genus,wasused to quantify the
abundance of the total Microcystis population. The mcyD gene,
found within the microcystin synthetase gene operon, only
appears in toxic strains ofMicrocystis (Tillett et al., 2000), enabling
the quantification of toxicMicrocystis population.

External standards used to determine 16S rDNA and mcyD
gene copy numbers were prepared using genomic DNA of
Microcystis aeruginosa strain PCC7806 obtained from the
FACHB-Collection (Freshwater Algal Culture Collection of
Institute of Hydrobiology, China). Cells from a known volume
of theM. aeruginosa PCC 7806 culture were filtered through GF/
C filters, and the DNA extraction was as described above. The
DNA concentration and purity were determined by a spectro-
photometer at 260 and 280 nm. The copy numbers of two genes
above were calculated by Vaitomaa et al. (2003). A 10-fold
dilution series of the DNAs was prepared and amplified with
the 16S rDNA and mcyD gene real-time PCR assays.

The real-timePCRwasperformedwith theMastercycler realplex
4 system (Eppendorf, Hamburg, Germany) using 25 μL of a
reaction mixture, containing 12.5 μL of SYBR Premix EX Taq™
(TaKaRa, Kusatsu, Japan), 10 μmol of each primer, 10.5 μL of
distilled water, and 1 μL of the template DNA. Amplification was
performed as follows: The first step was an initial preheating for
jes
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2 min at 95°C for 16S rDNA and mcyD, and the initial preheating
step was followed by 40 cycles: 95°C for 30 sec, 55°C for 30 sec,
and 72°C for 30 sec. The melting temperature for the real-time
PCR products was determined using the manufacturer's soft-
ware. All of the samples were amplified in triplicate.

1.4. MC analysis

For intracellular MC analysis, 200 mL of the water samples was
filtered in triplicate using GF/C filters (pore size, ~1.2 μm;
Whatman, Maidstone, England, UK). The filters were lyophilized
and extracted with 5% (V/V) acetic acid solution followed by 80%
(V/V) aqueous methanol (Barco et al., 2005), with an additional
step for grinding of the filters using in a Fast Prep-24 automated
homogenizer (MP Biomedicals, Santa Ana, USA) with 0.5 mm
silica beads. After centrifugation (9500 r/min, 10 min), the
supernatants were pooled and diluted with distilled water. The
distilled supernatants were concentrated using solid phase
extraction cartridges (C18, 0.5 g), eluted with 100% (0.1% TFA)
methanol. Blowndryusingnitrogenat 40°C, the residuewas then
re-suspended in 150 μL of 50% aqueous methanol prior to HPLC
analysis.

MCs were analyzed using high performance liquid chroma-
tography with photodiode array detection (Agilent 1200, Agilent,
PaloAlto, CA,USA) equippedwithanODScolumn (Agilent Eclipse
XDB-C18, 5 μm, 4.6 mm × 150 mm), using a gradient of 30 to 70%
(V/V) acetonitrile (with 0.05% (V/V) trifluoroacetic acid) at a flow
rate of 1 mL/min. MCs were identified using their characteristic
UV spectra. Total MC concentrations were quantified as the sum
of all MC peaks using MC-LR, -RR, and -YR standards (Sigma,
München, Germany).

1.5. Statistical analysis

All experiments were performed in triplicate. The data were
expressed as the mean values ± standard deviation (SD). Statis-
tical analysis of data was performed using SPSS 16.0 for
Windows (SPSS Inc. Chicago, USA). Statistical significance of
the data was tested with one-way analysis of variance (ANOVA),
with the significance level set at 0.05.

2. Results

2.1. Chemical environment

Rising concentrations of dissolved CO2 led to a decline in pH, the
elevated CO2 treatments had a lower pH value than the control
treatments by 0.37 (p < 0.01), and pH in the high CO2 treatments
was significantly lower than in the low CO2 treatments by 0.59
(p < 0.01) (Fig. 1a). In contrast, rising CO2 caused an increase in
DIC concentration. The average levels of DIC were 13.08 mg/L
under 270 μL/L of CO2 concentration, and 15.76 mg/L under
750 μL/L of CO2 concentration. Significant differences were
observed for DIC concentration among the three treatments
(p < 0.05) (Fig. 1b).

2.2. Standard curve for real-time PCR

Standard curves were established by conducting serial dilu-
tions of genomic DNA extracted from M. aeruginosa PCC 7806
 c.a

culture. From the standard curves for the 16S rDNA and mcyD
gene, a highly significant linear curve was observed between
the threshold value and the log value of the template DNA
copy numbers. The real time PCR data show that the range of
16S rDNA copy numbers was from 5.78 × 101 to 5.78 × 107

copies in the reaction mixture, and the detection range of
mcyD copy numbers was from 2.06 × 101 to 2.06 × 107 (Fig. 2).
The melting temperature of the 16S rDNA and mcyD real-time
PCR products showed a peak at approximately 89.2 and 84.5°C,
respectively, corresponding to the melting temperature of
the standard strain, M. aeruginosa PCC 7806 (data not shown),
which demonstrated the reliability of the real-time PCR
amplification.

2.3. Variations in the abundance of total Microcystis
population at different CO2 treatments

The abundance of total Microcystis population increased in
three CO2 treatments during the experiment. The initial
growth of the Microcystis population was slow on days 0–6
but then increased rapidly on day 9 until it reached steady
growth on days 12–21. The total Microcystis abundance varied
from 6.52 × 106 to 2.09 × 107 copies/mL (270 μL/L), from
6.54 × 106 to 2.15 × 107 copies/mL (380 μL/L), from 6.53 × 106

to 2.43 × 107 copies/mL (750 μL/L), respectively. No significant
difference was found between three CO2 treatments (p > 0.05)
(Fig. 3).

2.4. Changes in the proportions of MC-producing and
non-MC-producing Microcystis

In the low CO2 treatments, the initial proportion of
MC-producing Microcystis was 45%, and this proportion
rapidly increased from 53% to 63% from day 6 onwards.
Thus, MC-producing Microcystis became predominant by
the end of experiment, leading to the higher MC-producing
Microcystis abundance. In the control treatments, the
proportion of MC-producing Microcystis remained stable at
approximately 55% from day 6 until the end of the
experiment. In the high CO2 treatments, the proportion of
MC-producing Microcystis increased to 52% on day 6 and
subsequently decreased to less than 30% within 15 days,
whereas the proportion of non-MC-producing Microcystis
increased from 48% to 71% in the same period (Fig. 4),
resulting in the lower MC-producing Microcystis abun-
dance. A significant difference was observed in the
abundance of MC-producing Microcystis at different CO2

treatments (p < 0.05).

2.5. MC production

In the initial six days, the intracellular MC concentration
increased rapidly, ranging from 4.21 to 8.91 μg/L, and it was
not significantly different among the three CO2 treatments
(p > 0.05). From day 9 onwards, the MC concentration in the
all treatments was stable. However, the intracellular MC
concentration in the high CO2 treatments was significantly
lower than that in another two treatments, especially that
in the low CO2 treatments (p < 0.05) (Fig. 5). For all CO2

treatments, MC concentrations were positively correlated
jes
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with MC-producing Microcystis abundance (r = 0.85, p < 0.01,
data not shown).
3. Discussion

In this study, to investigate competition for dissolved CO2

between MC-producing and non-MC-producing Microcystis dur-
ing dense cyanobacteria blooms, we examined their dynamic
changes in chemical environment, MC production, and the
proportions of MC-producing and non-MC-producing genotypes.
The results suggested that MC-producing Microcystis could
outcompete non-MC-producing ones at low CO2 concentration,
whereasnon-MC-producingMicrocystis becamedominant at high
CO2 concentration.

Rising concentration of atmospheric CO2 can change the
carbon chemical environment. In our experiment, the low CO2
c.c
n
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concentrations might be insufficient to compensate for the
high photosynthetic rates of the dense algal blooms, which
cause dissolved DIC to be depleted and the pH to rise. In
contrast, carbon chemistry was reversed at elevated CO2

concentrations. Doubling of CO2 concentration could enhance
CO2 dissolution and lower the pH values (Fig. 1). Previous
laboratory and field studies reported similar results showing
that dense phytoplankton blooms could lead to CO2 depletion
accompanied by an increase of pH (Ibelings andMaberly, 1998;
Maberly, 1996; Talling, 1976), and elevated CO2 concentrations
depressed the pH in freshwater (Verschoor et al., 2013).

The effects of atmospheric elevated CO2 concentrations on
growth of bloom-forming cyanobacteria remain controversial.
Laboratory study has shown that the growth rate of M.
aeruginosa increases by 52%–77% under doubling of CO2

concentrations (Qiu and Gao, 2002). A recent model also
indicated that the abundance of marine phytoplankton may
increase by as much as 40% between current CO2 concentra-
tion and 700 μL/L CO2 (Schippers et al., 2004). As observed in
our experiments, the abundance of totalMicrocystis quantified
by 16S rDNA gene was not significantly different among three
CO2 concentrations (Fig. 3). This suggests that the abundance
of Microcystis population was not sensitive to elevated CO2

concentrations in summer. Likewise, several studies have
indicated that the growth and photosynthetic rate of phyto-
plankton do not respond significantly to rising atmospheric
CO2 (Goldman, 1999; Tortell et al., 2000, 2002). This inconsis-
tency can be explained by the synergistic effects of nutrient
availability and environmental factors on algal growth in
natural water ecosystems (Boyd and Hutchins, 2012). In fact,
the growth of Microcystis in Meiliang Bay of Lake Taihu is
largely limited by the availability of nitrogen and phosphorus
in summer (Xu et al., 2010). Under this nutrient-depleted
condition, the effect of elevated CO2 may not be so significant
on the Microcystis growth.

Interestingly, our results showed that the rise in
atmospheric CO2 caused a shift in the dominant subpopu-
lations of Microcystis community from MC-producing
strains to non-MC-producing strains (Fig. 4). The rise in
atmospheric CO2 could increase the concentration of DIC
(CO2, H2CO3, HCO3

−, CO3
2−) in water. Although many phyto-

plankton species can utilize both dissolved CO2 and HCO3
−
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as carbon source (Kaplan and Reinhold, 1999; Price et al.,
2008), the affinity of phytoplankton for HCO3

− is much lower
than for CO2 (Kranz et al., 2009; Rost et al., 2003). The uptake
ability of CO2 might be one factor in determining which
species has a competitive advantage when the atmospheric
CO2 concentration rises. Van de Waal et al. (2011) conduct-
ed monoculture experiments to compare the fitness of a
toxic and non-toxic strain of M. aeruginosa cultured under
carbon-limited conditions; they found that the lower
half-saturation constants for CO2 and HCO3

− of the toxic
strain allowed it to outcompete the non-toxic ones at low
CO2 levels. Our results based on an in situ mesocosm
experiment were consistent with the results from this
laboratory study.

The difference in uptake ability of CO2 betweenMC-producing
and non-MC-producing Microcystis might be attributable to
genetic diversity in the CCM gene. Cyanobacteria possess
efficient CO2-concentrating mechanisms (CCMs) that enable
them to grow well at low CO2 concentrations (Giordano et al.,
2005; Raven et al., 2012). bicA and sbtA are two bicarbonate
transporter genes in bicarbonate uptake systems (Price et al.,
2004; Shibata et al., 2002). A recent study showed that genetic
variation in inorganic carbon uptake systems providesMicrocystis
with the potential for microevolutionary adaptation to changing
CO2 conditions. According to that result, strains with sbtA were
a superior competitor at low CO2 concentrations, whereas
strains with both bicA and sbtA were dominant at high CO2

concentrations (Sandrini et al., 2013). This may explain
our finding of the shift in competitive dominance from
MC-producing Microcystis with only sbtA at low CO2 concen-
trations towards non-MC-producingMicrocystiswith bicA and
sbtA at high CO2 concentrations.

The superior competitive ability of MC-producingMicrocystis
under low CO2 concentrations can be attributed to the eco-
logical function of MC. The MC analysis in our study showed
that dominance of MC-producing Microcystis at low CO2 con-
centrations leads to a higher MC concentration (Fig. 5). MC is a
secondary metabolite, and it can reduce the RUBISCO level and
CO2 consumption to increase intracellular inorganic carbon
accumulation under conditions of C-limitations (Gerbersdorf,
2006; Jähnichen et al., 2001). The function of MC under a
carbon-limited environment was further confirmed by the
experiment comparing the wild type strain M. aeruginosa
PCC 7806 with itsmcyBmutant strain, which showed that the
MC-producing wild type had a strong selective advantage
over the mutant strain at low CO2 levels (Van de Waal et al.,
2011).

In addition, the dominance of non-MC-producingMicrocystis
over MC-producing Microcystis at rising CO2 concentrations
may associate with the energy costs and benefits of producing
MC. At low CO2 concentrations, the benefits of producing
MC under growth-limiting conditions, outweigh its cost, thus
leading to the predominance of microcystin-producing strains.
At high CO2 concentrations, the cost of producing microcystin
under optimum growth condition, might outweigh the benefits,
which induced the counter-selection of microcystin-producing
strains. The similar results were reported by Briand et al. (2008),
who found that the microcystin-producing strains of Planktothrix
agardhii exhibited better fitness than non-microcystin-producing
strains under growth-limiting conditions; in contrast, the
non-microcystin-producing strains showed greater fitness
under environment condition favorable for growth. In the further
study, They using the microcystin-producing M. aeruginosa PCC
7806 strain (WT) and its non-microcystin-producing mutant
(MT) in co-culture experiments under different growth condi-
tions, the result demonstrated that the effective competitors
of these two strains under optimum growth conditions
were attributable to the cost of producing microcystins by
microcystin-producing cells (Briand et al. 2012).
c.a

4. Conclusions

As an important factor of climate change, the atmospheric
CO2 elevation may influence the proliferation and commu-
nity composition of harmful algal blooms. In this study, we
investigate the effects of elevated atmospheric CO2 concentra-
tions on the dynamics ofMC-producing and non-MC-producing
Microcystis strains during dense cyanobacteria blooms based on
real-time PCR method. The results suggest that rising CO2

availability can lead to a turnover inoutcomeof the competition
between MC-producing and non-MC-producing strains of
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Microcystis. Rising atmospheric CO2 concentrations cause non-
MC-producing strains to outcompete MC-producing strains,
thereby reducing MC concentrations, whereas the reverse is
true under low CO2 concentrations. The variation of MC
concentrations at high and low CO2 concentrations suggest
that differing CO2 availability may shift the MC genotype
composition in the total Microcystis population, which in turn
can change the MC levels in the water column. These results
highlight the need for future field research to obtain a better
understanding of the interactions between CO2 availability, the
competitive success of Microcystis, and MC dynamics. It is
important for monitoring and predicting the potential health
risks associatedwithMC levels that are changing in response to
climate change.
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