1 Growth and alkaline phosphatase activity of *Chattonella marina* and *Heterosigma akashiwo* in response to phosphorus limitation
Zhao-Hui Wang and Yu Liang

8 Distribution characteristics and indicator significance of Dechloranes in multi-matrices at Ny-Ålesund in the Arctic
Guangshui Na, Wei Wei, Shiyao Zhou, Hui Gao, Xindong Ma, Lina Qiu, Linke Ge, Chenguang Bao and Zwei Yao

14 Pretreatment of cyanided tailings by catalytic ozonation with Mn$^{2+}$/O$_3$
Yulong Li, Dengxin Li, Jiebing Li, Jiwang, Asif Hussain, Hao Ji and Yiie Zhai

22 Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance
Lingyun Jin, Guangming Zhang and Xiang Zheng

29 Removal of tetracycline from aqueous solution by a Fe$_3$O$_4$ incorporated PAN electrospun nanofiber mat
Qing Liu, Yuming Zheng, Lubin Zhong and Xiaoxia Cheng

37 Feasibility of bioleaching combined with Fenton oxidation to improve sewage sludge dewaterability
Changgeng Liu, Panyue Zhang, Chenghua Zeng, Guangming Zeng, Guoyin Xu and Yi Huang

43 Mg$^{2+}$ improves biomass production from soybean wastewater using purple non-sulfur bacteria
Pan Wu, Guangming Zhang and Jianzheng Li

47 Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil
Liang Li, Honggang Zhang and Gang Pan

54 Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer *Brachionus plicatilis*
Jingjing Sha, You Wang, Jianxia Lv, Hong Wang, Hongmei Chen, Leilei Qi and Xuexi Tang

64 Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid
Xiaojuan Su, Jun Zhu, Qingling Fu, Jichao Zuo, Yonghong Liu and Hongqing Hu

74 Predicted no-effect concentrations for mercury species and ecological risk assessment for mercury pollution in aquatic environment
Meng Du, Dongbin Wei, Zhuoewei Tan, Aiwu Lin and Yuguo Du

81 Investigation of physico-chemical properties and microbial community during poultry manure co-composting process
Omar Farah Nadia, Loo Yu Xiang, Lee Yei Lie, Dzulkornain Chairil Anuar, Mohammed P. Mohd Afandi and Samsu Azhari Baharuddin

95 Cu(II), Fe(III) and Mn(II) combinations as environmental stress factors have distinguishing effects on *Enterococcus hirae*
Zaruhi Vardanyan and Armen Trchounian

101 Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil
Bibiana Betancur-Corredor, Nancy J. Pino, Santiago Cardona and Gustavo A. Pefial

110 Hg0 removal from flue gas over different zeolites modified by FeCl$_3$
Hao Qi, Wenqing Xu, Jian Wang, Li Tong and Tingyu Zhu

118 Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution
Di Lei, Qianwen Zheng, Yili Wang and Hongjie Wang
CONTENTS

128 Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China
Ming Wang, Wentai Chen, Min Shao, Shhua Lu, Limin Zeng and Min Hu

137 Low-carbon transition of iron and steel industry in China: Carbon intensity, economic growth and policy intervention
Bing Yu, Xiao Li, Yuanbo Qiao and Lei Shi

148 Synergistic effect of N- and F-codoping on the structure and photocatalytic performance of TiO₂
Jiemei Yu, Zongming Liu, Hailong Zhang, Taizhong Huang, Jitian Han, Yihe Zhang and Daohuang Chong

157 Pollution levels and characteristics of phthalate esters in indoor air of offices
Min Song, Chenchen Chi, Min Guo, Xueqing Wang, Lingxiao Cheng and Xueyou Shen

163 Characteristics and anthropogenic sources of carbonyl sulfide in Beijing
Ye Cheng, Chenglong Zhang, Yuanyuan Zhang, Hongxue Zhang, Xu Sun and Yujing Mu

171 Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths
Sergiy O. Soloviev, Andriy Y. Kapran and Yaroslava P. Kurylets

178 Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia
Kosuke Toshiki, Pham Quy Giang, Kevin Roy B. Serrona, Takahiro Sekikawa, Jeoung-soo Yu, Baasandash Choijil and Shoichi Kunikane

187 Toluene decomposition performance and NOX by-product formation during a DBD-catalyst process
Yufang Guo, Xiaobin Liao, Mingli Fu, Haibao Huang and Daiqi Ye

195 Changes in nitrogen budget and potential risk to the environment over 20 years (1990-2010) in the agroecosystems of the Haihe Basin, China
Mengmeng Zheng, Hua Zheng, Yingxia Wu, Yi Xiao, Yihua Du, Weihua Xu, Fei Lu, Xiaoke Wang and Zhiyun Ouyang
Distribution characteristics and indicator significance of Dechloranes in multi-matrices at Ny-Ålesund in the Arctic

Guangshui Na¹,²,* Wei Wei¹,³, Shiyao Zhou⁵, Hui Gao¹, Xindong Ma¹, Lina Qiu¹,⁴, Linke Ge¹, Chenguang Bao¹, Ziwei Yao¹

1. Key Laboratory for Ecological Environment in Coastal Areas, National Marine Environmental Monitoring Center, Dalian 116023, China
2. Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
3. School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
4. School of Biological Technology, Dalian Polytechnic University, Dalian 116034, China
5. Dalian Institute of Science & Technology, Dalian 116052, China

ARTICLE INFO

Article history:
Received 28 March 2014
Revised 20 July 2014
Accepted 21 July 2014
Available online 15 November 2014

Keywords:
Dechloranes
Arctic
Multi-matrices
Distribution characteristic
Ratio
Source analysis

ABSTRACT

In recent years, Dechloranes have been widely detected in the environment around the world. However, understanding and knowledge of Dechloranes in remote regions, such as the Arctic, remain lacking. Therefore, the concentrations of 5 Dechloranes in surface seawater, sediment, soil, moss, and dung collected from Ny-Ålesund in the Arctic were measured with the concentrations 93 pg/L, 342, 325, 1.4, and 258 pg/g, respectively, which were much lower than those in Asian and European regions. The mean ratios of anti-Dechlorane Plus (DP) to total DP (\(f_{\text{anti}} \)) in seawater, sediment, soil, moss, dung, and atmospheric samples were 0.36, 0.21, 0.18, 0.27, 0.66, and 0.43, respectively. Results suggested that the main source of DP in seawater, sediment, soil, and moss was long-range atmospheric transport. However, the ratio identified in dung was different, for which the migration behavior of the organism is probably the main source of DP.

© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

Introduction

Halogenated (usually brominated or chlorinated) flame retardants are chemicals that are extensively used in consumer products, including electronic equipment, textiles, furniture, and automobiles, to improve their resistance to fire (Guerra et al., 2011). Dechloranes (Decs), as highly chlorinated flame retardants, were reported to have flame-retardant properties similar to that of mirex. Decs include Dec 602 (C₁₄H₄Cl₁₂O), Dec 603 (C₁₇H₈Cl₁₂), Dec 604 (C₁₃H₄Br₄Cl₆), and Declorane Plus (DP, C₁₈H₁₂Cl₁₂, also called as Declorane 605). These substances are hexachlorocyclopentadiene Diels–Alder adducts that contain a basic bicyclo[2,2,1]-heptene structure (Milne, 2005). Dec 602 is used in fiberglass-reinforced nylon-6 at 18% by weight (Chandan and Roy, 2007). Dec 604 is used in Molykote AS-810 silicone grease (10% to 30%) produced by Dow Corning USA to lubricate metal-to-metal and metal-to-plastic substrates in electro-mechanical applications (MatWeb, 2009). Dec 604 has also been reported as an impurity (2%) in a commercial product of mirex (NTP, 1990). DP is used as a flame retardant in electrical hard plastic connectors in television and computer monitors, wire coating, and furniture (Bettis et al., 2006). Technical DP mixture is composed primarily of two isomers, the
1. Materials and methods

1.1. Sampling and preparation

Concurrent surface seawater and sediment sampling was conducted in King’s Bay. Surface soil (upper 5 cm), moss, and reindeer dung were simultaneously collected. Atmospheric samples in the gaseous phase were collected using polyurethane foam. Particle-bound analytes in air were collected on a quartz fiber filter in July 2012 in the Ny-Ålesund area (78°55'E, 11°56'E), Svalbard in the Arctic Circle (Fig. 1). Only damp-dry dung was collected to reduce the influence of secondary Decs input/loss after excretion. The average temperature during sampling was 5°C. All samples were kept in aluminum foil and stored at –20°C after sampling. Soil, sediment, moss, and reindeer dung samples were freeze-dried, ground, and sieved (80 mesh) prior to analysis.

1.2. Materials

Dec 602 (95%), Dec 603 (98%), and Dec 604 (95%) were purchased from Toronto Research Chemical Inc. (Toronto Research Chemical Inc., Ontario, Canada). A standard mixture of Decs, which contained syn- and anti-DPs, was obtained from AccuStandard, Inc. (AccuStandard Inc., Connecticut, USA). Meanwhile, the internal standard of polychlorinated biphenyl 209 (99%) was acquired from J&K Scientific Ltd. (Beijing, China). All organic solvents used in the study (dichloromethane, n-hexane) were pesticide grade. Water was purified by a Milli-Q system. Silica, neutral alumina, and anhydrous sodium sulfate were purchased from Merck (Darmstadt, Germany).

1.3. Extraction, cleanup, and analysis

Approximately 5 g sediment, soil, moss, and dung (reindeer and bird) samples mixed with the surrogate standard were extracted via accelerated solvent extraction with 50 mL hexane/dichloromethane (DCM) (1:1, V/V). Activated copper powder was added to the extracts of sediment and soil to remove elemental sulfur. The seawater samples, C18 and glass fiber filter (GFF), were extracted and analyzed separately to obtain information on their respective water and particle phases. Approximately 8.0 L surface seawater samples were collected by C18 (the water phase) and GFF (the particle phase) at each station, and the C18 and GFF samples were soaked for 12 hr with 50 mL hexane/DCM (1:1, V/V) and were extracted in an ultrasonic bath for 30 min. The procedure was repeated twice. Air samples were collected by a high-volume air sampler (HiVol) equipped with GFF to capture particles and a PUF plug for the gas Decs. The HiVol operated at an average flow rate of 1.0 m³/min and the total sampled air volume averaged about 2880 m³. These samples were Soxhlet-extracted for 24 hr using hexane/DCM (1:1, V/V). The raw extracts of all samples were evaporated to 5 mL with a rotary evaporator and were transferred to a multi-layer column filled from the bottom with 2 g activated silica gel, 4 g neutral alumina, and 1 cm anhydrous Na₂SO₄ (pre-soaked in hexane). The extracts were then eluted with 70 mL hexane/DCM (1:1, V/V) mixture and were further evaporated under a gentle N₂ stream. The sample was solvent-exchanged to hexane (500 μL).

Decs were analyzed on an Agilent 6890 N gas chromatograph coupled with a 5973I mass spectrometer (MS, Agilent Technologies, Inc. Santa Clara, California, USA) using the negative chemical ionization mode with methane as the ionization gas. The gaseous mixture was fitted with a DB-5HT capillary column (0.25 mm i.d. × 30 m × 0.10 μm film thickness, J&W Scientific, Inc., Santa Clara, California, USA). The injection volume was 1.0 μL in the splitless mode. Helium was used as the carrier gas at a flow rate of 1.0 mL/min. The gas chromatography oven was programmed as follows: initial 80°C for 2 min, ramped at 20°C/min to 180°C, then 5°C/min to 250°C and held for 2 min, then 30°C/min to 310°C and held for a final 5 min. The MS transfer line was held at 275°C. The temperature of the ion source and the quadrupole was 150°C. The instrument was operated in selected ion monitoring mode (m/z 606.0, 608.2, and 610.0 for Dec 602; m/z 628.0, 630.0, and 634.0 for Dec 603; m/z 569.0, 608.0, and 612.0 for Dec 604; m/z 646.0, 645.0, and 649.0 for syn-DP and anti-DP).

1.4. Quality control

Different measures were performed to assess the accuracy and reliability of the obtained data. Field and laboratory blanks (method blanks) were extracted and analyzed in the same manner as field samples. The method detection limits (MDLs) were derived from mean blank values plus three times the standard deviation; for compounds with no blank, from the...
The MDLs of Decs ranged from 0.57 to 7.55 pg/g in sediment and soil samples, from 6.44 to 88.44 pg/L in seawater samples, from 4.08 to 54.43 pg/g in dung samples, and from 0.01 to 0.14 pg/m³ for atmospheric samples. The mean recoveries of the surrogates ranged from 80% to 113%.

2. Results and discussion

2.1. Distribution and characteristics of Decs in multi-matrices

The minimum, maximum, and mean concentrations of 5 Decs (∑Decs) and individual Decs in surface seawater, sediment, soil, moss, and dung samples are summarized in Table 1.

2.1.1. Seawater and sediment concentrations

∑Decs in surface seawater ranged from 69 to 303 pg/L (sum of dissolved and particulate phases). Among the 5 Decs, Dec 602 was not detected in any of the seawater samples and Dec 603 was detected in only 37.5% of the samples. Other Decs, including Dec 604, syn-DP, and anti-DP, were detected in all seawater samples from King’s Bay. The seawater concentration of DP was significantly lower than that near the Great Lakes in America (with a mean of 6.24 ng/L) (Venier et al., 2008). The rivers that have been studied in China are located in the relatively large cities of Dalian and Harbin, in which the DP levels are within the range of 0.2 – 2 ng/L (Jia et al., 2011; Ma et al., 2011; Qi et al., 2010; Wu et al., 2010). These concentrations are significantly higher than the concentrations obtained in this study.

<table>
<thead>
<tr>
<th>Decs</th>
<th>Seawater</th>
<th>Sediment</th>
<th>Soil</th>
<th>Moss</th>
<th>Dung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Range</td>
<td>Mean</td>
<td>Range</td>
<td>Mean</td>
</tr>
<tr>
<td>Dec 602</td>
<td>–</td>
<td>nd</td>
<td>0.7</td>
<td>nd–1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Dec 603</td>
<td>2.3</td>
<td>nd–6.3</td>
<td>1.5</td>
<td>0.2–3.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Dec 604</td>
<td>53</td>
<td>25–106</td>
<td>7.9</td>
<td>1.9–20</td>
<td>13</td>
</tr>
<tr>
<td>syn-DP</td>
<td>61</td>
<td>22–116</td>
<td>270</td>
<td>85–648</td>
<td>284</td>
</tr>
<tr>
<td>anti-DP</td>
<td>32</td>
<td>13–88</td>
<td>73</td>
<td>23–228</td>
<td>42</td>
</tr>
<tr>
<td>∑Decs</td>
<td>148</td>
<td>69–303</td>
<td>352</td>
<td>116–885</td>
<td>342</td>
</tr>
</tbody>
</table>

nd: not detected.
∑ Decs in surface sediment ranged from 116 to 885 pg/g. Dec 603, Dec 604, and both DP isomers (syn- and anti-DP) were detected in all samples from King’s Bay, with mean concentrations of 1.5, 7.9, 270, and 73 pg/g, respectively. Dec 602 was detected in only 88% of sediment samples. Dec 602, Dec 603, Dec 604, and DP were detected in all surface sediment samples from the Great Lakes, in which their concentrations ranged from 0.001 to 11, from 0.001 to 0.6, and from 0.001 to 8 ng/g dry weight (dw), respectively (Shen et al., 2010). Concentrations in surface sediments from various locations in China were also measured in previous studies. The concentrations are as follows: Dalian, 3 ng/g dw (Jia et al., 2011); Harbin, 0.12 (Ma et al., 2011) and 0.05 ng/g dw (Qi et al., 2010); and Huai’an, from 2 to ~8 ng/g dw (Wang et al., 2010b). These levels of Decs are higher than the values obtained in this study.

The concentrations of Decs in surface seawater and sediment are shown in Fig. 2. The highest concentrations of seawater samples were observed at station K1 in the inlet of the bay. By contrast, station K6, which is located in the interior of the bay, presented comparatively low concentrations, with the concentrations of surface sediment being the highest in this station. Glacial melt water and freshwater input are probably the major reasons that led to the aforementioned phenomenon in seawater samples. The distribution status of the surface sediment is incongruent with the status of the surface seawater. This condition may be related to the depositional characteristic of Decs. The content of organic carbon is relatively high, thus leading to high concentrations of Decs at station K6. However, conducting further study along King’s Bay may provide detailed information on DP sources and possible alterations of the mean ratios of anti-DP to total DP (f_{anti}) during long-range atmospheric transport to the Arctic.

2.1.2. Soil, moss, and dung

Soil is considered a major sink of Decs. The former receives the latter mainly from dry/wet deposition of particles and litter fall. In this study, Dec 602 and Dec 603 were measured in over 80% of soil samples acquired from Ny-Ålesund. The concentrations of Dec 602 and Dec 603 ranged from nd (not detected) to 2.8 and nd to 8.6 pg/g, respectively. In previous works, the concentrations of Decs have been mostly measured in soil samples from Asia, in which investigations have focused on areas neighboring Decs factories and urban areas. The findings of these previous works are as follows: Huai’an, 63.5 ng/g (Wang et al., 2010a) and Harbin, 11.3 ng/g (Ma et al., 2011). The DP levels in Ny-Ålesund were two orders lower than those in the aforementioned places.

Plants have an important role in removing some contaminants from the atmosphere. Among all types of vegetation, moss and pine needles are currently used as typical, natural passive air samplers to indicate atmospheric pollution (Chen et al., 2006; Liu et al., 2005). At present, minimal or no information on Decs levels in plants has been reported. Moss from Ny-Ålesund was measured in this study. The total Decs concentrations in moss ranged from 0.2 to 3.7 pg/g (with a mean value of 1.7 pg/g). Dec 602 was not detected in moss samples. However, DP (syn- and anti-DP) was measured in all samples. Dec 603 and Dec 604 were detected in 25% and 87%, respectively, of all samples.

According to the gathered information, most reports have only focused on humans, or on aquatic and terrestrial biota.

Fig. 2 – Concentrations of Decs in surface seawater, sediment and soil.
No reference for the levels of Decs in organism dung has been produced. In the present research, 5 Decs were detected in most samples. The total concentrations of Decs in dung samples ranged from 40 to 598 pg/g (with a mean value of 334 pg/g). DPs (syn- and anti-DP) that ranged from 5 to 722 pg/g were predominantly identified in 5 Decs, with a mean value of 258 pg/g.

The difference in Decs distribution in soil, moss, and dung (reindeer and bird dung) may be related to the physicochemical properties of individual Decs and different accumulation routes of Decs in the three compartments. As stated earlier, soil accumulates Decs mainly through the dry/wet deposition of particles, moss acquires Decs mainly from the vapor phase, and dung gathers Decs mainly through the migration behavior of reindeer and birds. Soil and dung are expected to accumulate more Decs than moss.

The findings of this research clearly showed lower concentrations of Decs in moss than in other media. Decs were detected in all matrices, with higher concentrations in soil and sediment. The concentrations of Decs in Ny-Ålesund were lower than those in European and Asian regions. Low levels of human activities and relatively mild atmospheric pollution are significant factors in the low concentration of Decs in Ny-Ålesund.

2.2. Source analysis of DP

The transport behavior of persistent organic pollutants can be characterized as “local” and “global” (Tanabe, 2007). As a kind of persistent organic pollutant, the sources of DP should be divided into local and global sources. Recently, the ratio of its two stereo isomers has been frequently discussed in the environmental fate and source analysis of DP. The f_{anti} value is defined as the concentration of anti-DP divided by the sum of the concentrations of syn- and anti-DP. The f_{anti} value was reported for DP commercial products, ranging from 0.65 to 0.8 (Hoh et al., 2006; Tony et al., 2007; Wang et al., 2010b). In the source regions such as the Jiangsu Province of China (Wang et al., 2010a) and the Great Lakes area of North America (Sverko et al., 2010; Hoh et al., 2006), the ratios of the two isomers in various matrices were close to the value of DP commercial products. However, the f_{anti} values in air samples collected along the Atlantic transect (England–Spain–west-Africa–Antarctica) ranged from 0.63 to 0.3, and the values for samples from the southern Atlantic Ocean were all about 0.35; most of these values were significantly lower than that of the commercial product, and showed a stereoselective depletion of anti-DP likely caused by UV-sunlight during long range atmospheric transport (Möller et al., 2010). In the same research, the mean f_{anti} values in seawater samples were reported as 0.47 for the East Greenland Sea and 0.35 for the Atlantic transect; the values were similar to f_{anti} values in the atmosphere in the same region as a result of atmospheric dry deposition.

In this study, the isomer ratios of DP in multi-matrices are summarized in Table 2. The mean values of f_{anti} are 0.36, 0.21, 0.18, 0.27, 0.66, and 0.43 in surface seawater, sediment, soil, moss, dung, and atmospheric samples, respectively. The mean f_{anti} value in atmospheric samples was 0.43, significantly lower than that of the commercial product (0.65). Moreover, the mean f_{anti} value in surface seawater was similar to the f_{anti} value in atmospheric samples in the same region, as a probable result of atmospheric dry deposition. The values in air and seawater samples were similar to those in the Atlantic transect reported by Möller et al. (2010). This indicated that long range atmospheric transport was the main pathway for DP transport into remote areas. It was reported that the f_{anti} values in sediments were higher than or equal to that in DP commercial products in the Great Lakes (Qiu et al., 2007), the reason may be that the study area is close to the manufacturer of DP, thus the transport pathway belongs to the category of “local” pollutant. However, there is no manufacturer of DP at Ny-Ålesund in the Arctic, yet DP isomers were detected, this indicated that long range transport is the main source in the Arctic as previously reported. The mean f_{anti} values in sediment and soil were a bit lower than those in the atmosphere of Ny-Ålesund. This indicated that long range atmospheric transport may be the main source of DP, and the changes in isomer ratio were likely a result of different degrees of isomer photo-degradation and micro-organism degradation in transport and deposition processes. However, the dung value of f_{anti} was significantly different from that of the other matrices. The f_{anti} value in dung (0.66 in reindeer dung and 0.67 in bird dung) was close to the value in commercial products (0.65). DP in dung may be classified as a “local” pollutant because of the migration behavior of reindeer and birds, according to the aforementioned analysis. Furthermore, bioaccumulation/biotransformation in organisms may also lead to the higher isomer ratio in dung than in the other matrices. Therefore, more research is needed to investigate the DP transport pathways and bioaccumulation behaviors in organisms.

3. Conclusions

Currently available information shows that Decs have become a global environmental contaminant, not only in Asian and European regions, but also in the polar areas and the Qinghai-Tibet Plateau, in which no source of pollution was identified. This finding suggests that Decs have the capability for long-range atmospheric transport. The concentrations of Decs in multi-matrices at Ny-Ålesund in the Arctic are evidently lower than those in Asian and European regions. The concentrations of Decs in surface seawater from the inlet of King’s Bay are higher than those in the interior of the bay. This condition is probably caused by glacial melt water and
freshwater input, and more research is needed to confirm this. The fraction of anti-DP in the atmosphere, soil and sediment and dung indicated that the main source of DP in Ny-Ålesund was long-range atmospheric transport, and the migration behavior of reindeer and birds may be another source.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (No. 21377032), the Chinese Polar Environment Comprehensive Investigation and Assessment Program (Nos. 2014-02-01, 2014-03-04, 2014-04-01, 2014-04-03), the Marine Public Welfare Scientific Research Projects (No. 201105013) and the Foundation of Polar Science Key Laboratory, SOA, China (No. KF201208).

REFERENCES

Editorial Board of Journal of Environmental Sciences

<table>
<thead>
<tr>
<th>Editor-in-Chief</th>
<th>X. Chris Le</th>
<th>University of Alberta, Canada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associate Editors-in-Chief</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jiuhui Qu</td>
<td></td>
<td>Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China</td>
</tr>
<tr>
<td>Shu Tao</td>
<td></td>
<td>Peking University, China</td>
</tr>
<tr>
<td>Nigel Bell</td>
<td></td>
<td>Imperial College London, UK</td>
</tr>
<tr>
<td>Po-Keung Wong</td>
<td></td>
<td>The Chinese University of Hong Kong, Hong Kong, China</td>
</tr>
</tbody>
</table>

Editorial Board

Aquatic environment
- Baoyu Gao | Shandong University, China
- Maoshong Fan | University of Wyoming, USA
- Chihpin Huang | National Chiao Tung University, Taiwan, China
- Ng Wun Jern | Nanayang Environment & Water Research Institute, Singapore
- Clark C. K. Liu | University of Hawaii at Manoa, USA

Terrestrial environment
- Zhiwu Wang | The Ohio State University, USA
- Xuyang Wang | Queen’s University, Canada
- Min Yang | Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Atmospheric environment
- Peijun Li | Institute of Applied Ecology, Chinese Academy of Sciences, China
- Michael Schloter | German Research Center for Environmental Health, Germany
- Xuejun Wang | Peking University, China
- Liqiong Zhu | Zhejiang University, China

Environmental biology
- Yong Cai | Florida International University, USA
- Henner Hollert | RWTH Aachen University, Germany
- Jae-Seong Lee | Sungkyunkwan University, South Korea
- Bojar Sedmak | University of Copenhagen, Denmark

Environmental toxicology and health
- Jinmin Chen | Fudan University, China
- Abdelwahid Mellouki | Centre National de la Recherche Scientifique, France
- Yujing Mu | Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental catalysis and materials
- Min Shao | Peking University, China
- James Jay Schauer | University of Wisconsin-Madison, USA
- Yuesi Wang | Institute of Atmospheric Physics, Chinese Academy of Sciences, China

Environmental analysis and method
- Xin Yang | University of Cambridge, UK
- Nanci Liu | University of Michigan, USA

Municipal solid waste and green chemistry
- Zongwei Cai | Hong Kong Baptist University, Hong Kong, China
- Minghua Zhong | Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Editorial office staff

<table>
<thead>
<tr>
<th>Managing editor</th>
<th>Qingcai Feng</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editors</td>
<td>Zixuan Wang Suqin Liu Kuo Liu Zhengang Mao</td>
</tr>
<tr>
<td>English editor</td>
<td>Catherine Rice (USA)</td>
</tr>
</tbody>
</table>
Aims and scope
Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition
Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition
China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration
Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial
Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.