1 Growth and alkaline phosphatase activity of *Chattonella marina* and *Heterosigma akashiwo* in response to phosphorus limitation
Zhao-Hui Wang and Yu Liang

8 Distribution characteristics and indicator significance of Dechloranes in multi-matrices at Ny-Ålesund in the Arctic
Guangshui Na, Wei Wei, Shiyao Zhou, Hui Gao, Xindong Ma, Lina Qiu, Linke Ge, Chenguang Bao and Zwei Yao

14 Pretreatment of cyanided tailings by catalytic ozonation with Mn²⁺/O³⁻
Yulong Li, Dengxin Li, Jiebing Li, Jin wang, Asif Hussain, Hao Ji and Yijie Zhai

22 Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance
Lingyun Jin, Guangming Zhang and Xiang Zheng

29 Removal of tetracycline from aqueous solution by a Fe₃O₄ incorporated PAN electrospun nanofiber mat
Qing Liu, Yuming Zheng, Lubin Zhong and Xiaoxia Cheng

37 Feasibility of biobleaching combined with Fenton oxidation to improve sewage sludge dewaterability
Changgeng Liu, Panyue Zhang, Chenghua Zeng, Guangming Zeng, Guoyin Xu and Yi Huang

43 Mg²⁺ improves biomass production from soybean wastewater using purple non-sulfur bacteria
Pan Wu, Guangming Zhang and Jianzheng Li

47 Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil
Liang Li, Honggang Zhang and Gang Pan

54 Effects of two polybrominated diphenyl ethers (BDE-47, BDE-209) on the swimming behavior, population growth and reproduction of the rotifer *Brachionus plicatilis*
Jingjing Sha, You Wang, Jianxia Lv, Hong Wang, Hongmei Chen, Leilei Qi and Xuexi Tang

64 Immobilization of lead in anthropogenic contaminated soils using phosphates with/without oxalic acid
Xiaojuan Su, Jun Zhu, Qingling Fu, Jichao Zuo, Yonghong Liu and Hongqing Hu

74 Predicted no-effect concentrations for mercury species and ecological risk assessment for mercury pollution in aquatic environment
Meng Du, Dongbin Wei, Zhuowei Tan, Aiwu Lin and Yuguo Du

81 Investigation of physico-chemical properties and microbial community during poultry manure co-composting process
Omar Farah Nadia, Loo Yu Xiang, Lee Yei Lie, Dzulkornain Chairil Anuar, Mohammed P. Mohd Afandi and Samsu Azhari Baharuddin

95 Cu(II), Fe(III) and Mn(II) combinations as environmental stress factors have distinguishing effects on *Enterococcus hirae*
Zaruhi Vardanyan and Armen Trchounian

101 Evaluation of biostimulation and Tween 80 addition for the bioremediation of long-term DDT-contaminated soil
Bibiana Betancur-Corredor, Nancy J. Pino, Santiago Cardona and Gustavo A. Peñuela

110 Hg⁰ removal from flue gas over different zeolites modified by FeCl₃
Hao Qi, Wenqing Xu, Jian Wang, Li Tong and Tingyu Zhu

118 Preparation and evaluation of aminopropyl-functionalized manganese-loaded SBA-15 for copper removal from aqueous solution
Di Lei, Qianwen Zheng, Yili Wang and Hongjie Wang
128 Investigation of carbonyl compound sources at a rural site in the Yangtze River Delta region of China
Ming Wang, Wentai Chen, Min Shao, Sihua Lu, Limin Zeng and Min Hu

137 Low-carbon transition of iron and steel industry in China: Carbon intensity, economic growth and policy intervention
Bing Yu, Xiao Li, Yuanbo Qiao and Lei Shi

148 Synergistic effect of N- and F-codoping on the structure and photocatalytic performance of TiO₂
Jiemei Yu, Zongming Liu, Haitao Zhang, Taizhong Huang, Jitian Han, Yihe Zhang and Daohuang Chong

157 Pollution levels and characteristics of phthalate esters in indoor air of offices
Min Song, Chenchen Chi, Min Guo, Xueqing Wang, Lingxiao Cheng and Xueyou Shen

163 Characteristics and anthropogenic sources of carbonyl sulfide in Beijing
Ye Cheng, Chenglong Zhang, Yuanyuan Zhang, Hongxing Zhang, Xu Sun and Yujing Mu

171 Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths
Sergiy O. Soloviev, Andriy Y. Kapran and Yaroslava P. Kurylets

178 Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia
Kosuke Toshiki, Pham Quy Giang, Kevin Roy B. Serrona, Takahiro Sekikawa, Jeoung-soo Yu, Baasandash Choijil and Shoichi Kunikane

187 Toluene decomposition performance and NOₓ by-product formation during a DBD-catalyst process
Yufang Guo, Xiaobin Liao, Mingli Fu, Haibao Huang and Daiqi Ye

195 Changes in nitrogen budget and potential risk to the environment over 20 years (1990-2010) in the agroecosystems of the Haihe Basin, China
Mengmeng Zheng, Hua Zheng, Yingxia Wu, Yi Xiao, Yihua Du, Weihua Xu, Fei Lu, Xiaoke Wang and Zhiyun Ouyang
Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil

Liang Li, Honggang Zhang, Gang Pan⁎

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: ironlee@sina.com

ARTICLE INFO

Article history:
Received 20 March 2014
Revised 17 April 2014
Accepted 22 April 2014
Available online 15 November 2014

Keywords:
Cyanobacteria blooms
Flocculation
Chitosan
Modified soil
Zeta potential

ABSTRACT

Using chitosan modified soil to flocculate and sediment algal cells has been considered as a promising strategy to combat cyanobacteria blooms in natural waters. However, the flocculation efficiency often varies with algal cells with different zeta potential (ZP) attributed to different growth phases or water conditions. This article investigated the relationship between ZP of Microcystis aeruginosa and its influence to the flocculation efficiency using chitosan modified soil. Results suggested that the optimal removal efficiency was obtained when the ZP was between −20.7 and −6.7 mV with a removal efficiency of more than 80% in 30 min and large floc size of >350 μm. When the algal cells were more negatively charged than −20.7 mV, the effect of chitosan modified soil was depressed (<60%) due to the insufficient charge density of chitosan to neutralize and destabilize the algal suspension. When the algal cells were less negative than −6.7 mV or even positively charged, a small floc size (<120 μm) was formed, which may be difficult to sink under natural water conditions. Therefore, manipulation of ZP provided a viable tool to improve the flocculation efficiency of chitosan modified soil and an important guidance for practical engineering of cyanobacteria bloom control.

© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.

INTRODUCTION

Excess qualities of nutrients have been discharged into fresh waters, inducing a global environmental epidemic of cyanobacteria blooms (Paerl and Huisman, 2008). Such blooms pose serious threats to aquatic life, fish industry, local tourism, and water quality in lakes, rivers and reservoirs (Beaulieu et al., 2005). They also threaten drinking water safety, such as the drinking water crisis in Wuxi City, China in 2007 (Guo, 2007).

Over the past several decades, many efforts have been done to combat the cyanobacteria blooms (HABs). Among the technologies of mechanical, biological, chemical, genetic and environmental control (Anderson, 2009), significant attention has been focused on the use of clay to flocculate and settle the cyanobacteria cells in natural waters (Anderson, 1997; Sengco et al., 2001; Yu et al., 1994). However, the efficiency of clay alone was low and high loads of clay (0.25–2.5 g/L) (Pan et al., 2006; Sengco et al., 2001; Sun et al., 2004) often lead to various ecological concerns (Lee et al., 2008). Pan et al. (2006) found that local soil/sand collected from lake shore after modified by chitosan could be turned into effective flocculants to remove cyanobacteria blooms and improve water quality, which greatly reduced the dosage to 11 mg/L and hence minimized the costs and the use of exogenous materials to the aquatic environments. Chitosan, a commercially available product of edible food additives, is derived from the alkaline deacetylation of crustacean chitin and known to be a biodegradable and non-toxic natural polymer. A field application of chitosan modified soil in Lake Taihu and the study of ecological

⁎ Corresponding author. E-mail: gpan@rcees.ac.cn (Gang Pan).
response in time scale of months to year proved its efficiency and ecological safety, 0.1 km² of the HAB layer disappeared in 10 hr after the dispersion of the chitosan modified soil and the submerged vegetation was successfully restored after 4 months due to the improved water quality (Pan et al., 2011b).

The key mechanism of chitosan modified soil/sand to remove cyanobacteria blooms was that the chitosan with long polymer chain and positively charged groups (−NH₃⁺) captured and linked the negatively charged algal cells and other particles, the soils then provided the mass or ballast to carry the flocs to the water sediment (Zou et al., 2006). Therefore, the surface charge of algal cells was critically important for the flocculation process. However, the zeta potential (ZP), which gives a measurement of the apparent surface charge of algal cells, often changed because of different growth phases (Henderson et al., 2008a) or water conditions (Zou et al., 2005), which caused the flocculation efficiency of chitosan modified soil variable. For example, when Microcystis aeruginosa (M.A.), the main species forming cyanobacteria blooms in Lake Taihu was firstly harvested from the culture medium by centrifugation and then re-dispersed into 0.5% NaCl solution, Zou et al. (2006) reported that 80% of the algal cells were removed by 1 mg/L chitosan modified 10 mg/L soil in 30 min. However, if directly flocculated in the culture medium, maximally 60% were achieved in 4 hr with the same dosage (Li and Pan, 2013). Further studies proved that after the pretreatment, the magnitude of ZP was significantly reduced from −67.9 to −30 mV, which greatly increased the flocculation potential of M.A. cells and hence achieved higher removal efficiency (Li and Pan, 2013).

Reducing the magnitude of negative ZP means charge neutralization and destabilization, which established the polymer flocculation mechanism (Hjorth and Jorgensen, 2012). Although the ZP as an influencing factor affecting the flocculation ability of chitosan has been proposed (Renault et al., 2009), little progress has been done to quantify the effects and study the mechanism on how it affected the flocculation efficiency. The use of ZP for monitoring and controlling the coagulation of algal cells using aluminium sulfate has been well researched and found to be of great benefit (Henderson et al., 2008b), it was reported that the optimum removal was measured when the ZP of algal cells was controlled between −8 and +2 mV. However, the main mechanism of chitosan to remove particles in water was the long polymer chain with netting and bridging function (Huang and Chen, 1996; Zou et al., 2006), which was significantly different from the aluminum sulfate functioned mainly as a charge neutralizer, the results and mechanism on how the ZP affect the removal efficiency of chitosan may be also different. Therefore, if the flocculation behavior of chitosan modified soil to cyanobacteria cells with different ZP can be cleared, it will give an insight for understanding the flocculation mechanism and provide a useful guidance for practical engineering of cyanobacteria bloom control.

Here, the M.A. cells, main species forming cyanobacteria blooms was selected in different growth phases and adjusted to possess different ZP by a positively charged protein, Moringa oleifera seed extract (MO). The relationship between ZP of algal cells and flocculation ability of chitosan was studied. The main objective of this research was to find how the ZP of particles affects the flocculation behavior of chitosan, including removal efficiency, sedimentation kinetics, floc structure and floc size growth. According to these results, an optimized ZP range for algal flocculation using chitosan modified soil was proposed.

1. Materials and methods

1.1. Algae culture

The M.A. cells were obtained from Freshwater Algae Culture Collection at the Institute of Hydrobiology, Chinese Academy of Sciences in Hubei province, China. The culture medium, BG11, was adjusted to pH = 8.0 by adding either 0.1 mol/L HCl solution or 0.1 mol/L NaOH solution before autoclaving. The sterilized 500 mL glass flasks containing 300 mL aqueous M.A. medium were maintained at 25 ± 1°C under a cool white fluorescent light of 2000–3000 lx on a 12 hr light and 12 hr darkness regimen in the illuminating incubator (LRH-250-G, Guangdong Medical Apparatus Co. Ltd., Guangdong, China).

1.2. MO, chitosan, soil and modification process

MO were cationic proteins with a molecular mass of 6.5–13 kDa and isoelectric points in the range of pH 9.6–11 (Ghebremichael et al., 2005). It was chosen as the ZP adjuster for M.A. cells since as reported, it can significantly reduce ZP of particles (Ndabigengesere et al., 1995). MO seeds were purchased from Shaoquan city (South China) in dry form, having already been removed from the pod. The healthy seeds (about 1.0 cm) were selected and deshelled. The kernels were grounded in a coffee grinder to become particles of about 300 μm, stored at room temperature in an airtight container and used for one month (Katayon et al., 2006). To extract the active proteins, 5 g of the seed powder was suspended in 100 mL of 1.0 mol/L NaCl solution and the suspension was stirred using a magnetic stirrer for 30 min (Okuda et al., 2001). The solution was then filtered through a glass microfiber filter of 0.45 μm pore size (Whatman GF/C, UK) and the filtrate was used as the ZP adjuster.

Chitosan was purchased from Qingdao Yunzhou Bioengineering Co. Ltd., Shandong, China. The chitosan flakes were dissolved by adding 500 mg chitosan to 100 mL of 0.5% HAc and stirred until all the chitosan was dissolved. This solution was then diluted with deionized water to obtain a final concentration of 1 g/L before use. The MO and chitosan were prepared freshly for each experiment.

The soil was collected from lakeshore of Meiliang Bay, Lake Taihu, washed with deionized water, dried at 100°C for 10 hr, and then grounded and sieved through 180 mesh (<90 μm).

To modify the soil, a certain volume of chitosan solution (1 mg/L) was added to a clay suspension (10 mg/L). The mixture was well stirred and then ready for use in the flocculation experiment. As the surface properties have been changed after Al₁₃-modification reported by Zhao et al. (2012), the netting and bridging modifications using chitosan also changed the physico-chemical characteristics of soil and hence affected the flocculation behavior, more detailed information can be obtained from the previous publications (i.e., Pan et al., 2006 and Zou et al., 2006).
1.3. Algal suspension preparation

M.A. cells with different ZP were obtained by two ways: (1) Algal cells in different growth phases (mid- to late-exponential growth phase and mid- to late-stationary phase) which possess different ZP were selected, and then diluted to an optical density of 0.150 ± 0.002 at the wavelength of 680 nm (OD$_{680}$ nm) (Pan et al., 2006) using BG11 culture medium. (2) M.A. cells in the mid- to late-stationary phase were chosen and diluted to OD$_{680}$ nm = 0.150 ± 0.002 using BG11 culture medium, then 1, 2, 3, 4 and 5 mL of MO was added to 200 mL algal suspension, respectively. The pH of all the solutions were adjusted to 8.0 by adding either 0.1 mol/L NaOH or 0.1 mol/L HCl solutions and the ZP of M.A. cells was then determined by Zetasizer 2000 (Malvern Co. Ltd., UK).

1.4. Algal flocculation

Each prepared algal suspension (200 mL) was transferred into a 300 mL beaker, respectively. According to the pre-experiment (Fig. 1), the optimal dosage of 2 mg/L chitosan modified 10 mg/L soil was added to the algal solution and stirred at 300 r/min for 1 min, then 120 r/min for 2 min, followed by 40 r/min for another 10 min. The solution running without adding any MO, chitosan or soil was set as blank control and only the addition of ZP adjuster (MO) was set as MO control. The solutions were kept standing when the stirrer stopped. Samples (1 mL) from 2 cm below the water surface were collected after sedimentation for 0, 2, 5, 10, 15, 20, 30, 60, 90, 120, 180, 240, 300, 360 and 420 min. The cells were enumerated in a counting chamber of an electromotive microscope (Axioskop 2 mot plus, Carl ZEISS, Germany) after being fixed by Lugol solution 5g I$_2$ and 10g KI diluted in 85 mL deionized water. All the flocculation experiments were conducted in triplicate and the results were presented as the mean values. The removal rate of M.A. cells was calculated as (initial cell concentration – sample cell concentration) / initial cell concentration × 100%. To study the floc formation and floc size growth of M.A. cells with different ZP after the addition of chitosan modified soil, the floc size during flocculation process was quantitatively monitored with a laser particle size analyzer (Mastersizer 2000, Malvern Co. Ltd., UK). Samples were drawn into the analyzer and back to the jar by a peristaltic pump (BT00-300 M, Baoding Longer Precision Pump Co. Ltd., Hebei, China) at a flow rate of 35 mL/min (Jarvis et al., 2005). The floc size of the samples was determined first before going through the pump head, to avoid floc breakage. The size was denoted by the measured mean diameter (D$_{0.5}$). After flocculation and sedimentation, the flocs formed by M.A. cells with different ZP were carefully transferred on a glass slide and then photographed by the electromotive microscope (Axioskop 2 mot plus, Carl ZEISS, Germany) for the floc structure study.

2. Results and discussion

2.1. Algae removal in different growth phases

The chitosan modified soil showed different flocculation abilities to the M.A. cells in different growth phases (Fig. 2). Maximally about 70% of algal cells in the mid- to late-exponential growth phase and 50% in the mid- to late-stationary phase were removed at the optimized dosage of 2 mg/L chitosan modified 10 mg/L soil. The change of ZP associated with algal proliferation process probably caused the different removal efficiencies. When in the mid- to late-exponential growth phase, the ZP of M.A. cells was −26.3 mV, whereas in the mid- to late-stationary phase, it was more negatively charged (−67.9 mV) (Fig. 2). This was probably because of the more generation of extracellular organic matter (EOM) in the stationary phase which attached to the algal cells and changed the surface properties (Wang et al., 2013). EOM in an appropriate concentration acted as flocculation aid to increase the removal efficiency (Henderson et al., 2008a), however, the increased EOM might increase the magnitude of ZP and thus inhibited the flocculation process (Wang et al., 2013). Compared to some coagulants with a
strong charge density (e.g., aluminium and ferric), chitosan is a relatively weaker surface charge modifier, which was less effective in reducing the magnitude of ZP and destabilizing algal suspension (Huang and Chen, 1996). Therefore, more negatively charged algal cells often lead to a lower removal efficiency when using chitosan modified soil.

2.2. Removal efficiency of M.A. cells with different ZP

To study the flocculation of M.A. cells less negatively charged when using chitosan modified soil, the cationic protein, MO was used to adjust the ZP of algal cells in the mid- to late-stationary growth phase. The initial ZP of M.A. cells in the BG11 culture medium was highly negatively charged (−67.9 mV). After the addition of MO of 1, 2, 3, 4 and 5 mL, the magnitude of ZP was reduced to −20.7, −6.7, −3.7, +0.4 and +2.7 mV, respectively (Fig. 3a). Due to the reduction of repulsive force, MO itself can remove some algal cells (Fig. 3b). As the reduction of ZP value, the removal efficiency was increased and achieved the maximum removal efficiency of 58.7% at the ZP of −20.7 mV after sedimentation for 30 min. The chitosan modified soil showed different flocculation abilities to M.A. cells with different ZP. When directly flocculated in the culture medium without ZP adjusting, only 40% of algal cells were removed in 30 min, whereas the removal efficiency of 80% and 93% was achieved at the ZP of −20.7 and −6.7 mV, respectively.

Unlike the coagulants, the ZP value should be reduced to a certain level to obtain relatively optimal removal rate, such as aluminium sulfate, which can obtain relatively optimal removal rate when ZP range is from −8 to +2 mV reported by Henderson et al. (2008b). Reduction of the magnitude of ZP to −20.7 mV was sufficient for the chitosan to flocculate the M.A. cells (Fig. 3b). However, if over-reduced the magnitude of ZP, i.e., less negatively charged than −6.7 mV, the attractive force between positive charged groups of chitosan (−NH3) and the algal cells was weakened, which inhibited the netting and bridging process of chitosan. Although the removal efficiency was still higher than 90% due to reduced repulsive force between algal cells at the ZP range between −3.7 and +2.7 mV (Fig. 3b), the floc size became small (as discussed below) and hence the overall removal efficiency was decreased.

2.3. Algal floc formation, size growth and sedimentation

The floc formation and floc size growth of M.A. cells with different ZP after the addition of chitosan modified soil were directly monitored during flocculation process (Fig. 4). The size of algal flocs was improved from 2 to 30 μm at the ZP of −67.9 mV, which suggested that chitosan cannot capture and link these highly negatively charged cells effectively. As the reduction of ZP value, the floc size was significantly increased to about 360 μm at the ZP of −20.7 mV. The netting and bridging function of chitosan played best when the ZP of M.A. cells was −6.7 mV, the maximum floc size of about 700 μm was achieved. However, if the ZP was less negatively charged than −6.7 mV, the weakened attractive force between chitosan and cells led to the decrease of floc size. When the ZP was turned to positive, the floc size was almost the same as MO control (120 μm), which suggested that the netting and bridging function of chitosan was lost under this condition. According to the images of floc structure of M.A. cells at the ZP of −6.7 and +2.7 mV (Fig. 5), the latter was much more fragile and smaller than the former, which directly proved the effect of ZP to the netting and bridging process of chitosan.

Algal floc size directly affected the sedimentation kinetics of M.A. cells after flocculation (Fig. 6). The maximum removal efficiency of 90% was achieved in 30 min for the M.A. cells at the ZP of −6.7 mV due to the rapid formation and size growth of algal flocs (Fig. 4), whereas 240 min was needed to obtain the same removal efficiency when the ZP was +2.7 mV and only about 50% of alga cells were removed as long as 480 min when the ZP was −67.9 mV. After adjusting ZP to −6.7 mV, the MO alone can remove algal cells due to the reduction of repulsive force between particles, however, if without the netting and bridging function of chitosan, 120 min was needed to sediment the small MO-flocs (Fig. 6).

Fig. 3 – Reducing the magnitude of zeta potential (ZP) of Microcystis aeruginosa (M.A.) cells after the addition of Moringa oleifera seed extract (MO) (a) and the flocculation ability of 2 mg/L chitosan modified 10 mg/L soil for M.A. cells with different ZP (b). The optimal dosage of MO which adjusted the ZP of M.A. cells to −6.7 mV was used for the following studies as MO control.
Sedimentation was regarded as a major challenge for chemical coagulation and flocculation treatment of cyanobacteria cells because of the buoyant properties (Ghernaout et al., 2010) and low density of algal flocs (Pieterse and Cloot, 1997). Unlike in the constructed water treatment systems, sufficient sedimentation time can be provided to allow the small flocs to settle by creating static water condition and/or appropriate water retention time, or dissolved air bubbles can be generated to float the flocs with a low density (Edzwald, 1993). In flocculating cyanobacteria blooms in natural waters, the small and fluffy flocs were often hard to settle or easy to re-suspend into the water column with the disturbance of water flow and wind-induced waves (Beaulieu et al., 2005). Improving algal floc size and combining it with soil particles to increase the floc density were key processes for algae removal when using the chitosan modified soil technology. To this end, manipulating the ZP of M.A. cells to create an optimized condition for chitosan linking and bridging the algal cells and soil particles (Fig. 4) is crucial for flocculating cyanobacteria blooms successfully in natural waters. According to the removal efficiency (Figs. 2 and 3), floc size growth process (Figs. 4 and 5) and sedimentation kinetics (Fig. 6), the optimized ZP range for chitosan modified soil to flocculate M.A. cells was suggested to be between -20.7 and -6.7 mV, in which the removal efficiency of more than 80% in 30 min and floc size larger than 350 μm can be achieved.

2.4. Environmental implications

Cyanobacteria blooms pose a serious threat to aquatic eco-systems and public health (Guo, 2007; Paerl and Huisman, 2008), flocculating them using chitosan modified soil not only removed the harmful algal cells and reduced the risk level, but more importantly, the water quality including water transparency was also improved and excess nutrients in the algal cells were transferred to the sediment, which created a better condition for subsequently submerged macrophytes restoration in shallow lakes (Pan et al., 2011b). Besides the biodegradable, nontoxic and natural properties (Pan et al., 2011a), chitosan was also reported to be beneficial for the submerged macrophytes growth in aquatic environment (Xu et al., 2005).

However, both exciting and unsatisfactory results of the algae removal using chitosan modified soil have been reported (Li and Pan, 2013; Zou et al., 2006). The changes of algal surface charge attributed to the different algae growth phase (Chen et al., 2004) or water condition (Pan et al., 2011a) often led to the flocculation efficiency variable. Our results demonstrated the relationship
between ZP of algal cells and its influence on the flocculation efficiency using chitosan modified soil. The optimized ZP range between -20.7 and -6.7 mV thus provided a manipulating strategy for practical engineering of cyanobacteria bloom control. For example, since algal cells in different growth phases possess different ZP, the optimized range can guide the researchers or engineers to choose the right time to carry out the cyanobacteria bloom removal, or for the highly negatively charged algal cells, some charge modifiers (e.g., the coagulants) can be dosed first to create a better condition for chitosan to capture and link the particles and increase floc size. Therefore, manipulating the ZP of algal cells as a tool to improve the flocculation efficiency and floc size greatly increased the probability of successful control of cyanobacteria blooms in natural waters when using this chitosan modified soil technology.

Since chitosan alone cannot destabilize and capture highly negatively charged algal cells, pre-charge modification was hence important for the successful algae removal. Besides MO, there are some other widely existing proteins with a high isoelectric point which possess a net positive charge in natural waters and show promise to achieve this goal. Ghebremichael et al. (2005) have proved that there are many other small, basic peptides from plants and animals which can be used to reduce the surface charge of particles. Therefore, a new bi-component modification method using locally available, biodegradable and nontoxic materials with high charge density and chitosan could be developed, which combines multi mechanism of charge neutralization to manipulate the ZP and netting and bridging function to improve the floc size. If so, the uncertain impact of ZP attributed to different algal growth phase could be overcome and high removal efficiency could be achieved under different water conditions.

Finally, it is important to note that besides ZP or some factors directly affected ZP and thus further affected the flocculation ability of chitosan, some other factors irrelevant to ZP also show the control of the performance in flocculation process, such as the origin and the nature of the chitosan (i.e., its intrinsic characteristics such as degree of deacetylation and molecular weight, and the activation conditions of the raw biopolymer), the type of acid used to dissolve the chitosan, and the reaction time and temperature, (Renault et al., 2009), the quantitative relationship between algae removal efficiency and these factors needs to be further studied.

3. Conclusions

The ZP of algal cells directly affected the flocculation ability of chitosan modified soil. According the removal efficiency, floc size and sedimentation kinetics, an optimized ZP range between -20.7 and -6.7 mV was proposed, in which the removal efficiency of more than 80% in 30 min and floc size of larger than 350 μm can be achieved. The quantification of the ZP effect to chitosan flocculation behavior provided a viable tool to increase the probability of successful control of cyanobacteria blooms in natural waters when using this technology. With some additional research, a bi-component modification method in combination with ZP manipulation and netting and bridging function can be developed.

Acknowledgment

The study was supported by the National Basic Research Program (973) of China: the application of nano-material and nano-technology in detecting and treating water pollutants (No. 2010CB933600) and the Science Promotion Program of Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (No. YSW2013B05).

References

Editorial Board of Journal of Environmental Sciences

Editor-in-Chief
X. Chris Le
University of Alberta, Canada

Associate Editors-in-Chief
Jihui Qu
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Shu Tao
Peking University, China
Nigel Bell
Imperial College London, UK
Po-Keung Wong
The Chinese University of Hong Kong, Hong Kong, China

Editorial Board

Aquatic environment
Baoyu Gao
Shandong University, China
Maohong Fan
University of Wyoming, USA
Chihpin Huang
National Chiao Tung University
Taiwan, China
Ng Wun Jern
Nanyang Environment & Water Research Institute, Singapore
Clark C. K. Liu
University of Hawaii at Manoa, USA
Hokyong Shon
University of Technology, Sydney, Australia
Zijian Wang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Zhifu Wang
The Ohio State University, USA
Yuxiang Wang
Queen’s University, Canada
Min Yang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Terrestrial environment
Christopher Anderson
Massey University, New Zealand
Zaccong Cai
Nanjing Normal University, China
Xinbin Feng
Institute of Geochemistry, Chinese Academy of Sciences, China
Hongqing Hu
Hunan Agricultural University, China
Kin-Che Lam
The Chinese University of Hong Kong
Hong Kong, China
Erwin Klumpp
Research Centre Juelich, Agrosphere Institute
Germany

Environmental toxicology and health
Jingwen Chen
Dalian University of Technology, China
Jianying Hu
Peking University, China
Guobin Jiang
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China

Environmental catalysis and materials
Hong He
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, China
Junhua Li
Tsinghua University, China

Environmental analysis and method
Zongwei Cai
Hong Kong Baptist University, Hong Kong, China

Municipal solid waste and green chemistry
Pujing He
Tongji University, China

Copyright © Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Aims and scope

Journal of Environmental Sciences is an international academic journal supervised by Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. The journal publishes original, peer-reviewed innovative research and valuable findings in environmental sciences. The types of articles published are research article, critical review, rapid communications, and special issues.

The scope of the journal embraces the treatment processes for natural groundwater, municipal, agricultural and industrial water and wastewaters; physical and chemical methods for limitation of pollutants emission into the atmospheric environment; chemical and biological and phytoremediation of contaminated soil; fate and transport of pollutants in environments; toxicological effects of terrorist chemical release on the natural environment and human health; development of environmental catalysts and materials.

For subscription to electronic edition

Elsevier is responsible for subscription of the journal. Please subscribe to the journal via http://www.elsevier.com/locate/jes.

For subscription to print edition

China: Please contact the customer service, Science Press, 16 Donghuangchenggen North Street, Beijing 100717, China. Tel: +86-10-64017032; E-mail: journal@mail.sciencep.com, or the local post office throughout China (domestic postcode: 2-580).

Outside China: Please order the journal from the Elsevier Customer Service Department at the Regional Sales Office nearest you.

Submission declaration

Submission of the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis), that it is not under consideration for publication elsewhere. The publication should be approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If the manuscript accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Editorial

Authors should submit manuscript online at http://www.jesc.ac.cn. In case of queries, please contact editorial office, Tel: +86-10-62920553, E-mail: jesc@rcees.ac.cn. Instruction to authors is available at http://www.jesc.ac.cn.