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Elevated CO2 can stimulate wetland carbon (C) and nitrogen (N) exports through gaseous
and dissolved pathways, however, the consequent influences on the C and N pools are still
not fully known. Therefore, we set up a free-air CO2 enrichment experiment in a paddy field
in Eastern China. After five year fumigation, we studied C and N in the plant–water–soil
system. The results showed: (1) elevated CO2 stimulated rice aboveground biomass and N
accumulations by 19.1% and 12.5%, respectively. (2) Elevated CO2 significantly increased
paddy soil TOC and TN contents by 12.5% and 15.5%, respectively in the 0–15 cm layer, and
22.7% and 26.0% in the 15–30 cm soil layer. (3) Averaged across the rice growing period,
elevated CO2 greatly increased TOC and TN contents in the surface water by 7.6% and 11.4%,
respectively. (4) The TOC/TN ratio and natural δ15N value in the surface soil showed a
decreasing trend under elevated CO2. The above results indicate that elevated CO2 can
benefit C and N accumulation in paddy fields. Given the similarity between the paddies and
natural wetlands, our results also suggest a great potential for long-term C and N
accumulation in natural wetlands under future climate patterns.
© 2015 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

Published by Elsevier B.V.
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Introduction

During the last three decades, great efforts have been made to
elucidate the effects of CO2 enrichment on ecosystem carbon (C)
and nitrogen (N) dynamics. However, most studies have been
focused on terrestrial ecosystems with few paying attention to
wetlands (Keller et al., 2009). Wetlands play a great role in global C
and N cycling. About 513 Pg C (1 Pg = 1015 g) is stored in the wetland
soils, roughly one-third of the total global soil C pool (Bridgham et
al., 2006). In addition, about 40%of the global CH4 emission (Dacey et
(Xiaowen Wang), zhang

o-Environmental Science
al., 1994) and 20% of the terrestrial dissolved organic carbon (DOC)
export (Fenner et al., 2007) originate from wetlands. Meanwhile,
both the gaseous and dissolved C exports can be stimulated by
environmental changes, such as air CO2 enrichment (Dacey et al.,
1994; Freeman et al., 2004; Guo et al., 2011; Inubushi et al., 2003).
Thus, learning the CO2-led impacts on wetland C and N dynamics
will greatly enhance our understanding of global C and N cycling in
future climates.

Increasing evidence has shown that elevated CO2 may
significantly affect C and N budgets in wetlands. On one hand,
elevated CO2 can increase C inputs into wetland ecosystems
jes
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through enhancing plant biomass accumulation and root exu-
dation (Erickson et al., 2007; Ma et al., 2004). The CO2-enhanced C
accumulation may simultaneously stimulate N accumulation in
wetlands because C and N cycles are strongly coupled in most
ecosystems (Luo et al., 2004). Meanwhile, the CO2-enhanced
available C source as rhizodeposition can stimulate biological N
fixation (BNF) in wetland ecosystems (Dakora and Drake, 2000;
Hoque et al., 2001; Inubushi et al., 2003), which may further
benefit C and N accumulation in wetlands. On the other hand,
elevated CO2 can promote C outputs from wetlands through
gaseous (Dacey et al., 1994; Inubushi et al., 2003) and dissolved
(Freeman et al., 2004; Guo et al., 2011) pathways. The enhanced C
exports may also increase N loss (Guo et al., 2011) from wetlands
due to the coupled cycling of C and N. Therefore, these CO2-led
changes in the inputs and outputs of wetland C and N may
consequently affect the C and N pools. Both in a scrub-oak
ecosystem and a C3/C4 grassland ecosystem, long-term CO2

enrichment did not promote ecosystem C and N sequestration
(Hungate et al., 2006; Gill et al., 2006), while in the Duke Forest
FACE and Sweetgum Forest FACE, long-term CO2 enrichment
was found to promote C and N sequestration (Finzi et al., 2006;
Norby and Iversen, 2006). However, there is still a lack of
evidence concerning the CO2-induced impacts on wetland C
and N pools.

Long-term CO2 experiments can contribute a great deal to
research on the changes of wetland C and N pools. To our
knowledge, there are two ongoing long-term CO2 experiments
being performed in wetlands in situ. One was initiated in 1987 with
an open-top chamber (1 m in height and 0.47 m2 in area) in a tidal
wetland, Chesapeake Bay, USA (Erickson et al., 2007). This
experiment has provided us many novel findings about wetland
responses to CO2 enrichment (Dakora and Drake, 2000; Langley et
al., 2009; Langley and Megonigal, 2010). Nevertheless, the CO2-led
impacts on C and N pools are still not clear likely due to the
limited experimental size and unstable aquatic conditions for
water and soil sampling. The other is our paddy free-air CO2

enrichment (FACE) experiment conducted since 2004 in China
(Cheng et al., 2010). Observations from our experiment showed
that elevated CO2 can significantly stimulate C and N inputs in the
form of crop biomass, N accumulation and root exudation (Cheng
et al., 2010; Ma et al., 2004), and C and N outputs as CH4 emission
(Zheng et al., 2006) and DOC and dissolved N (DN) export (Guo et
al., 2011). However, the consequent impacts on the C and N pools
still remain to be investigated.

The rice paddy ecosystem is the largest artificial wetland. It
not only supplies the staple food for nearly 50% of the world's
population (Sass and Cicerone, 2002), but also plays an important
role in global C and N cycling (Pan et al., 2003). In addition to the
great similarity with natural wetlands, paddy fields also maintain
relatively stable conditions for water and soil sampling during the
whole rice growing season. The FACE experiment in a rice paddy
field can provide great opportunities to learn the responses of
wetland C and N dynamics to elevated CO2. Therefore, after
five-year CO2 fumigation, we investigated the C and N dynamics
in the plant–water–soil system in a rice paddy ecosystem to learn
the responses of coupled C and N cycles to atmospheric CO2

enrichment.
c.c
n

1. Materials and methods

1.1. Experiment site description

The rice–wheat cropping FACE systemwas set up in June 2004
near Jiangdu city, Jiangsu province, China (32°35′5″N, 119°42′
0″E, 5 m a.s.l.) on a calcareous soil (a Mollisol in USA-ST, pH =
7.2). The cropping system has prevailed in this region formore
 c.a

than 1000 yr and is a typical cropping system in South and
East Asia. The climate conditions are subtropical with mean
annual precipitation of 980 mm, mean annual temperature
14.9°C, annual sunshine timemore than 2100 hr, and frostless
period more than 220 days. Relevant soil properties are
as follows: clay (<0.002 mm) 13.6%; silt (0.002–0.02 mm)
28.5%; sand (0.02–2 mm) 57.8%; bulk density 1.16 g/cm3; TOC
18.4 g/kg; TN 1.45 g/kg; TP 0.63 g/kg.

1.2. FACE system design

The FACE system had two target CO2 concentrations random-
ly located in six replicate octagonal plots with each having a
useful area of 80 m2 (three for elevated CO2 and the others for
ambient CO2). The CO2 concentration in the elevated plots
(hereinafter referred to as FACE) was controlled constantly
about 200 μmol/mol higher than that in the ambient. Each
plot was split into two subplots with different N levels (25 and
12.5 g/m2, respectively, where 25 g/m2 was the local normal N
application level) and separated from the surrounding area by
a polyvinyl chloride (PVC) board. In each plot, a 30 cm tall PVC
board was inserted into soil between the two N level subplots
(10 cm into the soil and 20 cm above the soil surface) to
prevent the cross-over of water and nutrients. More details of
the FACE system such as design, rationale, operation and
performance are provided by Liu et al. (2002) and Okada et al.
(2001).

1.3. Crop management

Rice seeds were respectively sown under elevated and
ambient CO2 in mid-May. In mid-June, rice seedlings were
transplanted manually into their corresponding field plots at
a density of three seedlings per hill and 24 hills/m2. About 36%
of the total N was applied as a basal dressing one day prior to
transplanting and 24% as a side dressing at early tillering six
days after transplanting (DAT), and the other 40% at panicle
initiation on 43 DAT. Typical irrigation regimes of the
surrounding areas were conducted. Each plot was randomly
irrigated with nearby river water through agricultural irriga-
tion ditches, submerged with water (about 5 cm in depth)
from mid-June to mid-July, then drained several times up to
the beginning of August, and afterwards flooded with
intermittent irrigation until 10 days before harvest. Other
field management of the plots also followed the local
agronomic practices.

1.4. Sampling method and measurement

Rice plant samples were taken at harvest and then separated
into leaf, stem (including leaf sheath) and panicles. All parts
were oven-dried at 80°C to a constant weight and weighed.
Afterwards, they were ground and passed through a
0.5 mm mesh sieve for the determination of N concentrations
by Kjeldahl digestion. N accumulation in every part was
calculated as N concentration × biomass. The aboveground
biomass and N accumulation were calculated by directly
adding up their accumulations in all plant parts.

The water samples and the 0–15 cm soil cores for DOC and
DN determinations were collected on 22, 40, 59 and 76 DAT,
jes
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Fig. 1 – Rice (a) aboveground biomass and (b) N accumulation
under elevated CO2 (FACE) and ambient CO2 (ambient).
Values are means ± 1SE, * stands for p < 0.05.
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and the sampling methods were the same as the methods
used in Guo et al. (2011). After rice was harvested, soil cores
(2 cm in diameter and 50 cm depth) were collected to obtain
0–15, 15–30 and 30–50 cm deep samples for the determina-
tions of TOC, TN and natural δ15N value. Samples from each
subplot were chosen randomly from six spots and repetition of
sampling spots was avoided. The storage and pre-treatment of
the samples were also the same as the methods used in Guo et
al. (2011). The TOC and TN in the surface water as well as DOC
and DN in the soil were determined as soon as possible within
one week. The TOC, TN and natural δ15N value in soil were
measured after the samples were air-dried, ground and sieved.

The TOC and TN in the surface water were measured by a
TOC-Analyzer (Multi N/C 3000, Analytik Jena AG, Jena,
Freistaat Thüringen, Germany) and flowing analyzer (San++
system, Skalar, Breda, Noord-Brabant, The Netherlands)
following a UV-digestion technique, respectively. The solution
for measurement of soil DOC and DN was extracted by
shaking (200 r/min) 10 g unsieved, field-moist soil with
distilled water (1:5 w/v soil-to-solution ratio) for 1 hr at 20°C
(Jones and Willett, 2006) and then filtered through a 0.45 μm
filter membrane. The DOC and DN in the extracting solution
were determined by the same methods as TOC and TN in the
surface water. The TOC and TN in soil were determined by an
Element Analyzer (Vario Max, Elementar, Hanau, Schwarzwald,
Germany). The natural δ15N value in soil was determined by an
isotope mass spectrometer (MAT251, Thermo Finnigan, Silicon
Valley, California, America) as described by Shearer et al. (1974).

1.5. Statistical analysis

Data were analyzed with Excel 2003 for Windows (Microsoft,
Redmond, Washington State, America) and the statistical
package SPSS11.5. ANOVA with general linear models was
used. Differences were considered significant at p < 0.05. Like
the report by Cheng et al. (2010) and due to the reasons
elucidated by Guo et al. (2011), there were no significant
effects of N and N × CO2 on any of the indexes. Therefore the
mean of two measurements under two N treatments in each
CO2 ring was taken as the plot value.
c.c
n

2. Results

2.1. Crop aboveground biomass and N accumulation

Rice aboveground biomass, except for leaf, was stimulated by
elevated CO2 (Fig. 1a). The stem, panicle and total above-
ground biomass significantly increased by 21.9%, 24.0% and
19.1%, respectively, in the FACE plots. Along with the biomass
increment, N accumulations in stem, panicle and total
aboveground biomass also correspondingly increased by
1.5%, 16.4% and 12.5%, respectively, in the FACE plots (Fig. 1b).

2.2. TOC and TN concentrations in the surface water

The TOC and TN were both enhanced by elevated CO2 during
the rice growing season (Fig. 2). Averaged across all sampling
dates, elevated CO2 increased TOC concentration in the
surface water by 7.6%, with a significant effect on 22 DAT. At
 c.a

the same time, elevated CO2 also increased TN concentration
in the surface water by 11.4% with significant effects on 22
and 59 DAT.

2.3. TOC and TN concentrations and natural δ15N value in
different soil layers

Compared to the ambient, elevated CO2 significantly in-
creased the concentrations of TOC and TN by 12.5% and
15.5% in the 0–15 cm soil layer, and 22.7% and 26.0% in the 15–
30 cm layer (Fig. 3). Similar effects occurred in the 30–50 cm
soil layer, though they were not significant.

Elevated CO2 significantly decreased the natural δ15N value
by 19.3% in the 0–15 cm soil layer (Fig. 3). Similarly, the natural
δ15N values in the 15–30 and 30–50 cm layers were respective-
ly 11.7% and 7.0% lower in the FACE plots than in the ambient.
No significant difference of natural δ15N values existed
between soil layers (Fig. 3).

2.4. DOC and DN concentrations in 0–15 cm soil layer

Different from the responses of soil TOC and TN to elevated
CO2, DOC and DN contents in the 0–15 cm soil layer showed
opposite responses to elevated CO2 during the whole rice
season (Fig. 4). Averaged across all sampling dates, the DOC
contents in the 0–15 cm soil layer increased by 26.3% in the
FACE plots, with significant increments on all sampling dates.
However, elevated CO2 decreased DN contents in the 0–15 cm
soil layer by 17.8% on average during rice growing duration,
with significant effects on 22 and 40 DAT (Fig. 4).
jes
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Fig. 2 – Concentrations of TOC and TN in the surface water
under elevated CO2 (FACE) and ambient CO2 (ambient).
Values are means ± 1SE, * stands for p < 0.05.

Fig. 3 – Concentrations of TOC and TN, and natural 15N value
in different soil layers under elevated CO2 (FACE) and
ambient CO2 (Ambient). Values are means ± 1SE, * stands for
p < 0.05.
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2.5. C/N ratios in the surface water and soil

Elevated CO2 decreased the TOC/TN ratio in the surface water
on 22, 40 and 59 DAT, with significant effects on 22 and
40 DAT (Fig. 5a). Averaged across 22, 40 and 59 DAT, the TOC/
TN ratio in the surface water was 8.7% lower in the FACE plots
than in the ambient. Meanwhile, elevated CO2 also tended to
decrease the TOC/TN ratios in the soil layers of 0–15 and 15–
30 cm by 2.6% and 2.9%, respectively (Fig. 5b). The DOC/DN
ratio in the 0–15 cm soil layer was increased by elevated CO2,
with significant increment on 22 and 40 DAT (Fig. 5c).
Averaged across all sampling dates, the DOC/DN ratio in the
0–15 cm soil layer was 38.1% higher in the FACE plots than in
the ambient. Compared with the TOC/TN ratios in the surface
water and soil, the DOC/DN ratio was significantly lower.
There was no obvious difference in the TOC/TN ratio between
the surface water and soil.
c.c
n

3. Discussion

Former research from our site and other natural wetlands
showed evidence that CO2 enrichment can increase C outputs
through gaseous (Dacey et al., 1994; Zheng et al., 2006) and
dissolved (Freeman et al., 2004; Guo et al., 2011) pathways.
This suggests that CO2 enrichment may impede C accumula-
tion in the wetlands. However, the increments of crop
biomass (Fig. 1), TOC contents in the surface water (Fig. 2)
and soil (Fig. 3) together demonstrate that elevated CO2 can
 c.a

facilitate C accumulation in the paddy ecosystem. Our results
indicate that CO2-led stimulation of C output is less than the
stimulation of C input in the paddy field. Through stimulating
rice aboveground biomass growth (Fig. 1) (Kim et al., 2003;
Cheng et al., 2010), elevated CO2 can promotemore C allocated
belowground as root biomass (Yang et al., 2008) and exudation
(Ma et al., 2004). Additionally, the CO2-stimulated above-
ground biomass growth can also increase litterfall to enhance
C pools in the soil (Paterson et al., 1997). Although the
CO2-enhanced root-related available C source can increase C
export as CH4 (Zheng et al., 2006) and DOC (Guo et al., 2011),
most newly-added C will still accumulate in soil as
long-lasting patterns due to the anaerobic conditions in
paddy fields (Witt et al., 2000). Under anaerobic conditions,
the decomposition and/or mineralization rates of organic
matter are much lower than under aerobic conditions
(Witt et al., 2000). Furthermore, intensive rice cropping can
jes
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Fig. 4 – Concentrations of DOC and DN in 0–15 cm soil layer under elevated CO2 (FACE) and ambient CO2 (ambient). Values are
means ± 1SE, * stands for p < 0.05.
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accumulate many phenolic lignin compounds to resist
organic matter decomposition under submergence (Olk et al.,
2000). As a result, more C can be accumulated in the paddy
field under CO2 enrichment.

Considering the crop biomass harvesting and paddy
drainage, CO2-enhanced biomass N (Fig. 1) and aquatic N
(Fig. 2) indicate that more N might have been exported from
the FACE plots. However, the higher soil TN content in the
FACE plots than in the ambient (Fig. 3) suggests that CO2

enrichment also benefits N accumulation in paddy fields.
Three reasons may contribute to the CO2-led increment of N
a

c

Fig. 5 – TOC/TN ratios in (a) the surface water and (b) soil and the
(FACE) and ambient CO2 (Ambient). Values are means ± 1SE, * sta
content in the soil. Firstly, the CO2-led C accumulation in soil
can simultaneously combine more soil-available N to form
long-living soil organic matter (SOM) due to the coupled
cycling of C and N (Luo et al., 2004). Similar CO2-led
stimulation of C and N accumulation was also found in the
Duke Forest FACE after six-year CO2 fumigation (Finzi et al.,
2006). Secondly, CO2 enrichment can enhance microbial
growth and activity in paddy soil (Li et al., 2004), consequently
resulting in more N immobilized in microbial biomass.
For example, in a Japanese paddy FACE, elevated CO2

significantly increased microbial biomass N by 25%–42% in
jes
c.a

c.c
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b

c

DOC/DN ratio in (c) 0–15 cm soil layer under elevated CO2

nds for p < 0.05.
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0–1 cm soil layer at rice harvest (Hoque et al., 2002). Thirdly,
the CO2-enhanced C source can stimulate BNF in paddy fields,
further facilitating N accumulation. It was estimated that 50–
75 kg N/(ha · yr) added into the paddy field mainly came from
BNF (Ladha et al., 1983), so the BNF contributes significantly to
the N inputs into the paddy ecosystem (Roger and Ladha,
1992). Previous studies showed that BNF activity in 0–10 cm
paddy soil could be significantly enhanced by elevated CO2

both in FACE (Hoque et al., 2001) and chamber (Cheng et al.,
2001) experiments. In addition, the algal growth in 0–1 cm
paddy soil was also significantly increased by elevated CO2

(Hoque et al., 2001). The CO2-led decrement of soil natural
δ15N abundance (Fig. 3) also indicates the presence of
CO2-stimulated BNF because BNF can decrease soil natural
δ15N abundance (Shearer et al., 1978). Similarly, Dakora and
Drake (2000) found that the nitrogenase activities in C3 and C4

plant-free sediments were also significantly enhanced by
elevated CO2 in the Chesapeake Bay wetland. Our recent
observation found that elevated CO2 improved the mineral
nutrients (e.g., Ca2+, Mg2+) in paddy soil (Cheng et al., 2010),
which can further enhance CO2-led N2 fixation (van Groenigen
et al., 2006).

In our experiment, elevated CO2 increased the biomass/N
ratios by 10.4%, 18.3%, 7.3% and 12.3% in the leaf, stem,
panicle and the total aboveground, respectively. This means
that more CO2 can be assimilated in rice plants with the same
available N. Meanwhile, the CO2-led decreasing trends of TOC/
TN ratio (Fig. 5) in the surface water and soil indicate that
more N can be accumulated in the paddy field with the same
organic C. The C/N ratio changes further suggest that CO2

enrichment may benefit C and N accumulation in the paddy
field. Although CO2 enrichment increased TOC and TN
contents in the surface water, the significant difference
between the TOC/TN ratio (Fig. 5a) and the DOC/DN ratio
(Fig. 5c) indicated that the TOC and TN in the surface water
might not mainly come from the soil. Since the C/N ratio of
organisms is greatly lower than that of crops (Kaye and Hart,
1997), the CO2-stimulated growth of aquatic organisms may
contribute a lot to the increments of water TOC and TN
contents (Hoque et al., 2001; Inubushi et al., 2003). This implies
that CO2-led increments in water TOC and TN may not
weaken C and N accumulation in paddy fields, especially in
the soil. Considering the great similarity between the paddy
field and the natural wetland, our results suggest that
elevated CO2 may also facilitate C and N accumulation in
natural wetlands.
c.c
n

4. Conclusions

The field-based data in our research showed that, after five
year fumigation, elevated CO2 can stimulate the C and N
accumulations in a rice paddy ecosystem. Firstly, elevated
CO2 increased the aboveground biomass and N accumulations
of plants. Secondly, elevated CO2 significantly increased TOC
and TN concentrations in the surface water averaged across
the whole growing period. Finally, elevated CO2 also greatly
increased the paddy soil TOC and TN contents at 0–30 cm
depth. Together with the result of the decreasing trend of
TOC/TN ratio and natural δ15N value in the surface soil under
elevated CO2, we concluded that elevated CO2 can benefit C
and N accumulation in a rice paddy ecosystem, in which the
biological N fixation may play an important role. Due to the
similarity between paddies and natural wetlands, the results
illustrate the positive impacts of elevated atmospheric CO2 on
long-term C and N accumulation in natural wetlands in the
future.
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