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The elemental mercury removal abilities of three different zeolites (NaA, NaX, HZSM-5)
impregnated with iron(III) chloride were studied on a lab-scale fixed-bed reactor. X-ray
diffraction, nitrogen adsorption porosimetry, Fourier transform infrared spectroscopy,
X-ray photoelectron spectroscopy, and temperature programmed desorption (TPD) analy-
ses were used to investigate the physicochemical properties. Results indicated that the pore
structure and active chloride species on the surface of the samples are the key factors for
physisorption and oxidation of Hg0, respectively. Relatively high surface area andmicropore
volume are beneficial to efficient mercury adsorption. The active Cl species generated on
the surface of the samples were effective oxidants able to convert elemental mercury (Hg0)
into oxidized mercury (Hg2+). The crystallization of NaCl due to the ion exchange effect
during the impregnation of NaA and NaX reduced the number of active Cl species on the
surface, and restricted the physisorption of Hg0. Therefore, the Hg0 removal efficiencies of
the samples were inhibited. The TPD analysis revealed that the species of mercury on the
surface of FeCl3–HZSM-5 was mainly in the form of mercuric chloride (HgCl2), while on
FeCl3–NaX and FeCl3–NaA it was mainly mercuric oxide (HgO).
© 2014 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

Mercury is one of the most toxic heavy metal elements in the en-
vironment. It is a priority toxic pollutant becauseof its high volatility,
long persistence, and strong bioaccumulative properties (Presto and
Granite, 2006; Brown et al., 1999; Dastoor and Laroque, 2004).

According to reports by US Environmental Protection Agency
(EPA), coal combustion is one of the major anthropogenic
mercury emission sources. Thus, researchers have explored
various technologies for the control of mercury emissions from
coal combustion flue gas (Reddy et al., 2012).

Elemental mercury (Hg0), oxidized mercury (Hg2+), and
particulate-bound mercury (Hgp) are the main forms of mercury in
.cn (T. Zhu).

o-Environmental Science
coal combustion flue gas (Reddy et al., 2012). Hg2+ is soluble inwater,
so it can be removed by wet flue gas desulfurization systems. Most
Hgp can be removed by electrostatic precipitators or fabric filters.
However, the majority of Hg0 cannot be removed by existing
pollution control devices because of its low solubility in water and
high volatility. Thus, the removal of Hg0 is the most important and
difficult work in flue gasmercury control (Granite et al., 2006; Wang
et al., 2010; Cao et al., 2008; Pavlish et al., 2003).

Among the technologies under investigation, activated car-
bon (AC) injection has been employed in coal-fired power
plants as the most feasible technology so far. Nevertheless, the
application of this technology is limited due to its high operation
cost. In addition, the high carbon/mercury weight ratio may
restrict the utilization of fly ash (Feeley et al., 2004). Therefore,
jes
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new technologies that are efficient and cost-effective still need
more exploration.

Noncarbon materials or mineral oxides modified with vari-
ous active additives would be economically viable alternatives
for removal of mercury from flue gas, as they do not impact fly
ash recycling (Lee et al., 2006). Among these materials, zeolites
are widely used as drying agents and adsorbents in adsorption
and separation processes, because of their adsorption ability
and ion-exchange properties (Kesraouiouki et al., 1994). It has
been proved that zeolites have distinctive framework structures.
As a result, they show high selectivity in adsorption and
catalytic processes. As shown in previous works, natural zeolites
treated by different methods show considerable Hg0 adsorption
performance with simulated flue gas (Morency et al., 2000;
Morency, 2002; Eswaran et al., 2007). Silver-modified zeolite NaA
can be used to remove the residual mercury from natural gases,
and is regenerable and stable for long term operation (Yan,
1994). Zeolite HZSM-5, with higher mechanical strength and
chemical and thermal stability, was modified by CeO2 and CuO
to efficiently oxidize and remove Hg0 from simulated coal-fired
flue gas (Fan et al., 2012a, b). In this study, zeolites NaA, NaX and
HZSM-5 were chosen and compared as parent materials.

Various additives, such as sulfur, sulfide, transition metal
oxides and halides, have been added to adsorbents to enhance
their mercury removal ability in previous works (Xu et al., 2013).
Among the transition metal halides, FeCl3 has been applied
to modify various kinds of noncarbon materials, resulting in
high Hg removal efficiencies close to those of CuCl2 and CuBr2.
Impregnated Cl as an active element can greatly strengthen
the Hg oxidation ability (Shen et al., 2010; Tao et al., 2012),
especially when HCl is absent from the flue gases. In addition,
FeCl3 is cheap and easy to obtain, reducing the cost of
materials.

In this study, we chose FeCl3 as the additive to modify three
different zeolites (NaA, NaX and HZSM-5). The Hg0 removal
efficiencies of modified zeolites from simulated flue gas were
evaluated in a lab-scale fixed-bed device. XRD, nitrogen adsorp-
tion porosimetry, FT-IR, XPS, and TPD analyses were used to
investigate the physicochemical properties. On the basis of the
characterization results, the reasons for the differences in Hg0

removal efficiencies were discussed.
c.c
n

1. Materials and methods

1.1. Sample preparation

Commercially available Na-A, Na-X (purchased from
Sinopharm Chemical Reagent Co., LTD.) and HZSM-5 (with a
SiO2/Al2O3 ratio of 150, purchased from Nanjing Jcnano Tech
Co., Ltd., China) zeolites were modified with iron chloride
aqueous solution by amethod of impregnation, in proportions
corresponding to different loading values (ρ, where ρ is the
mass ratio of Fe/zeolite). After stirring for 3 hr at room
temperature, the mixtures were placed into a rotary evapora-
tor to be dried quickly, and then dried at 120°C for 12 hr. The
derived samples were crushed and sieved to 60–80 mesh
particles for Hg0 removal testing.

1.2. Removal efficiency measurement

As shown in the diagrammatic sketch in Fig. 1, the experi-
mental device consisted of a simulated flue gas system, a
fixed bed system, and an Hg0 analyzer system. A constant
quantity of Hg0 vapor was supplied into the gas-mixing tank
 c.a

by passing a branch of N2 flow (300 mL/min) through a Hg0

permeation tube, which was immersed in a water bath
maintained at 50°C. N2 was used as a balance gas to control
the total gas flow at 1 L/min in each experiment, correspond-
ing to a space velocity of about 700,000 hr−1. Other gas
components could be introduced into the gas stream when
necessary. The initial Hg0 concentration in this system was
kept at 40.7 ± 0.3 μg/m3. A separate branch of N2 gas was used
as purge flow to pretreat the samples at the experimental
temperature for 1 hr. The outlet N2 was introduced into the
Hg0 analyzer to confirm and adjust the baseline. Two
four-way valves were used to switch between different
branches of gas flows, which were introduced into the reactor
or the Hg0 analyzer.

A quartz tube (custom made, Beijing, China) with an
inner diameter of 4 mm was used as a fixed-bed reactor.
50 mg of the samples was supported on a quartz fiber filter
at the center of the tube. The reactor was heated by a
temperature-controlled tubular furnace (Tianjin Weiye
Science apparatus Limited Co., Tianjin, China) and main-
tained at 120°C in each experiment, with a thermocouple
placed beside the external wall of the quartz tube. The Hg0

concentrations at inlet and outlet of the fixed-bed reactor
were measured in real time with an Hg0 analyzer (RA-915M,
Lumex, Russia). The Hg0 removal efficiency η (%) was defined
by the following equation:

η ¼ Cinlet−Coutlet

Cinlet
� 100% ð1Þ

where,Cinlet (μg/m3)andCoutlet (μg/m3) representHg0concentrations
at the inlet and outlet of the reactor, correspondingly.

1.3. Analytical methods

The nitrogen adsorption–desorption isothermswere determined
at −196°C on an automatic porosity analyzer (Autosorb-iQ,
Quantachrome, USA). The specific area was calculated with the
BETmethod, and the pore size distributionwas calculated on the
basis of the N2 adsorption isotherm using the NLDFT method.
X-raydiffraction (XRD)measurementwas carried out on anX-ray
diffractometer (X'Pert PRO MPD, PANalytical, Netherlands) with
Cu Kα (λ = 0.15406 nm) radiation to determine the crystal
structures of the samples. Fourier transform infrared spectros-
copy (FT-IR) was obtained using the KBr pellet method on a
Fourier transform instrument (Nicolet 6700, Thermo, USA).
Samples were prepared by compressing a well-mixed sample
powder with potassium bromide (KBr). And the scan range was
400–4000 cm−1. X-ray photoelectron spectroscopy (XPS) was
carried out on an X-ray photoelectron spectrometer (ESCALab
250Xi, Thermo, USA) using Al Kα radiation (hυ = 1486.8 eV).
Binding energy was calibrated using adventitious carbon
(284.8 eV). Before the temperature programmed desorption tests,
the samples were first exposed to the simulated gas with
40.7 ± 0.3 μg/m3 Hg0 for 8 hr at 120°C, and then purged with
nitrogen at a flow rate of 1 L/min at 120°C until the Hg0

concentration at the outlet of the reactor decreased to zero. For
each test, the samplewasheated from120 to 720°C at a rate of 5°C/
min under a nitrogen atmosphere with a flow rate of 1 L/min. The
outlet Hg0 concentrations were measured online by the Hg0

analyzer (RA-915M, Lumex, Russia) during the test.
jes
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Fig. 1 – Diagrammatic sketch of the experimental devices.
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2. Results and discussion

2.1. Removal of Hg0 by modified zeolites

The Hg0 removal efficiencies of different samples were mea-
sured online under a nitrogen atmosphere at 120°C. As shown
in Fig. 2, the 5% FeCl3–NaA sample exhibited a Hg0 removal
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Fig. 2 – Hg0 removal efficiency of 5% FeCl3 modified zeolites (NaA,
respectively defined as 5% FeCl3- NaA, 5% FeCl3- NaX and 5% FeCl
temperature of 120°C, sample mass of 50 mg, total flow rate of 1 L
efficiency of only about 3%, whichwas close to zero considering
the systematic error of the experimental devices. 5% FeCl3–NaX
showed an initial efficiency of about 65%, and the efficiency
decreased to 45% in 180 min. The efficiency of 5%FeCl3–HZSM-5
was initially over 98%, and still remained over 95% after
180 min. These three types of zeolites showed significantly
different Hg0 removal efficiencies after modification under the
same conditions.
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2.2. Sample characteristics

The BET surface areas (SBET) and total volumes of parent and
modified zeolites are summarized in Table 1. Among these
three parent zeolites, NaX had the highest BET surface area of
632.9 m2/g and the largest total pore volume of 0.3988 cm3/g.
Those of HZSM-5 were lower, 405.3 m2/g and 0.2314 cm3/g,
respectively. However, they all decreased after being modified
by FeCl3. The BET surface area of NaX sharply reduced to
149.8 m2/g and total pore volume of 0.2314 cm3/g after being
modified. As a result, the values for 5% FeCl3–HZSM-5 were
the largest among themodified zeolites, only being reduced to
358.9 m2/g and 0.2263 cm3/g. Nevertheless, those of NaA were
the smallest. Its BET surface area increased from 24.45 to
44.63 m2/g after modification, but the total pore volume
decreased slightly.

The pore size distribution profiles calculated using the
NLDFT method are displayed in Fig. 3. It could be observed
that HZSM-5 had significant pore size distribution peaks at
3.2 nm and smaller than 1 nm before and after modification.
The peak at 3.2 nm decreased slightly after modification,
which was consistent with the reduction in BET surface area
and pore volume. The fresh NaX had an obvious micropore
distribution at 1.3 nm and below 1 nm. These micropores
almost disappeared after modification; however, the
mesopore peaks increased. This led to the sharp decrease in
the BET surface area and pore volume of NaX. As for NaA, the
pore distribution peak at about 4 nm slightly increased, which
resulted in the increase of its BET surface area. It can be
concluded from the results that the micropores of NaX were
blocked after modification with FeCl3, and the textural
properties of HZSM-5 barely changed. The significant differ-
ences in the BET surface areas and pore size distribution
among modified zeolites contributed to their different Hg0

removal efficiencies.
The XRD analysis results of parent and modified zeolites

are shown in Fig. 4. The specific peaks of each zeolite before
and after modification were detected at the same positions,
but their intensities decreased markedly after modification.
No diffraction peaks of FeOx or FeCl3 were detected for any of
the three modified samples. However, peaks attributed to
crystalline NaCl at themarked positions were clearly observed
for the modified NaA and NaX. This indicated that NaCl
crystals were formed, which was due to the ion exchange of
Fe3+ in the solution with Na+ in the zeolite during the
modification processes. This effect may cause the blocking
of the internal porosity of zeolites, resulting in the sharp
decrease of the BET surface area of modified NaX. As for
NaA, which has a small surface area, the emergence of NaCl
Table 1 – Specific surface area and volume of the samples.

Samples BET surface area
(m2/g)

Total pore volume
(cm3/g)

NaA 24.45 0.1218
5% FeCl3–NaA 44.63 0.1184
NaX 632.9 0.3988
5% FeCl3–NaX 149.8 0.2404
HZSM-5 405.3 0.2314
5% FeCl3–HZSM-5 358.9 0.2263
crystals improved the surface area due to their small
particle size. But for HZSM-5, the cation in the structure is
H+, so that no NaCl was crystallized to block the pores in
the zeolite.

The FT-IR spectra of different samples, recorded at 25°C,
are shown in Fig. 5. These spectra each agree with those
jes
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reported previously for the same zeolite. The broad bands in the
region 3700–3000 cm−1 are due to the OH groups of zeolites
(Förster, 1992; Trombetta et al., 2000), and they were barely
changed after modification. These bands for HZSM-5 were
much weaker than those of NaA and NaX. This indicates that
the OH groups of the zeolites may be not the active sites for Hg0

removal onHZSM-5. The bands in the region1,300–400 cm−1 are
associatedwith the oscillation of the zeolite framework (Förster,
1992). For NaA, the characteristic bands are at 1001, 667, 555 and
462 cm−1, and for HZSM-5, they are at 1226, 1100, 624, 798, 547
and 453 cm−1. The bands in this region of NaA and NaX are
clearly changed after modification, especially the band at
around 667 cm−1, which almost disappeared in the spectra of
these two samples after modification. This means that Fe3+

interacts with the zeolite framework of NaA and NaX after
modification, due to the ion exchange effect or the entrance of
Fe3+ into the channels of NaA and NaX. As for HZSM-5, the
bands in this region are little changed.We can conclude that the
interaction between Fe3+ and the HZSM-5 framework is
relatively weaker in the modified sample compared to the
other zeolites. Thus, the ion exchange reaction did not occur
noticeably during the preparation of FeCl3–HZSM-5 according to
the FT-IR results. This means that Fe3+ is mainly distributed on
the surface of the HZSM-5 crystal, so that it can more easily
participate in the oxidation and capture processes of Hg0.

The Hg0 TPD results of threemodified zeolites are shown in
Fig. 6. According to the thermal decomposition curves of pure
mercury compounds obtained in the previous studies, the
mercury species in the samples can be inferred from their
thermal decomposition temperature (Lopez-Anton et al.,
2010). Though the thermal decomposition temperature of
mercury compounds varies on different matrixes, the order of
Hg desorption temperatures is always HgCl2 < HgO (Lopez-
Anton et al., 2010, 2011; Wu et al., 2011). According to the
previous report (Wu et al., 2011; Uddin et al., 2009), and
considering the elements existing in the samples, the
mercury compounds formed on different materials in the
 c.a

presence of Cl should mainly be HgCl2. Thus, it could be
concluded that the desorption peaks at 192°C in this experi-
ment could possibly correspond to HgCl2, and the peaks at 347
and 355°C might correspond to HgO. The small peaks at 273
and 275°C possibly corresponded to the desorption peaks of
HgO as well. It could be inferred that the adsorption products
of Hg0 on 5% FeCl3–NaA were mainly HgO. A majority of Hg
compounds on 5% FeCl3–NaX were HgO, and a very small
portion of HgCl2 was also observed. For 5% FeCl3–HZSM-5, the
mercury compounds formed on the sample were mainly
HgCl2, and the remaining portion was HgO.

This result suggested that the active component for Hg0

oxidation and removal in 5% FeCl3–HZSM-5 was mainly
chlorine. Nevertheless, chlorine in 5% FeCl3–NaA and 5%
FeCl3–NaX could not promote the removal of Hg0 since it was
mostly in the form of crystalline NaCl. The oxygenic func-
tional groups such as hydroxyl at the surface of 5% FeCl3–NaA
and 5% FeCl3–NaX may be the main active oxidant that
oxidized Hg0 to HgO. Moreover, a small portion of Fe2O3 might
be generated by hydrolysis of FeCl3 during preparation, which
could serve as a mercury oxidant in flue gas in accordance
with the literature (Bhardwaj et al., 2009; Worathanakul et al.,
2008). The reactions could be hypothesized as follows:

Hg0 þ zeolite surface→ Hg0 adð Þ ð2Þ

Hg0 adð Þ þ surface‐O→ surface‐O‐Hg ð3Þ

Hg0 adð Þ þ Fe2O3 → 2FeO þ HgO adð Þ ð4Þ

As Hg2+ in the gas was not analyzed in the experiment, the
Hg0 desorption amount on different zeolites could not be
quantitatively compared accurately.

An XPS analysis was employed to determine the surface
species on themodified zeolites before and after reaction with
Hg0. Fig. 7 shows the XPS spectra for the Cl 2p region on the
samples. The peak at about 200.2 eV was assigned to adsorbed
jes
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active Cl species with less ionic charge, and 198.6 eV assigned
to ionic Cl− moieties, respectively (Kautek and Gordon, 1990).
It can be inferred that a portion of Cl in FeCl3 was transformed
after combining with the zeolite. The ratio of the spectral area
with respect to active Cl and ionic Cl− was about 0.87 for the
fresh sample of 5% FeCl3–HZSM-5, and this ratio decreased to
0.77 for the used sample of 5% FeCl3–HZSM-5 after reaction
with Hg0. But this ratio for 5% FeCl3–NaA decreased slightly
from 0.53 to 0.50 after reaction, and from 0.57 to 0.56 for 5%
FeCl3–NaX. This phenomenon indicated that some of the
204 202 200 198 196 194

5% FeCl3-NaA (fresh)

5% FeCl3-NaX (fresh)

198.6

Binding energy (eV)

200.2

204 202 200 198 196 194

198.6

200.1

204 202 200 198 196 194

198.6

200.2

5% FeCl3-HZSM-5 (fresh)

Binding energy (eV)

Binding energy (eV)

Fig. 7 – Cl2p XPS spectra of modified zeoli
active Cl species on the surface of 5% FeCl3–HZSM-5 were
transformed to ionic Cl− by reacting with Hg0 in the experi-
mental process, and possibly formed HgCl2, which could be
observed in the TPD process in Fig. 6. The oxidation reaction
mechanism can be described as follows, which is based on the
Mars–Maessen mechanism:

Hg0 þ zeolite surface→ Hg0 adð Þ ð2Þ

Cl� þ Hg0 adð Þ→ HgCl ð5Þ
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HgCl þ Cl� → HgCl2 ð6Þ

However, this oxidation reaction of Hg0 by active Cl species
was not observed for 5% FeCl3–NaA and 5% FeCl3–NaX during
the Hg0 removal process, and the Hg0 was oxidized mainly by
the oxygenic functional groups on the surface and Fe2O3.
Thus, the difference in Hg0 oxidation abilities of the active Cl
species on the surfaces of the modified zeolites was the major
factor causing the different Hg0 removal efficiencies.

2.3. Effect of FeCl3 loading value

The effect of FeCl3 loading value on the Hg0 removal efficiency
of FeCl3–HZSM-5 is exhibited in Fig. 8. The Hg0 removal ability
of FeCl3–HZSM-5 clearly improved when the loading value of
FeCl3 increased from 1% to 3%. However, when the FeCl3
loading value exceeded 3%, the Hg0 removal efficiencies of the
samples reached a plateau above 95% and showed little
change within the testing time. Therefore, taking economic
considerations into account, the proper FeCl3 loading value is
3% when applied for the removal of Hg0 from industry coal
combustion flue gas.
3. Conclusions

Different FeCl3-modified zeolites showed significant differ-
ences in their Hg0 removal abilities. FeCl3–HZSM-5 showed
excellent Hg0 removal efficiency as a result of its relatively
higher BET surface area, and the high Hg0 oxidation activity of
Cl species on the surface of the sample. FeCl3–NaX showed a
relatively lower Hg0 removal efficiency, mainly because of the
ion exchange effect during the impregnation process of the
sample. The exchanged Na+ and aqueous Cl− crystallized into
NaCl crystals when the sample was dried, which is not an
effective Hg0 oxidant. The NaCl crystals blocked the micropores
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Fig. 8 – Hg0 removal efficiency of modified HZS
in the structure and reduced the BET surface area of the sample,
which restricted the physisorption of Hg0. The Hg0 removal
efficiency of FeCl3–NaAwas the lowest among the three samples
for reasons similar to that of FeCl3–NaX as well as its low surface
area. The XPS analysis results indicated that the adsorbed active
Cl species on the surface of FeCl3–HZSM-5 were consumed
during the reaction with Hg0. The TPD results revealed that the
oxidation products of Hg0 adsorbed on the surface of FeCl3–
HZSM-5 were mainly HgCl2, and those on the surface of FeCl3–
NaX and FeCl3–NaA were mainly HgO.
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